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UNBIASEDNESS OF TESTS FOR HOMOGENEITY!

BY ARTHUR COHEN AND HAROLD B. SACKROWITZ

Rutgers University

Let X;, i=1,2,..., k, be independent random variables distributed
according to a one-parameter exponential family with parameter 6;. Assume
also that the probability density function of X, is a Pélya frequency function
of order two (PF,). Consider the null hypothesis Hy: 6, =0, = --- =40,
against the alternative K: not H,. We show that any permutation invariant
test of size a, whose conditional (on 7 = Y*_ X,) acceptance sections are
convex, is unbiased. A stronger result is that any size a test function ¢, which
is Schur-convex for fixed ¢, is unbiased. Previously, such a result was known
only for the normal and Poisson cases.

1. Introduction and summary. Let X, X,,..., X, be independent ran-
dom variables distributed according to a one-parameter exponential family with
parameter 6,, i = 1,2,..., k. That is, the joint density of the X; is

(1.1) f(x,0) = (f[lﬂ(ai))exp(élxiai)(ii]lh(xi)),

where x = (x,, X5,...,%;), 0=1(0,,0,,...,0,). The dominating measure is
Lebesgue for the continuous case and counting measure for the case where X; are
integer-valued. Assume A(x;) is a Pélya frequency function of order two (PF,),
that is, h(x;) is log concave. The problem is to test the null hypothesis H:
0,=0,= --- =40, against the alternative K: not H,. In this paper we study
the issue of unbiasedness of permutation invariant (PI) tests. Note that any
unbiased test for the model under discussion must be similar and therefore must
have Neyman structure with respect to 7= L% | X, = t. See Lehmann (1959),
Theorem 2, page 134. Hence, any unbiased test of size a must have conditional
size a (given T =t). For k = 2, Lehmann (1959) exhibits a uniformly most
powerful size a unbiased test for this model. See Lehmann (1959), Chapter 4,
Sections 4 and 5. For X; normal with unknown means or X; Poisson, it is easily
shown, using the results of Cohen and Sackrowitz (1975) and Marshall and Olkip
(MO) (1979), pages 386 and 391, that any PI test, which has conditional
acceptance sections that are convex, is unbiased. In fact, in these cases the
stronger result of Schur-convex power functions follows.

For X; gamma, i = 1,2,..., k, with equal shape parameter, but varying scale
parameter, Cohen and Strawderman (1971) study the two-parameter family of
permutation invariant test statistics,

& WA [ 1/9
(1.2) R(A,n) = ( ;lx,?‘) /( ; x}') .
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For A > 0 > 7, tests defined by rejecting when R(A, n) > K were proven to be
unbiased and have monotone power functions. See also MO (1979), page 387.
However, the issue was unresolved for R(0, 1), which is known as Cochran’s test,
and for R(2,1), which is the locally most powerful locally unbiased test [see
Cohen, Sackrowitz and Strawderman (1985)]. One application of the results of
this paper is that all tests R(A,1), A > 1, are unbiased when the gamma density
is PF,.

In this paper we show that any PI size a test function which is Schur-convex
for fixed ¢ is unbiased. Such a result is applicable to all exponential family—PF,
distributions that are continuous or integer-valued, including normal, Poisson,
gamma (with shape parameter at least 1), binomial, geometric and others.
Furthermore, since the homogeneity hypothesis remains invariant under a mono-
tone transformation of the original random variables, the development applies to
many other distributions, namely those which can be transformed monotonically
into one of the distributions already mentioned. Thus, results apply to one-
parameter beta distributions, Pareto distributions, log normal and others. Of
course, the conditions required for unbiasedness would be expressed in terms of
the transformed variates.

In the normal and Poisson cases the previous method used to prove unbiased-
ness used the Schur-convex preserving property of certain conditional densities.
In fact, that property yielded the stronger result of monotonicity, in some sense,
of power functions. However, for example, the relevant conditional densities may
not have this property in the gamma case and does not have this property in the
binomial case. (See Remark 5.6.) In this paper a different method of proof is
given that works for the general class of distributions mentioned.

A useful theorem for our development has been established by Efron (1965).
We give a slight modification of Efron’s result in the next section along with
some preliminaries. Section 3 contains a key stochastic ordering result. The main
theorem is given in Section 4.

A complete proof will be given for the continuous case only. The main results
are identical for the case of integer-valued random variables. However, because
ties can occur in the latter case, more details would be required. Hence in
Sections 2—4 continuity is assumed. In Section 5 we indicate how the integer-val-
ued random variable case is treated.

2. Preliminaries. In this section we define majorization, Schur convexity
and PF,. We also note some basic results concerning these notions.
Let X(l) > Xy > -+ 2 X, denote the order statistics.

DEFINITION 2.1. For u,v € R%,

m m
Zu(z) Zv(i), m=12,...,k—1,
(2.1) ux<v, if lkl :

Uy = Z Yy-

i=1

When u < v, u is said to be majorized by v.
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DEFINITION 2.2. A real-valued function U defined on a set &/ C R* is said to
be Schur-convex on & if u < v on & implies U(u) < U(v).

Let g be the joint density of the order statistics given LX; = ¢. Hence, the
domain of g is {(xq), @)+« X)) Xy Z Xy 2 *** 2 X(ry E,,lx(,) = t}.
THEOREM 2.3. The ratio

(2.2) g(u,8)t)/2(u, )t),
where § = (8,90,...,0),0 = T*_ 0,/k, is Schur-convex in u = (X, Xz, - -+ X(x))-

Proor. It follows from expression (5.12) in Cohen, Sackrowitz and
Strawderman (1985) that (2.2) may be expressed as

p!
(2.3) C(t) ¥ e®n=0v
j=1
which is the symmetrized version of eX*w® =0 Thys, (2.3) is symmetric and
convex in X, X, - - -, (), and hence Schur-convex. See MO, page 67. O
When 6§, = 6, = --- = 0,, the null hypothesis H, is true. We let 6, denote

any vector which has all its coordinates equal. Note that conditional expecta-
tions given ¢ under H, do not depend on the particular common coordinate value
of the vector 8,. Also note that in Theorem 2.3 that 0 is a particular 6,.

In the remainder of the paper dimensionality will be important so we let
X® = (X, X,,..., X,) and let X > --- > X&) denote the order statistics
for the random varlables X,,. X e We also define upper (T ’s) tail sums of the
order statistics by

T® = XP + - +XP, i=1,...,k,

and T® = (T®, ..., T®). We let 2® denote the range of T, i.e.,
DB = ((t, ty,ees b))ty 2ty =t > o 2 b~ )
and define the family 5, of monotone functions on 2¥ as follows:
= (W(t}, ty, ..., t,): for fixed t,, W is nondecreasing in ¢,

z— 1 2,...,k—1,on 2®). The class #, was considered by
Nevius, Proschan and Sethuraman (1977).

The next theorem, which follows from results in MO (1979), suggests the view
we take of test procedures.

THEOREM 2.4. If ¢ is a permutation invariant test which is Schur-convex for
each fixed % X, = t, then ¢, as a function of T{®),..., TP, belongs to #). In
particular this holds if ¢ has convex acceptance regions for each fixed L.X; = t.

Proor. By arguments in MO (pages 67-68) if ¢ is permutation invariant
and has convex acceptance sections, then ¢ is Schur-convex. The result now
follows from MO (page 55) for the transformation to T®. O
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REMARK 2.5. MO (page 55) is not limited to test functions. Hence if A(x) is
Schur-convex, then & as a function of T(®),..., T{® belongs to J,.

DEFINITION 2.6. A probability density function on the real line r(x) is said
to be PF, if x, > x,, 2z, > 2, implies
(2.4) r(x, — z)r(xy — 2z,) — r(x, — 2,)r(xy, — 2,) > 0.
Note that (2.4) is equivalent to the log concavity of r.

The following theorem is a slight modification of a result of Efron (1965).

THEOREM 2.7. Let X = (X, X,,..., X}), where X, satisfy (1.1) and h is
PF,. Let A be a rectangle set in k-space: A = {x: a;<x;<b;, i=1,2,...,k}.
Fix s <s’and let B= {x: s <X* x,<s’}). Then

i=

E(WX)T{P =5, X € A} < Ey [ W(X)| TP = 5", X € A},
for all W defined and nondecreasing (coordinatewise) on A N B.

PROOF. Let M = sup, 5/ W(x)|. Define W(x) = W(x) if x€ AN B but
W(x) = —M if Tx, < s and W(x) = M if Yx, > s’. Note that W is nondecreas-
ing on all of A. Thus, using Corollary 2, page 277, of Efron (1965), along with the
definition of W, we obtain

E {WX)T® = 5,X € A} = E, {WX)|T(» = 5,X € A)
< Ep (W(X)|T(P = s/, X € A)

= E {[WX)|T{P = 5", X € A}. ]

Note that the above result is equivalent to stochastic ordering of the condi-
tional distribution of X (see MO, Chapter 17).

We remark that all results stated in the remainder of the paper concerning
expectations hold only when the specified constants are such that the conditional
distributions are defined. For example, in Theorem 2.8 below, x, x* and ¢ must
be such that x > (¢ — x*)/k.

One important consequence of Theorem 2.7 for functions in 5, , is

THEOREM 28. Let X,,..., X, satisfy (1.1) with h PF,. Let W € 5, ,. Then
for x < x*

Eoo{W(x*,x* + O, x* + TR XP < x, T{O = ¢ - x*}

(2.5)
> EOO{W(x, x+TH®, . x+ T,gk))|X((1’§) <x, TP =t- x}.
Proor
EOO{W(x*,x* + TR, x*+ TR)XE <x, TP =t - x*}
(2.6) = E{W(t-X— - -X),...,

t—Xp, t)|X((1'§) <x, TP =t¢t- x*}.
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We note that W(¢ — X{® — —Xf,...,t — X&), t) as a function of X is
defined and nonincreasing in each X, on
k
(X;<x,i=1,..,k)Nn{t—ax*< } X;<t—x
1=1
It follows from Theorem 2.7 that (2.6) is
> Eo[W(t - X — - —XB), ...t — XB, )| X <, TP = ¢ - x)
= B {W(x,x+ T®,..., T<k))|X((1’§) <x, T{P =t - x}. O

3. Monotonicity of expectations. This section contains the crucial prop-
erty, as expressed in Theorem 3.2, of the tail sum random variables. Simply
stated these theorems purport the notion that if the underlying distribution is
PF, and L*_ X, is fixed, then as the maximum X increases, the upper tail
sums increase (stochastically).

The purpose of the following lemma is to equate certain conditional distribu-
tions of high-dimensional order statistics with that of lower-dimensional order
statistics.

LEmMMA 3.1. Assume H, is true. Consider the random variables

X@ro, o XU, ., XEEe). Fix constants ry > --- >, and let R = L r;.
The condztzonal dzstnbutton of X{uie), ..., Xy given X(§* =r,,i=1,...,4,

TUIPX (Bt = t, is the same as each of the following two condztzonal dzstrzbu-
tions:

(i) the distribution of X&*V,..., XY gven X'V =r,, LINXETY =
t—R+r,;
(ii) the distribution of X8, ..., X{3) given L{_ X[ =t— R, X{ <r,.

ProoF. The proof is immediate upon inspection of the relevant densities.
Since all random variables are assumed to be continuous, it is easy to see that all
the conditional density functions are the same. O

A Lemma 3.1-type result is the greatest obstacle in the path of an elegant
exposition or the integer-valued case. Lemma 3.1 is not true for this case. The
results in the remainder of this section and in Section 4 are true, as stated, even
for the integer-valued case. The proofs for the integer-valued case require more
detail and are discussed in Section 5.

THEOREM 3.2. If x < x*, then
Eo [ WT®) X = x, TP = ¢}
(3.1)
< By {W(T®) X = x*, TP = t},

forall We s, andallk =2,3,....
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ProOF. The proof is by induction. First note that when 2 = 2, (3.1) reduces
to W(x, t) < W(x*, t) which is trivially true as W € J#,. Next we show that if
(3.1) is true for k, it will also be true for k2 + 1. By Lemma 3.1(ii) (with u =1,
v = k), and letting WA(T®) = W(x*,x* + T(®,..., x* + T(®)

Eo { WIT*+D) XD = xx Tt = ¢)
. — B, [WA(TW)XE < x*, TP = t — x%)
= By { WA(T®)XP < x, T = t — x*}P
+Ep {WA(T®)x < X < x*, T{P =t —x*}(1 - P),
where P = Py (X < x|X{P < x*, TP =t — x*).
For T® € 9® define the function V*(T®) = WA(T®) when T® < x*

and V*(T™®) = sup, c o {W,%(t)}, otherwise. Thus V * belongs to /. By the
induction hypothesis the integrals below are nondecreasing in u so that

Ey[WAT®)x < X < 2%, TH = £ - x+)
= E {VHT®)x < X <%, TP =t — 2%}
x*
= f Eeo{V*(T(k))|X((1’§) =u, Tk(k) -t x*}
X

XdP (X = ulx < X < x*, T{P =t — x*)
> Ey (VHT®)XE = x, T = t — x*}

X
> f EOO{V*(T(’“))|X((1'§) =u, T =1t- x*}
— 0

XdPy (X = ul X < x, TP =t — x*)
= B {VHT®)XE < x, TW = t — x*}
= E, {WAT®)XE < x, TP = t — x*}.
Therefore, (3.2) is
(3.3) > Ep (WA(T®)XE < x, TP = t — x*}.
It follows from Theorem 2.8 that (3.3) is
(3.4) > Ey [WHT®)XE < x, T = t — x.
However, by Lemma 3.1(ii), (3.4) is equal to
B[ W O)XG ™D = 2, T = o),

which completes the proof. O
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An important consequence of Theorem 3.2 is

COROLLARY 3.3. Forany We#,,1<m<k—-1,
(3.5) Ey {WT®)T® = t,..., TP = t,, TP = ty)

is a nondecreasing function of t,,.

ProoF. For each fixed ¢,,..., t,,_;, t;, write (3.5) as
Ey{ WIT®)XP = t, XE) =ty =ty XB = by = by, TP = 1},
which by Lemma 3.1(i) (with u = m, v = k — m) is equal to
Ey {W/(T*-m+ D) X(hm+D = ¢ —

where W/(T*="*D) = W(t,, ..., tyoiy by + TET™HD Lty + TRELmID),
Application of Theorem 3.2 completes the proof. O

k 1) —
m 1 T( m':l-_; )= tk - tm—l}

4. Main result. In this section we prove that PI tests which are Schur-con-
vex for fixed ¢ are unbiased. The method of proof resembles that used by
Perlman and Olkin (1980).

We will use Corollary 3.3 to prove

LEMMA 4.1. Let W,, W, € 5#,. Then

By { Wi(T®) Wo(T®) T = t)

4.1
“y > Eo { W(T®) TP = t} Eg { Wo(T®) TP = t}.

PrOOF. In this proof we will suppress the superscript (%) notation as we will
always operate in k-dimensions.

Ee(,{ W(T)Wo(T)| Ty, = t}

= EoO{Eoo{ Eoo{ e Eoo{Eoo{ W(T)Wo(T Ty, ..., Ty_s, Ty = t}

Ty, Thg, Ty =t} - }ITv T, = t}ITk = t}-

We evaluate the expression beginning with the innermost expectation. Since
W,, W, are nondecreasing in T),_, for fixed T,,..., T,_,, T} they are, condition-
ally, positively correlated. That is,

= Eoo{ Wl(T)VVz(TMTv s Tygy T = t} > WY (T)VVQ (T)

where W,/ (T) = E (W(DI|Ty,..., Ty, T = t}. By Corollary 3.3 W;/(T) is non-
decreasing in T)_, for fixed T,...,T,_5, T;. Therefore, the correlation in-
equality can be applied to the second innermost expectation. That is,

Eo W/ (D)W (D Ty, .., Tposy T = t} = W(T)Wy(T),
where W//(T) = Eo (W,(D)|T\, ..., T)_5, T} = t}. Again by Corollary 3.3 W,”(T)
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is nondecreasing in T,_; for fixed T),...,T,_,, T, so that once again the
cotrelation inequality can be applied. Continuing in this fashion yields (4.1). O

THEOREM 4.2. Let X;=1,2,..., k have joint density (1.1) with h(x;) PF,.
Let ¢(X) be a PI test of size a which is Schur-convex for fixed t. Then ¢ is
unbiased. That is,

(42) E(X) > E,p(X).
PROOF. Write ¢(X) as ¢'(T®) where ¢’ belongs to /. (See Theorem 2.4.)
Then
Ey($(X)ITR) = Eo ¢/ (T®) TP)

=f¢'(t("))ko(tl,...,tk_lltk)dtldtz,...,dtk_l

ko(ty,..., |t
_ f¢'(t(k)) oty k—1lts)

ké(tv cee tk—1|tk)

XRg(tyy..os tyq|ty) dtydty,. .., dt,_,,

where kg(t),...,t,_,|t,) denotes the conditional density of Ti,...,T,_, given
T, = t,. Theorem 2.3 and Remark 2.5 imply that {ke(¢y,..., t,_1ltr)/
kg(ty,. .., t,_1lts)} belongs to 5#,. Now apply Lemma 4.1 in (4.3) to yield
(4.4) Ey(x) > Egp(x).
Since Egp(x) = Egd(x), (4.2) follows. O

(4.3)

A consequence of Theorem 4.2 is

COROLLARY 4.3. Under the condition of Theorem 4.2, let ¢(x) be a size
a-test with conditional convex acceptance sections. Then ¢ is unbiased.

Proor. Apply Theorems 2.4 and 4.2. O

5. The integer-valued case. In this section we will demonstrate the rea-
soning and additional detail needed to handle the integer-valued case by proving
Theorem 3.2 for such random variables. The difficulty stems from the fact that,
when ties are possible, Lemma 3.1 does not hold. However, by Remark 1 of Efron
(1965), page 278, the results of that paper can be extended to cover integer-val-
ued random variables. Hence, in this section we can assume that Theorems 2.7
and 2.8 hold.

In order to deal with ties, we define L)X, r) to be the number of X{3’s
that are equal to r when X{% < r. That is,

0, ifX<r,
LOEXD, r)=(1, tXH= - =XH=r, XPh<r,
v, if X((lt;) = ... = X((:)) =r.
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The following lemma, which we state without proof, concerns the relationship
among various conditional distributions. Note that part (i) of Lemma 5.1 is
analogous to Lemma 3.1(i).

LEMMA 5.1. Assume H,, is true. Consider the random variables X, ..., X3).
Fix r.

(i) For 1=0,1,...,v — 1, the conditional distribution of (X{)y,..., X))
given LOX®), r) = [, T0_, X3 = tis the same as the conditional distribution of
(XED,..., X@oh) given X&™0 < rand TiZ{X§D =t —Ir.

(ii) The conditional distribution of L*~Y(X®~1, r) + 1 given X5~ < r and
Yo-lX (-1 = ¢ — r is stochastically larger than that of L)X, r) given

i=1“%(i)
X((f;) =r X, X((it;) =t

The main departure from Section 3 is that we must now pay careful attention
to the quantity

(5.1) E{ W(T(k))IL(k)(X(k), r) =1, TR = t}.

In this section all distributions will be assumed to belong to the null hypothesis
space and so we will suppress the 6, notation as in (5.1) above. Note that (5.1) is
meaningful only if / is a nonnegative integer between ¢ — k(r — 1) and ¢/r.

It is easily seen that, for £ = 2, (5.1) is nondecreasing in (the possible values
of) 1=0,1,2. For k=2, (3.1) is obviously true for integer-valued, as well as
continuous random variables. The proof of Theorem 3.2 here will also be by
induction. We assume:

(A.1) For each fixed m=2,..., k, (3.1) holds with &k replaced by m and
We i,

(A.2) For each fixed m = 2,..., k, (5.1) is nondecreasing (where defined) in
l=1,...,mand W€ 5,

The proof of Theorem 3.2 will be complete once we show that (A.1) and (A.2)
together imply that (3.1) is true with & replaced by & + 1 and (5.1) with &
replaced by % + 1 is nondecreasing in /=1,..., k + 1. This will be done by
Lemmas 5.4 and 5.3, respectively.

In the remainder of the paper we oftenr use a + t to denote (a + ¢,,...,a + ¢,)
where a is a scalar and t = (¢,,..., £,).

LEMMA 5.2. If (A.2) holds, then for W € 5,

E W(T(k))lx(k) =r,T® =t
(5.2) { @) k }

< E{W(r, r+ TED)XED < r, THF D =1t~ r}.
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ProOF. Write
E{W(T®)XPH =r, TP = ¢}
k
(5.3) = Y E{W(T®)LOX®, r) =1, T® =t}
=1
XP(LPX®, r) = 4XP = r, T® = ¢),
which equals
k
Y E{W(r,r+ T® D)LEDXED r) =] -1, TkV =t — r}
(5.4) 1=1
X P(L®(X®, r) = X = r, TP = t),

since Lemma 5.1(i) implies that the two conditional distributions involved in the
two expectations in (5.3) and (5.4) are the same. By monotonicity of (5.1) the
expectations in (5.3), which are equal to those in (5.4), are nondecreasing in /.
Thus, by Lemma 5.1(ii), (5.4) is

k
< Y E{W(r,r+ T D)LED(XED 7)) = [ -1, TV =t — r).

P(L*D(XED, r) =1 - 1XE D <r, Tk =t — 1)
= E{W(r, r+ TED)XED < p TRID = ¢ — r},
completing the proof. O

LemMA 53. If (A1) and (A.2) hold and W e 5#,,,, then (5.1) with k
replaced by k + 1 is nondecreasing inl=1,2,...,k + 1.

Proor. Use Lemma 5.1(i) to write
E(W(T* LA D(X D, r) = 1, T = o)
= E{W(r,2r,...,Ir,Ir + T¢"1*D)
(65.5) XD <'r = 1, TR = - 1)
< E{W(r,..., Ir,Ir + T*-14D)
XG0 = = 1, T = £ - 1),

where this last inequality effectively follows from assumption (A.1). [This was
actually shown in the proof of Theorem 3.2, as the portion of that proof which
shows (3.2) to be greater than (3.3) does not depend on the continuity of the
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random variables.] By Lemma 5.2 it follows that (5.5) is
<E{W(r,...,Ir,(I+ 1)r —1,(1+ 1)r — 1 + T*-)
IXED<r—1, T =t—(1+1)r+1},
which by an argument analogous to the proof of Theorem 2.8 is
< E{W(r,...,(1+ 1)r,(1 + 1)r + T*=D)
IXED<r-1,TFP=t-(1+ 1)r},
which by Lemma 5.1(i) is
= E{W(T*+D)|LE+D(XED, r) = I+ 1, Tk{D = ¢}.
This completes the proof. O

LEMMA 5.4. If (A1) and (A.2) hold and W € 5, ,, then (3.1) holds with k
replaced by k + 1.

ProoF. Lemma 5.3 implies that
E{W(T®+VD) XD = x*, TV = ¢}
> E{W(T*+D)LE+D(XED, xx) = 1, TH#ID = ¢},
which by Lemma 5.1(i) is
= E{W(x*,x* + T®)XE < x* — 1, TM = t — x*},
which by Theorem 2.8 is
(5.6) = E{W(x*-1,2* -1+ T®O)XH <x* -1, TP =t —x*+1}.

Since Lemma 5.3 essentially says that (A.1) and (A.2) imply that (A.2) holds with
k replaced by & + 1, it follows from Lemma 5.2 that (5.2) holds with % replaced
by £ + 1. Thus, (5.6) is

> B{WT DK = xe 1, T = 1),

which completes the proof. O

Thus, Theorem 3.2 holds for integer-valued random variables. To prove
Corollary 3.3 in this case requires a slight generalization of Lemma 5.1 (to the
case of u + v variables where the first u are fixed) and arguments similar to
those used above.

REMARK 5.5. In Cohen, Sackrowitz and Strawderman (1985), Example 5.4
offers a situation where 2 =3, f is an exponential family and a test with
conditional acceptance regions that are convex is not unbiased. It is easily
verified in this example that f is not PF,.
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REMARK 5.6. The following example illustrates that the method used to
prove unbiasedness in MO (page 391) for the Poisson case, for example, cannot be
used for the model in this paper. Let £ = 3, X; ~ B(4, p;), t = 6. The ordered
possible outcomes are (4,2,0), (4,1,1), (3,3,0), (3,2,1) and (2,2,2). The condi-
tional test which rejects for outcomes (4, 2,0) and (3, 3, 0) is Schur-convex yet we
show that the conditional power function is not Schur-convex. Recognize that
(1,a, a) majorizes (1 + a)/2,(1 + a)/2, a) in the parameter space and that for
small a the power at (1 + a)/2,(1 + a)/2,a) — 1 as a — 0. This gives rise to

many cases where q, < q,, @' = (Py, Py, P3), yet B(q,) > B(q,), where B(q) is
power. For instance, if q) = (0.88,0.01,0.01), B(q,) = 0.4254 and if q; =

(0.45,0.44,0.01), B(q,) = 0.9065. If q, = (1.00,0.01,0.01), A(q,) = 0.4286 while
q; = (0.5005,0.5005,0.01), B(q,) = 0.9241.
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