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SEQUENTIAL SHRINKAGE ESTIMATION

By MaALAY GHOSH,! DAvID M. NICKERSON! AND PRANAB K. SEN?

University of Florida, University of Georgia
and University of North Carolina at Chapel Hill

The paper develops a class of James—Stein estimators that dominates
the sample mean under sequential sampling schemes of Ghosh, Sinha and
Mukhopadhyay (1976). Asymptotic risk expansions of the sample mean and
James—Stein estimators are provided up to the second-order term. Also, a
Monte Carlo study is undertaken to compare the risks of these estimators.

1. Introduction. Let X,,X,,... be a sequence of iid N(0, 62V) variables,
where 8 € R? is unknown, and V (positive definite) is known. Based on
X,,...,X,, if the estimator 3, = § (X, ..., X,) is used for estimating 0, suppose
that the loss incurred is given by

(1.1) L(8,8,) = (3,-6)'Q(3, - 0) + cn,

where Q denotes a known positive definite matrix, and ¢ (> 0) denotes the
known cost per unit sample. In particular, using X, = n™'L” X, as an estima-
tor of 0, the expected loss (risk) is given by

(1.2) R(0,02,X,) = n"'%%tr(QV) + cn.

If 62 is known, the above risk is minimized at n = n* = (trQV/c)/%. For
simplicity, we shall, henceforth assume n* to be a positive integer. However, for
unknown o2, there does not exist any fixed sample size that minimizes (1.2)
simultaneously for all o2, In this case, motivated by the optimal fixed sample
size n* (when o2 is known), the following sequential procedure is proposed for
determining the sample size:

(1.3) N = inf{n > m: n > (52/¢) " (tr QV)'%},

where m (= 2) denotes the initial sample size and for every n > 2,

4 se{n-0p)" LXK VX -K,).

Note that for known o2, the fixed sample rule with sample size n* and the

corresponding estimator X, . is also a sequential minimax rule under the loss
(1.1) [see, e.g., Kiefer (1957)]. Thus, (1.3) can be viewed as an empirical minimax
stopping rule.

Received May 1985; revised September 1986.

!Research partially supported by NSF Grant DMS-8218091 and partially supported by NSF
Grant DMS-8600666.

2Research partially supported by ONR Contract N00014-83-K-0387.

AMS 1980 subject classifications. 62J07, 62L12.

Key words and phrases. Multivariate, sequential estimation, James—Stein estimators, asymptotic
risk expansions, Monte Carlo.

817

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éfr a%
The Annals of Statistics. RIK@J:Y

29

®

WWw.jstor.org



818 M. GHOSH, D. M. NICKERSON AND P. K. SEN

Ghosh, Sinha and Mukhopadhyay (1976) and Woodroofe (1977) proposed
similar stopping rules in the more general case when the X;’s have an unknown
dispersion matrix 2. Such stopping rules were multivariate analogs of a uni-
variate procedure introduced in Robbins (1959). In all these papers, the estima-
tor X was proposed for 8, and asymptotic (as ¢ — 0) properties of N and X,
were studied.

It is known, however, that for fixed sample sizes, James—Stein estimators
dominate the sample mean under the loss (1.1). This is shown in J ames and Stein
(1961) when Q = V = I, (the identity matrix of order p) and ¢? is known, in
Berger (1976) when o2 is known and in Efron and Morris (1976) when Q@ =V =1,
but o2 is unknown. For a general class of estimators dominating the
sample mean when the sample size is fixed, one may refer to Baranchik (1970),
Strawderman (1971), Efron and Morris (1976) and Berger (1976).

Ghosh and Sen (1983) developed James-Stein estimators dominating the
sample mean under two-stage sampling schemes. However, a two-stage procedure
needs on an average more observations than n*, the optimal fixed sample size if
0% were known.

Takada (1984) developed some sequential James—Stein estimators when Q =
V =1,. However, as we shall see in Section 4, at the nth stage of the experi-
ment, Takada’s estimator uses only p out of the (n — 1)p degrees of freedom
available for estimating o2, and thereby throws away some information.

The present paper removes both the objections raised in the preceding two
paragraphs. First, it uses all the available degrees of freedom for estimating o2 at
each stage of the experiment. Second, unlike a two-stage procedure, which
employs sZ in defining the stopping rule, the stopping rule (1.3) uses an updated
estimate of the variance 6% at each stage of the experiment, and thereby
demands less observations on an average than the corresponding two-stage
procedure.

In the remainder of this section, we summarize the main results of this paper.
The proofs are deferred to the subsequent sections. Consider the class of

James—Stein estimators 8%(X,,...,Xy), where
8(X X,)=X bs.
1) oo =X T SR TNV (X, - V)

xQ VX, -1\),

for every n>2, s2=p(p+2)"%52 (n>2), and \ € R? is the known point
towards which we want to shrink. Very often N is taken as the prior mean. For
fixed samples, this estimator was proposed by Hudson (1974) and Berger (1976).
The first main result of this paper is as follows.

THEOREM 1. Under the stopping rule (1.3), and the loss (1.1), R(8, 62,85 <
R(0,0%,X) for every b € (0,2(p — 2)).

For fixed sample sizes, the optimal choice of b is (p? — 4)p~!. Note that
(p?— 4)p~'s2 = (p — 2)52. Customarily, the numerator of the second term in
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the right-hand side of (1.5) is expressed as a multiple of §2. We find it convenient
to work with s?2 instead of 52 for technical reasons. The important point is that
unlike the fixed sample case, the optimal b in the sequential case depends on
unknown parameters. The next two theorems provide asymptotic (as ¢ — 0) risk
expansions of X and 87,. These results suggest that at least asymptotically, the
optimal choice of b is indeed (p2 — 4)p~ 1.

THEOREM 2. Under the stopping rule (1.3), and the loss (1.1),
(1.6) R(8,0%,Xy) = 2¢2(tr QV)% + ¢(2p) ' + o(c),

as c - 0 when m > 2.

THEOREM 3. Under the stopping rule (1.3), and the loss (1.1), as ¢ — 0,
R(0,02,8%) = 2¢/%(trQV)"* + c(2p) !
(1.7) —cbp*(p +2) *(2(p* ~ 4)p™" ~ b)o’
X (rQV) (0= N)'VIQTIVT(B - N)} T + o(e),
for 8 = \ when m > 3;
R(N,02,8%) = 2cV2(tr QV)"/* — c20bp2(p + 2) *(2(p® — 4)p~' - b)

(1.8) (trQV)—1/2E( f Wia;l)_l +o(e?),

i=1
for m > 2, where the W,’s are iid x? and the a;’s are the eigenvalues of QV.

From (1.6)—(1.8), the asymptotic percentage risk improvement of 8% over Xy
is given by

19) 100{%bp2(p +2) %(2p*-4)p ' - b)o}

X (trQV) " ¥?{(8 = \)'V-1Q V=18 — N)} '¢/2 + o(c2),

for 8 #\,0<b<2(p—2)and m > 3, while for 8 =\, 0 < b <2(p — 2) and
m > 2, the asymptotic percentage risk improvement is given by

100{(trQV) '} 5p%(p +2) *(2(p> - 4)p~' - b)

XE( f W'iai_l)_l + o(1).

i=1

(1.10)

It is now easy to see that the dominant term in both (1.9) and (1.10) is
maximized when b = (p?2 — 4)p~ L.

The layout of this paper is as follows. The proof of Theorem 1 is given in
Section 2. The proof of Theorem 2 is omitted as it can be developed along the
lines of Woodroofe (1977), Ghosh and Mukhopadhyay (1980) and Finster (1983).
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The details appear in Ghosh, Nickerson and Sen (1985). The proof of Theorem 3
is briefly outlined in Section 3. Monte Carlo simulations comparing the risks of
the sample mean, the proposed James—Stein estimators and Takada’s estimators
are given in Section 4. As anticipated, our estimators achieve bigger risk
reduction than Takada’s estimators. Finally, in Section 5, certain concluding
remarks are made.

2. Proof of Theorem 1. First write
R(0,02%,85) — R(8,0%,Xy)

SI%J()_(N_)‘)/ _I(XN_Q)
N()_(N_)‘)/ BCRA ( _)‘)

+b2Ey o [sh/(N}{(Xy - N)VIQIWV Xy — M)}

Since Q and V are both positive definite, using the simultaneous diagonalization
theorem, there exists a nonsingular D such that DQ'D’ = I, and DVD’ = A =
Dlag(al, ..» ap) with a; > 0,1 < i < p. Use the transformatlon Z,=DX, - )\),
i=12,..., so that the Z’s are iid N(§, 0?A) with { = D(6 — )\) Write Z

_1}:,=1Zl, n>1, and use the Helmert orthogonal transformation Y =
(Z,-2,)/V2,Y,=(Z, +Z,— 2Z,)/V6,.... Then, Y;’s are iid N(0,c%A) and
Z, is distributed independently of (Y,,...,Y,) for every n > 2.

Also, one has

(2.1) = _2on, o?

(2.2) X,-N)VX,-0)=Z,AYZ,-¢), n=1,
(2.3) (X, -NVIQWVX,-N)=Z,AZ,, n=x1,
(2.4) = ((n-1)(p+2) " LYAY, nz2

Then from (2.1), one gets
R(08,02%,8%) — R(8,0%,Xy)
(2.5) = —2bE; :[(s}/N)(ZyA~(Zy - 1))/(ZHA*Zy )]
+ OB, | (sk/N?)(ZrAZy) 7.
Let %, denote the o-algebra generated by Y,,...,Y,. Then
Et.oz[(sz%/N)(zva_l(z = 0)/(ZhAZy)]

= Z E; - [n s I[N n1 By, o2 {(Z A 1(Z - §))/(Z A_zzn)|g;z}]

n=m

i 3 Z,
= g 2| nT s N n]za Yo 2/n)a,~E'oz{ aZni(Z;A-ﬁn)

i=1

(2.6)

[oe]
=02 ¥ E »[n %2 yon(p - 2)/(Z,AZ,)].

n=m
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For the first equality in (2.6), one uses the independence of Z,, and (Y,,...,Y,),
while for the second equality, one uses Stein’s identity [cf Steln (1981)].

Next, note that for every n, nZ’ A~ 2Z,,/o ~ YP W,./a,;, where the W ’s
are independent and W,; ~ x%(n{; 2/20 a), i=1,. p Hence, using the result
[see, e.g., Cressie, Davis Folks and Policello (1981)] that if P(U > 0) = 1, then
E(U™Y) = [PE(exp(—tU)) dt, one gets

E, ,[nZ,A%Z,/0?] "

- [ LU Elonl- W0 a
(2.7) 0 =1

= fow lfll{(l + 2ta,~_1)_1/2exp(—nt§i2/(02ai(a,~ + 2t)))} dt

=g,(4,),

where A, = A (§, ¢2). In this section we need | only that g,(A,) is nonincreasing
in n. Now, using again the independence of Z, and (Y,,...,Y,), one gets from
(2.5)-(2.7),

R(8,02,8%) — R(8,02,X})

(2.8) = —bnimgp(An)Eaz[(s,%/n)(:z(p ~2) — bsZ0 ) I;y_p)]

< _2b(p - 2) E gp(An)Eoz[n_lsrzt(l - sr%o_z)I[N-n]]y

n=m

where in the last step one uses 0 < b < 2(p — 2). Also, in the above, E_. denotes
expectation when the Y,’s are iid N(0, 02A). Accordingly, for proving the theo-
rem, it suffices to show that

(2.9) Z gp(A )E, g[n 152(1 - s2/0?) Min- n]] >0, forall 2> 0.

To prove (2.9), first observe that tr(QV) = tr(QD 'AD’™!) = tr(A),
since DQ'D’=1,. Let n, denote the smallest integer > m such that
p(p+2)°~ cno/(trA) > o2 Then we write p(p + 2) " ‘cn2/(tr A) > o2. Then we
write

nog—1

Ihs of (2.9) = Z 8,(8,)E:[n7's2(1 — s2072) I inony]
010 +gp°£A DEoe[nas2 (1= 5207 [y
+ Z {gp(An+l)E [(n + 1) n+1(1 - s3+16_2)I[N2n+1]]

n=n,

— 8,(A,)E[n's3(1 — s2o™ )I[Nzrm]]}’
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where the first term in the rhs of (2.10) should be interpreted as zero if n, = m.
The crux of the argument for proving (2.9) is as follows. Use the break up as
glven in (2.10). Since, g,(A,) \. in n, by definition, on the set [N > n + 1],
s2>p(p+ 2) 'en?/(trA) > 02 when n > n,. Thus, one gets

third term in the rhs of (2.10)

(2.11) > ¥ g8y B[ {(n+ 1) 52,41 = 8200072)

n=ng,

-n"1%2(1 - s,fa_z)}I[Nan]].
Use the representation s2,, = (n — 1)s2 + U2, ,)/n, where
=(p+2) Y ATY,,, ~o’x%/(p +2)
independently of Y,,...,Y,, and prove by direct computations
(2.12) rhs of (2.11) > 0.
Next use induction arguments to show that
(2.13) sum of the first two terms in the rhs of (2.10) > 0.

To prove (2.12), note that I}y ,.,; is a %, measurable function. Then, with
probability 1,

Epa[(n+1)7"s2,,(1 - sk )I[Mmm ]
= Inonen[n 521 = s2072) + {n7 = (n = )*(n + 1) 'n"Y)sko 2
+s2{(n—-1)(n+1)"'n"!
—2(n—1)pn Y n+1)"(p+2)" —nl}
(2.14) +paX(p+2) " {(n+1) "' = (n+ 1) 'n2)]
= Iinsneyn 501 = s3077)

st 3n-1 s2

n n

ol Sn .y (n—-1p
IN2r+1l) 62 p2(p 4 1) n’(n+1)

p+2

pe?2 n-1
+ 3 .
p+2ni(n+1)

Note that the multiple of I[ N=n+1) in the extreme rhs of (2.14) is a convex
function of s2, where the minimum occurs at

(2.15) s,2l=o2[{n+ (n-— 1)p(p+2)_1}/(3n— 1)] < a2
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Hence, recalling that on the set [N > n + 1], s2 > ¢2, it follows that

second term in the extreme right of (2.14)
> I[N2n+1][(3n -1e?n ¥ (n+1)""
(2.16) —26%(n+ (n-1p(p+2) Yn2n+1)""
+o¥(n—1p(p+2) 'n2n+ 1)_1]

= I[N2n+1]o2n‘2(n + 1)_1(n - 1)(1 —-p(p+ 2)_1) >0

From (2.11), (2.14) and (2.16), one gets (2 12).
Next we prove (2.13). For n, = m, since I}y ,,; = 1 with probability 1 and

E,[s2(1 - s2672)]
=o2[p(p+2)"" ~ ((m=1)p +2p(m—-1)"(p+2)Y
=2(m—-2)poi(m—-1)"(p+2) >0

the result follows. For n, > m(> 2), first note that for n < n, — 1, on the set
[N =nl s;<p(p+2)'en?/(trA) < o so that using g,(4,) \ in n,

first term in the rhs of (2.10)
2.17 mo- 1
(217) >g,(4,,) X E‘,g[n_ls,f(l - s,fo_z)I[Nq]].

Hence, (2.13) follows if

ng—1

Z E, [n E 2l—so I[N=,,]]
(2.18)

+E02[n61820(1 - sfoo‘z)I[NZnO]] >0

n

holds true. To prove (2.18), first use s2 = ((n, — 2)s2 _, + U,,)/(ny — 1), and
get with probability 1,

Eaz[nals,fo(l - szoohz)I[Nzno]lgno—I]
= [{(m0= 2571 + b0+ 2) MeHnz (ng — 1)
(2.19) —{(no = 2)°s}, 1 + 2(no — 2)s%,_1po*(p +2) "
+pa*(p +2) Jng (ng = 1) 0 Iy,

= -2
- {ano no—l -b osno—lo +o cno}I[Nzno]’
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where

an, = (no—2)(no—1-2p(p +2) )ngi(n,— 1) 7%,
(2.20) by, = (ng — 2)°ng (ny — 1) 72,

Cpo = (ng = 2)prg(ne— 1) (p+2)”"
Let

8ny = bry, — @, = (P = 2)(no = Dng'(ne =) H(p +2)7" (>0),
so that
Cny ~ 8ny = 2(ng — 2)ng'(ny - 1)_2(1’ + 2)_1 >0
Also, let
d,, =28, — a,, = (ng = 2)(ng =3+ 2p(p +2) ')ng'(ng - 1) 7,

so that (n, — 1)d, € (0,1).
Now rewrite

extreme right of (2.19)

=E, [{dno(s,fo_l - s,‘:o_la‘z) + gno(s,‘:o_lo‘2 -2s2 _, + 02)}]

— 2 4 -2
(2.21) B E"2 [{dno(sno—l - s"o—lo )
+gn0(s,‘:o_lo—2 _ 2s,2lo_1 + 02) + (12(cno - gno)}I[NZnO]]

2 4 -2
= dn0E02 [(sno—l - sno—lo )I[Nzno]]’

If the extreme right of (2.21) > 0, noting again that s2 < ¢ on the set [N = n]
for all n < n, — 1, one proves (2.18) from (2.19) and (2.21). Otherwise, noting
that (n, — 1)d, <1, one gets from (2.18), (2.19) and (2.21),

lhs of (2.18)
nyg—2

(2.22) E E,. [ 2(1 — 5207 %) Iy
+(n0 - 1) Sn —1(1 - 330—10_2)I[N2n0—1]] .
Proceed inductively to get either lhs of (2.18) > 0, or finally end with

(2.23) Ihs of (2.18) > E,.[m ™ 's2(1 — s2072) I x> m] = 0,

as calculated earlier. The proof of Theorem 1 is now complete. O
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3. Proof of Theorem 3. From (2.5)-(2.7), one gets
¢ '[R(8,0%8%) — R(8,0%,Xy)]

=c'E, [(—2b(p - 2)s% + b 2%sf)N!

o £ 1)~ 1/2 o N ez 1 -1
X/ [T(1+2ta;)” “exp| —Nta2 Y t%a;(a; + 2t)" | dt
0 i=1

i=1

(3.1)

2 2 2.4 12y-1 [® d 172, -1\~ 1/2
= E;|(—2b(p — 2)s} + b%~2s})(Nc'/?) foi=l—11(1+2tc a;t)

p
Xexp(—Ntcl/“’o_2 Y tFa;Ya; + 2tc1/2)_1) dt}.

i=1
As ¢—0, s} >p(p+2) %2 as. and Nc'/? - (trQV)% = (trA)% as.
Hence, for §{ # 0 (i.e., 8 # N) as ¢ — 0,

the bracketed term in the rhs of (3.1)
— —o%p%(p +2) *b{2(p® - 4)p~' - b}(trQV) %61

—to“(trQV)l/z( f gf/a?)) dt
i=1

(3.2) X '/(; exp

= —o2p¥(p +2) *b{2(p* - 4)p~' - b} (trQV) "

x{(0—=N)V'Q VY8 -N\)} " as,
using
D
Y i 2=0A X =(0-N)'VIQ 'V (6 -N\).
i=1
Next for m > 3, proving the uniform integrability (in ¢ < ¢,) of the bracketed
term in the rhs of (3.1), and using (1.6), one gets (1.7). The details of the uniform
integrability proof appear in Ghosh, Nickerson and Sen (1985), and are omitted.
For { = 0, i.e., 8 = \, it follows from (3.1) that
¢ 2[R(8, 0%, 8%) — R(0,02,Xy)]

= ¢ V2E,[(-2b(p — 2)s} + b’ %s{ )N
o P Co =
x [TT1(1 +2ta7?) " at.
0 i=1

Using the result that if W,’s are iid x2,

E( f W’ia{‘)_l - f()wE[exp(—t f magl)] dt

i=1 i=1

(3.3)

o0 p —
= [TT1(1 + 2ta;) " i,
0

i=1
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along with s - p(p + 2)" %% as. and Nc'/2 - (trQV)/% as. as ¢ — 0, it
follows that

¢~ 1/2 times the bracketed term in the rhs of (3.3)

> (—2b(p—-2)p(p+2) " +dPAp+2)77)
(3.4) ) _1
xdz(trQV)_1/2o‘1E( Y Wiai‘l) a.s.
i=1
The uniform integrability property of s} (in ¢ < ¢,) when m > 2 along with (1.6)
now lead to (1.8). The details appear in Ghosh, Nickerson and Sen (1985) and are
omitted. O

4. A Monte Carlo study. For simplicity, consider in this section the case
when \ =0, Q = V =1, In this special case, Takada (1984) has shown that if
one defines

(4.1) ,=(p+2) Y)Y, nx2,
then the estimator

_ by, _
. b-X - ==X
(42) T " nX X, "

dominates )_(n for all 0 < b < 2(p — 2). Note that o, ~ (p + 2)'1xf,, and does
not utilize all the available (n — 1)p degrees of freedom for estimating ¢2. In
this section, our objective is to compare the risk performance of X, 8% and T,
with b = (p%? — 4)/p when p = 6 and p = 9. For notational simplicity, we shall
call 8#°~9/7 and T("* -9/, 8y and Ty, respectively. Also consider 83, and Ty,
which are plus rule versions of James—Stein estimators and Takada’s estimators,
ie.,

+

8 = (1- (p? - 49)p~s2(nX;X,) ) X,
and
Ty = (1- (p* - 4)p ' (nX:X,) ) K,

for n > 2, where a* = max(a,0). Although, we have no analytical results avail-
able showing the dominance of 87, or Ty over X,, it is anticipated that they
will perform better than 8, and T, by preventing overshrinking [see, e.g.,
Lehmann (1983), page 302). Indeed, for fixed samples, it is known that 8
dominates 3, for every n > 2.

Before describing the simulation procedure, note that R(0, 02X ) does not
depend on 0, while the risks of the other estimators depend on 6 only through
l161l.

To simulate the sequential sampling procedure, and evaluate the estimators
under consideration, a large pool of N(6,1,) variables were generated for p = 6
and 9 with ||8]|=0, 1 and 2. § was taken as (0,0,0,0,/0.5,/0.5) and
(0,0,0,0,0,0,0,y0.5,V0.5), respectively, for p =6 and 9 when |8]| =1, and
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(0,0,0,0,v2,v2) and (0,0,0,0,0,0,0, V2, y2), respectively, for p = 6 and 9 when
|I8]] = 2. We have run other simulations as well and have noted that the actual
coordinates of 6 do not matter as long as ||0|| remains the same. Also, ¢, the cost
per unit sample is taken as ¢ = 0.50, 0.25, 0.10, 0.05, 0.025 and 0.01.

A single experiment would be sequential samples from the pool until the
stopping criterion was met. At this point, the sampling would stop, the number
of samples would be recorded and the estimators X, 8y, T,, 85 and Ty and
their associated losses are computed.

On the completion of 1000 experiments, we compute the average losses for all
these estimators, and these are the simulated versions of the corresponding
risks. Also, at this point we compute the percentage risk improvements
100(R(8, X ) — R(8, 8,))/R(8, Xy), 100(R(8,Xy) — R(8, Ty))/R(8, Xy),
100(R(8,X ) — R(8,8y))/R(0,X ) and 100(R(8,Xy) — R(8,Ty))/R(8,Xy),
which are denoted by %8, %Ty, %85 and %Ty;, respectively.

Our simulation findings are summarized in Table 1 for p = 6 and Table 2 for
p = 9. It is clear from the tables that as in the fixed sample case when \ = 0, the
risk improvement of all the estimators is most substantial when ||0|| = 0, and the
improvement keeps diminishing as ||6]] moves further and further away from
zero. Also, the risk improvements are more substantial when p = 9 than when
p = 6. Also, for a fixed ||0]| # 0 as ¢ decreases, i.e., the average sample size gets
larger, the percentage risk improvement decreases as in the fixed sample case.
The opposite is the case when ||8]| = 0. The main reason is that when \ = 0
N|X ylI2 behaves as a multiple of ¢™'/?||6||> when 8 + O, while N|Xy||> - , x2
when 0 =

TABLE 1
The risks and the percentage risk improvements over X forp = 6

18] Cost N R(8,Xy) %8 %Ty %85 BTN
0 0.50 3.81 3.6217 26.15 22.80 30.73 26.64
0.25 5.23 2.5185 27.74 23.34 32.98 27.85

0.10 8.12 1.5456 30.58 22.97 35.75 30.29

0.05 11.36 1.1074 31.35 25.39 36.56 30.80

0.025 15.84 0.7871 32.04 25.05 37.33 31.00

0.01 24.90 0.4956 32.41 25.24 37.83 31.42

1 0.50 3.78 3.5405 14.38 12.87 16.51 14.66
0.25 5.23 24995 . 1230 10.60 13.84 12.34

0.10 8.13 1.5530 1097 8.80 11.46 9.51

0.05 11.34 1.0927 9.14 7.51 9.22 7.66

0.025 1591 0.7791 6.44 5.11 6.44 5.19

0.01 24.94 0.4958 4.42 3.37 4.42 3.37

2 0.50 3.77 3.5919 6.35 5.71 6.38 5.77
0.25 5.24 2.4911 4.93 419 4.93 419

0.10 8.06 1.5486 3.51 2.73 3.51 2.73

0.05 11.37 1.0909 2.83 2.35 2.83 2.35

0.025 15.84 0.7769 2.00 1.62 2.00 1.62

0.01 24.94 0.4861 113 0.88 1.13 0.88
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TABLE 2
The risks and the percentage risk improvements over X forp = 9

(L] Cost N . R(8,Xy) %8 %Ty %8y % Ty
0 0.50 4.63 4.2456 31.95 27.68 36.78 33.03
0.25 6.42 3.0509 35.34 29.05 38.95 34.61

0.10 9.94 1.8992 35.88 30.52 40.03 36.18

0.05 13.81 1.3479 36.62 31.72 41.00 36.76

0.025 19.42 0.9552 37.42 31.02 41.46 37.11

0.01 30.50 0.6132 38.96 32.40 42.37 37.51

1 0.50 4.61 4.3622 21.66 19.18 23.35 21.30
- 025 6.43 3.0317 19.30 16.45 20.66 18.36

0.10 9.96 1.8811 15.82 13.87 16.39 14.50

0.05 1391 1.3488 1297 10.79 13.00 11.07

0.025 19.44 0.9488 11.13 9.13 11.20 9.39

0.01 30.51 0.5995 7.74 6.46 7.74 6.47

2 0.50 4.64 4.3589 10.54 9.28 10.56 9.31
0.25 6.43 3.0208 8.28 7.10 8.28 7.10

0.10 9.95 1.9132 5.85 5.12 5.85 5.12

0.05 13.84 1.3439 4.07 3.29 4,07 3.29

0.025 19.36 0.9527 3.26 2.77 3.26 2.77

0.01 30.45 0.6042 2.12 1.80 2.12 1.80

5. Concluding remarks. There are many possibilities to generalize the
results of this paper. An immediate question to ask is whether the results of this
paper can be generalized for an arbitrary p.d. unknown variance—covariance
matrix 3 using the stopping rules of Ghosh, Sinha and Mukhopadhyay (1976) or
Woodroofe (1977). For fixed samples, for an unknown p.d. £ dominance of
James-Stein type estimators over the sample mean are discussed in Berger,
Bock, Brown, Casella and Gleser (1977) and in Berger and Haff (1983). Also, one
can develop empirical Bayes stopping rules instead of the empirical minimax
stopping rules as given in (1.3). Other types of robust Bayes stopping rules are
also possible. We are currently exploring some of these ideas.

Acknowledgments. Thanks are due the Associate Editor and the referees
for their helpful comments.
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