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BOOTSTRAP OF THE MEAN IN THE INFINITE
VARIANCE CASE

By K. B. ATHREYA

ITowa State University

Let X, X,,..., X,, be independent identically distributed random vari-
ables with EX? = co but X; belonging to the domain of attraction of a
stable law. It is known that the sample mean X, appropriately normalized
converges to a stable law. It is shown here that the bootstrap version of the
normalized mean has a random distribution (given the sample) whose limit is
also a random distribution implying that the naive bootstrap could fail in the
heavy tailed case.

1. Introduction. It is now nearly eight years since Efron [6] introduced the
term bootstrap into the statistical literature to denote a variety of resampling
methods. Theoretical justifications have been attempted with some success for
Efron’s particular bootstrap method, namely, simple random sampling (s.r.s.)
with replacement from the original sample. In particular, the papers of Singh [8]
and Bickel and Freedman [4] showed that if X, X,,..., X, are independent and
identically distributed random variables (i.i.d.r.v.) with EX2 < oo and if given
X, = (X}, X,,..., X,), we choose Y,,Y,,...,Y, by a srs. with replacement
from the set {X,, X,,..., X,,} and if

Yn Xn
H,(x,w)= P(s— < x|Xn),

n

where

Y,=n %Y, X,=nTTiX, si=nTDi(X,-X,)
then sup,|H,(x, w) — ®(x)| = 0 w.p.1. Singh [8] showed further that H,(-, ) is
a better approximation to the distribution of o '(X, — p) than the Edgeworth
approximation up to the first-order term. Bickel and Freedman [4] investigated
the performance of the bootstrap versions of other statistics and showed that in
general under second moments the bootstrap asymptotics is the same as that
supplied by the normal theory.

The present paper addresses the simple question of what happens to the
distribution of the bootstrap version of the sample mean when EX? = o0. We
investigate the case when X, belongs to,the domain of attraction of a stable law
of order a, 0 < a < 2. We find that the bootstrap is not successful here. The
limiting distributions of the sample mean and its bootstrap version are quite
different, the latter one being a random probability distribution.

In Section 2, we give a precise description of this result. The proof is given in
Section 3. Some remarks are made in Section 4.
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2. The result. Let X, X,,..., X, be iid.r.v. with a distribution function
F(-) satisfying

1) 1- F(x)~x°L(x),

F(—x) ~ ex *L(x),

as x — oo, where L(-) is slowly varying at co and ¢ is a nonnegative constant.
For simplicity of exposition, we assume throughout that 1 < a < 2. The exten-
sion of the result here to the cases 0 < @ < 1 and a = 2 has been worked out and
may be found in Athreya [1], [2].

Given X, = (X, X,,..., X)), let Y,,Y,,...,Y, beiid.r.v. with distribution

(2.2) P(Y,=X)X,)=n"", forj=1,2,...,n.

It is known that X, = n~'Y7X,, appropriately normalized, converges to a
stable law (see Feller [7]). More precisely, let {a,} be an increasing sequence
going to oo such that

(2.3) nP(X, >a,) =na,'L(a,) > 1
and let

(2.4) p=EX, and R,=na, (X,-p).
Then

(25) sup | P(R, < x) - G,(x)| = 0,

where G (x) is the distribution function of a stable law of order a whose
characteristic function is

(26) (1) = expl f(e = 1 - it (a)),

where A (-) is a measure on the real line such that for x > 0

(2.7) A Lx,00) =x"¢ and” A(— o0, —x] =cx™"
The bootstrap version of R, of (2.4) is

(2.8) T, = nX, (Y, - X,),

where X, = max(X,, X,,..., X,). Let

(2.9) H,(x,0) = P(T, < x|X,))-

If the bootstrap were to be successful here, then H, (-, w) should converge to
G,(+) in distribution. However, this is not the case. There is a random limit. To
describe this precisely, we proceed as follows. We assume without loss of
generality that on the same probability space (2, B, P) there exists a Poisson
. random measure N'(-,-), that is, a family of random variables {N’(4, w); A
ranging over the Borel sets of R} such that for disjoint sets A,, A,,..., 4,,
{N'(A;,»), i=1,2,...,k} are independent Poisson random variables with
mean A (A)), i =1,2,..., k, respectively, where A (+) is as in (2.7).
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Since EN’([x, 00), @) = x~* for x > 0, for almost all w there exists a 7(w) > 0
such that N’((1(w), ), w) = 0. We normalize N’ by 7. That is, we define

(2.10) N(A,w)=N’'(At7},w), for all Borel sets A
and let

(2.11a) o(t,0) = exp| [1,(x)N(dx, 0)],
where

(2.11b) - f(x) = (e’ — 1 — itx).

It turns out that for each w, ¢(#, w) is the characteristic function of an
infinitely divisible nondegenerate probability distribution function H(x, w). (For
proof of this, see Athreya [1].) For future reference, we write

(2.12) o(t,0) = [eH(dx, ).
Our main result is

THEOREM 1. For any set of real numbers x,, x,,...,x,, the sequence of
random vectors (H (x;, w), i = 1,2,..., k) converges in distribution to the ran-
dom vector (H(x;, w), i = 1,2,..., k).

COROLLARY 1. For any x, < x4, H (x,, w) — H,(x,, w) converges in distri-
bution to H(x,, w) — H(x,, w).

One could think of H,(, w) and H(-, w) as stochastic processes whose trajec-
tories are in the Skorohod space D(— oo, + ). Theorem 1 says that H, con-
verges to H in the sense of finite-dimensional distributions. Professor J. K.
Ghosh asked whether this could be improved to weak convergence in the
Skorohod space. The answer is yes, and the proof may be found in Athreya [2].

3. Proof of Theorem 1. Let H,(-,- ) be as in (2.9) and

(3.1) 0u(t,0) = E(e"™X,) = [e™H,(dx, w).
Since Y}, Y,, ..., Y, are independent given X,,,

(32) $ut, @) = (1 = y,(t,@))",

(3.3) Vv, (tw)=1- E(e”(yl"_(n)x'fnllxn).

Since L1(X; — X,) =0,
- ny(t,0) = ¥ (e TX —1 — it( X, - X,) X))
(3.4) /=1

= [1(x)N,(dx, @),
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where f,(x) is as in (2.11b) and N,(-, w) is a random measure defined by
(3-5) Nn(A’ ‘*’) = Z XA((Xj - Xn)Xn_nl)'
J=1

According to Theorem A of the Appendix, to prove Theorem 1 it suffices to
show that for arbitrary ¢, ¢,,..., t,, the sequence of random vectors (¢,(¢;, w),
i=1,2,..., k) converges in distribution to (¢(¢;,, ), i = 1,2,..., k). This in turn
is equivalent to showing that (ny (¢, w), i = 1,2,..., k) converges in distribution
to that of (Y (¢, w), i = 1,2,..., k), where ¥(¢, w) = [f(x)N(dx, w) with f,(-) as
in (2.11b) and N(-, -) as in (2.10). By the Cramér-Wold device, this is equivalent
to showing that for arbitrary /,, I,,..., I,

K
nElb(t ) = [6(x)N,(ds, @)

converges in distribution to [g(x)N(dx, w), where g(x) = L%l if:(x) and N(A, w)
is as in (2.10). Since for fixed ¢, f(x) = O(x%*)as x - 0 and = b(lxl) as x — oo,
the real and imaginary parts of the function g(x) satisfy the hypothesis of
Proposition 1 below and hence the proof of Theorem 1 is completed. It remains
to state and prove

PROPOSITION 1. Let g(-) be a continuous real-valued function on R such that
g(x) = 0(x?) asx - 0 and = O(|x|) as |x| = o0. Let N(,* ) be as in (3.5) and
N(-,-) be as in (2.10). Then

(3:6) J&(x)N,(dx,0) =4 [&(x)N(dzx, w),

where —, stands for convergence in distribution.

ProOF. By Theorem B of the Appendix, the sequence of random measures
N,(+, w) introduced in (3.5) satisfies the property that for disjoint intervals
I, I,,..., I, whose closure is contained in R — {0},

(37 (N(IL,w), j=1,2,...,k) >,(N(I;,0), j=1,2,..., k),
where N(-,- ) is as in (2.10). We now show that for each ¢ > 0

(3.8) }'i?(l) lim P(Dy(n,0) >¢)=0
and

(3.9) yhgg li’rln P(D,,(¢, w) > €) =0,
where

(3.10) D, (n,©) = flxquw,,(dx, )
and

(3.11) D8, 0) = [ [xIN(dx, o).

x|
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From the definition of N,(-,- ) in (3.5) we have

nl(n’ w) < 2(ZX2X + nX2Xnnz)’

where ¥ extends over j 5 |X}| <X, + X,

By Theorem B of the Appendlx, X,ma converges in distribution. Also by the
strong law X, is bounded and by choice na,? — 0. To establish (3.8) it suffices
to show that

(3.12) lim lim P(EX2 2> e) =0,
710 n J

where ¥’ extends over j 3 |X)| < na,. Now E(X;X/a,?) = na,*E(X}: |X)| <
na,), which by our hypothesis (2 1), is asymptotic to const na,*(na,)?> *L(na,)
(Feller [7], page 544) and hence to const.n?~% Since a <2, (3.12) follows.
Turning now to (3.9) and arguing as above, it suffices to show that

(3.13) lim lim P(Z ‘a1 X, > e) =0,
{Too n
where £” extends over j 3 |X}| > {a,.

Now E(X"a,'|X)|) = ‘IE(|X |: |X;| > {a,), which by our hypothesis (2.1),
is asymptotic to const. na 21¢a,) "°L(ta,) (Feller [7], page 544) and hence to
const. {1 7% Since a > 1, (3 13) follows. By standard analysis (3.7) implies that
for continuous functions &(+) with compact support in R — {0},

(3.14) J&(x)N,(dx, ) 4 [g(x)N(dx, ).

Since (3.8) and (3.9) hold, (3.14) extends to all g satisfying the conditions of
Proposition 1. O

4. Remarks. What, if any, is the significance of Theorem 1? It says that if
one does a naive bootstrap on the sample mean and if the underlying population
does not have a finite variance then the bootstrap distribution will not converge
to the same limit as the sample mean. Thus, constructing confidence intervals on
the basis of a Monte Carlo simulation of the bootstrap could yield misleading
results. So unless one is reasonably sure that the underlying distribution is not
heavy tailed, one should hesitate to use the naive bootstrap. In particular, in
variance estimation using naive bootstrap could be bad if the underlying popula-
tion has no fourth moment. There are some modifications of the bootstrap
method such as changing the resample size from n to m with m = O(n) or
trimming the sample and doing bootstrap on the reduced sample. These do lead
to inefficiencies, the precise nature of which needs to be studied.

A referee has pointed out that the phenomenon of obtaining a limit that is a
random measure is familiar from other examples such as the Hodges estimate
(see Beran [3]) and also that the idea of changing the sample size to m is also not
new. It appears in Bretagnolle [5].
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APPENDIX

The following generalization of the Lévy—Cramér continuity theorem was
used in the proof of Theorem 1.

- THEOREM A. Let {H,|(x,w)}, n=0,1,2,..., be a sequence of random
distribution functions on a probability space (R, B, P). That is, for each v and
n, H (x, w) is a distribution function. Assume that for any x,, x,, ..., %, and n,
(H(x;,w), i=1,2,..., k) is a measurable map from (2, B) to ([0,1])*. Let
¢,(t,w) = fe'*H (dx, w) be the characteristic function of H,. Then, for any
(x4, Xg9y..., %) @S N — 00,

(A1) (Hy(x;,0),i=1,2,..., k) >4 (Hy(x;,0),i=1,2,..., k),
iff for any (t,, ty,..., L)
(A.2) (0t @), i=1,2,..., k) > (do(t;, @), i =1,2,..., k).

PROOF. It can be shown by standard methods that both (A.1) and (A.2) are
equivalent to

(A3) [H(@)H,(dx,0) >4 [{(x)H(dx, o),

for any bounded continuous function f on R. The details of that argument may
be found in Athreya [1]. O

The following result about the convergence of N, to N was used in the proof
of Theorem 1.

THEOREM B. Let N, (A, w) be as in (3.5) and N(A, w) be as in (2.10). Then
for disjoint intervals I,, I,,.. ., I, contained in R — {0}

(Ad4) (NI, 0), j=1,2,..., k) >, (N(I;,0), j=1,2,..., k).

PROOF. Since {X,} is bounded w.p.1 and X,, > o, (A.4) is implied by the
result that for each &

(A 5) a;l(Xnn’ Xn(n—l)" ce Xn(n—k+1)’ Xnk’ Xn(k—l)’ AR} an)

’ 4 ’
—)d(Tl, Toseees Ty Ths Tk_l,...,'rl),

where for each n, X, <X,,< - <X,, are the order statistics of
X,, X,,..., X,,, and where a, is chosen as in (2.3), and for i = 1,2,..., &k

7, =sup{x: x > 0, N'([x, ), w) = i}
and
7/ =inf{y: ¥y <0, N'(( — o, j],w) = i},
with N’(-, ) being the Poisson random measure introduced in Section 2. To
establish (A5) let s, >r >s,>r,> - >8,>r,>0>s,>r,>s}_,>
k-1 > -+ >8{>r begiven and let J; = (r;, s;) and J/ = (1, /).
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Now note that the event

(A6) {07 Xy pedinr, 7=0,1,2,.., k= 1; a;'X, ed/, j=1,2,..., k}

J

is the same as the event

k
{N,;(Jj) =1forj=1,2,...,k, Nn([rk,oo) - UJj) =0,
(A7) !

k
Ni(Jy) = Hor j=1,2,...,k, N,,(( ~ o, 5] - UJ,-') = o},
1

where N/(A) = Lx a(a;,'X)).

Since X, X,,..., X, are iid. the random vector {N,(4,): j=1,2,...,r,
N,J(R —U[A))} for disjoint A,, A,,..., A, has an (r + 1)-cell multinomial dis-
tribution with parameters (n; p,;, j=1,2,...,r, 1 —X[p,;), where p,; =
P(a,;'XeA)).

By our hypothesis (2.1)

nP(a;lest) - (r7*—s;*) and nP(a;leer’) - c(lsyl=* = |71 7).
By the well-known convergence of the multinomial to the Poisson

lim P(event in (A.6))
n

= lim P(event in (A.7))
k

= {N’(Jj) =1 forj=1,2,..., k, N’([r,;,oo) - UJ,) = 0;
1

k
1
It is easy to see that this is the same as (A.5). O
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