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ONE-STEP L-ESTIMATORS FOR THE LINEAR MODEL'

By A. H. WELSH
University of Chicago

We propose and investigate the asymptotic properties of a class of
estimators of the regression parameter in the general linear model. The
estimators depend on a preliminary estimate of the regression parameter and
the residuals based on it. For the location model, the estimators are linear
_combinations of the order statistics and the robustness and efficiency proper-
ties of this class of estimators carry over to the general linear model. The
estimators settle the doubts raised by Bickel (1973) about the feasibility of
the construction of a general class of reparametrization invariant estimators
of a regression parameter which are linear combinations of order statistics in
the location problem.

1. Introduction. Suppose that we observe Y,,Y,,...,Y,, where
(1.1) Y,=x/6,+e, 1<j<n,

with {x/ = (1, x5, ..., X,;,)} a sequence of known p-vectors (p > 1), 6, € ZP an
unknown parameter to be estimated and {e,;} a sequence of independent and
identically distributed random variables with common distribution function F.
In general, if F is not symmetric, an intercept is not identifiable so without loss
of generality we put 6, = 0 and absorb the intercept into the errors {e;}. The
regressors may depend on n but we suppress this dependence for notational
simplicity. When p = 1, (1.1) corresponds to the location problem. A rich class of
location estimators can be represented or approximated by linear functions of

the order statistics Y, <Y, < :-- <Y,, otherwise known as L-estimators.
The purpose of this paper is to generalize the class of L-estimators to the linear
model (1.1).

Following Serfling (1980, page 265), we adopt a von Mises functional represen-
tation as the definition of L-estimators of location. For any distribution function
G, let G™(¢t) = inf{s: G(s) > t} and define a functional

7(6) = /67 (w) di(u) + ¥ w6,

where H(u) = [{#h(t)dt, 0 < u < 1,is the distribution function of a finite signed
measure on (0,1), w,,...,w,, are constant weights and 0 < ¢, < --+ <gq, <1
for m < oo. We call A the weight function and without loss of generality suppose
that [! dH(u) + L™ w; = 1. Adopting the convention that in the absence of
explicit limits of integration the range of integration is to be taken as — oo to oo,
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we have
m
(1.2) T(G) = [ydH(G(y)) + ¥ wG'(q,).
i=1
Let F, denote the empirical distribution function of e,,...,e, (which in the
location problem is equivalent to that of Y,,..., Y,). Then the class of L-estima-
tors of location is defined by
n m
(1‘3) T(Fn) = n_l Z h(.’/n)YnJ + Z innl(q,-)’
Jj=1 i=1
where
iq) = ng, if nq is an integer,
)= [ng] + 1, otherwise,0 < q <1.

We refer to the first term in (1.3) as the smooth term and the second term as the
quantile term; if A vanishes near zero and one the resulting L-estimator is
trimmed, otherwise it is untrimmed.

For the linear model (1.1), Bickel (1973) constructed an interesting class of
one-step L-estimators by examining the component quantile functions. While the
estimators enjoy the requisite asymptotic properties, their calculation is complex
(involving p orderings) and they are not invariant to reparametrization. Koenker
and Bassett (1978) introduced regression quantiles and used them to develop
analogues of the quantiles, systematic statistics such as the trimean and the
trimmed mean. Other one-step analogues of the trimmed mean have been
discussed by Ruppert and Carroll (1980) and Welsh (1987). The present paper
extends the approach of Welsh (1987) to construct analogues of the general class
of L-estimators given by (1.2). The resulting estimators provide one-step versions
of the quantiles and systematic statistics, include the trimmed regression param-
eter estimator of Welsh (1987) as a special case and also include such estimators
as the smoothly trimmed means such as that with

h(u) =6(u—a)(B—u)l(a <u<§B)

or that proposed by Stigler (1973), the redescending L-estimators for which 4 is
negative near « and B as in the weight function

h(u) = {sindng(u)/tanng(u)}I(a < u < B),
where g(u) = {(u — a)/(B — @)} — 3, and the asymptotically efficient L-esti-

mators for F known with density f for which h(u) = ¢(u)¢”(u)/[j¢"(t) dt,
where ¢(u) = f(F~Yu)), 0 < u < 1, provided

0< folqs”(t) dt < .

These estimators require only a single ordering for their calculation and provided
the initial estimator is regression and scale equivariant and invariant to re-
parametrization so is the resulting L-estimator, thus settling the doubts raised
by Bickel (1973) about the feasibility of such a construction.

As in Welsh (1987), the construction involves the influence curve. Boos (1979)
and Serfling (1980, page 279) give conditions under which the distribution of
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nZz(T(Fn) — T(F)) is asymptotically equivalent to that of n~2L%_y(e)),
where

¥(2) = - [{I(z <) = F(»)}h(F()) dy
- £ (w/sla)) (= < Fa) - a)

is the influence curve of T(-) at F. Except for an obvious matrix normaliza-
tion, we construct an estimator which when appropriately centered is asymptoti-
cally equivalent to n~'/2L"_,x;y(e;) by considering n~'/?L}_ VX9 n(T))s where
r;=1Y,—x/6,, 1 <j < n, are the residuals from a prehmlnary estimator 4, and
Y, is an estlmator of ¢, and then correctmg for the centermg and the use of
residuals involving 6,. More formally, if ¥7_,x,, =0, k = 2,..., p, we construct

an estimator A, such that

n -1 p
A,=0,+ (T(OF)) + ( Z xjx;) Z x¥(e;) + o(n~1/?)
J=1 J=1
holds by (essentially) replacing 6, by 6, and T(F), ¥ and e,,...,e, by their
empirical counterparts based on the residuals ry,..., r,. In fact, it is convenient
to also replace X% 1% * by a different but asymptotically equivalent matrix.
Specifically, if G, is the empirical distribution function of ry,..., r,, we are
led to

h=a,+ [T6) g zx[/{ <3) = GuNIR(G() dy

+ El (wy/ou(a:)} {1(r; < G (q))) — ai}
(L) = L | [yar(Gu() + 50,A(G(5)
- [ 29) - GG b

¢ Dty T u[6@) 5t~ (102 6:'(a) - a /(e

where C, is a generahzed inverse of C, = L%_,x;x {A(G,(r)) + Z]Lw;} and ¢,
is any pointwise consistent estimator of ¢. We dlscuss possible choices of 8, and
&, in Section 2. Notice that A, = T(G,) if we put G,(G,(g)) =¢,0<g <1,
and 6, = 0. Our main result (Theorem 1) in Section 2 establishes that A, is a
generalization of T(F,) to the linear model problem and incidentally also gives
conditions under which C, is asymptotically nonsingular.

Insight into the nature of A, may be gained by letting either 2'" w; =0 or
h(u) = 0 and considering the smooth and quantile terms separately. Suppose
that A(u) =0for u <aor u>B,0<a < pB <1, and A is differentiable at all
but a finite number of points so we can integrate the smooth term in the
influence curve by parts. Then if we adopt the convention that G (G, '(q)) = q,
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0 < g < 1, for n large enough the smooth term in (1.4) can be written as

7, =0, + C; éxj h(a)G; (@) {I(r; < G;Y(a)) — a} + k(G (7))
+ élrk{l(r, < 1) = G(r))W(Gy(r,)

+h(B)GX(B){I(r;> G;Y(B)) - (1 - B} |,

where the first term vanishes if « = 0 and the last term vanishes if 8 = 1. We
refer to the first and fourth terms as edge-effect terms. If we define a sequence
{DQ1),..., D(n)} by

where r,, <r,, < --+ <r,,, we can write the smooth term as

Ua) n up)
T, =0, + Cn_( > Xpg) — @ > xj)rnl(a)h(a) +C, X XpyTooyh(J/n)
j=1 :

Jj=1 J=la)+1

up) k n
+C, Z ( Z Xpijy — (k/n) Z xj)rnkh/(k/n)
j=1

E=la)+1\ j=1

n

+Cn_( Y xp,;,—(1-8) E xj)rnl(ﬁ)h(ﬁ),
J=1

J=Up)+1

where the relevant edge-effect terms vanish if either « = 0 or 8 = 1, and the
quantile term as

m n
b, + X w, [Cn_ Y XjTigy — Ca
i=1 Jj=1

Uq) n
> Xp) ~ qi > xj) é.(q;) |
j=1

Jj=1

Thus, the one-step estimator of a single regression quantile, 0 < ¢ < 1, is just
G ! - _
=6, + ( "O("))—c,, Y x{I(r; < G, (q)) - q}/¢,,(q),
j=1

which involves a shift of the intercept and a method-of-scoring step toward a
solution of the regression quantile “normal” equations [Koenker and Bassett
(1978)]. The unnormalized weight function A(u) = I(a < u < B) recovers the
trimmed mean of Welsh (1987) and the comments of Welsh on the number of
observations trimmed by this estimator apply to the other trimmed L-estima-
tors A,. The weight functions of the smoothly trimmed means and the rede-
scending estimators satisfy A(a) = A(B) = 0 so that for these estimators the
edge-effect terms always vanish; however, the term in A’ does not always vanish
for these estimators though it does for the trimmed mean. Finally, in the
location problem, the term involving A’ in the integrated form of the estimator
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vanishes and we have
An = n_l(l(a) - na)Ynl(a)h(a)

upy
07l Y Y, h(j/n) + 07 (nB = U(B)) Yugeyh(B)

J=l(a)+1
+ X Yy — n7H(Uq)) — nai) /8,040,
i=1

which reduces to (1.3) if ng; is an integer, 1 < i < m, and either A, is untrimmed
or A, is trimmed and in addition either na and nB are integers or h(a) =
h(B) = 0. It is sensible to take 8,; = 0 and just neglect the edge-effect terms to
preserve the relation A ,; = T(G,).

The results of this paper are presented and discussed in the next section and
proved in Section 3. All probability statements are made at the true parameter
value 6, and all limits are taken as n — oo.

2. Results. The asymptotic theory of location L-estimators has been in-
vestigated by among others Chernoff, Gastwirth and Johns (1967), Shorack
(1969, 1972), Stigler (1969, 1974), Boos (1979) and Serfling (1980, page 271); an
interesting discussion of these approaches is given by Serfling (1980, page 271).
Our results and the methods we use to prove them are extensions of those of
Boos (1979) and Serfling (1980, page 284).

We impose throughout the following basic conditions on the model (1.1):

(i) n'/%(6, — 6,) is bounded in probability;
(i) x; = 1forall j, X7 ,x;,, =0, k=2,..., p, for each n, and there exists a
positive definite matrix I' such that

n
rlli_{r:on_l Z xix;=T;
Jj=1
(iii) the density f is uniformly continuous, positive and bounded;
and

(iv) ¢.(q;) — ¢(g;) 2p0, 1 <i<m.

The first two conditions of (ii) ensure that the slope is identifiable even when F
is asymmetric; the second of these conditions entails no loss of generality
because we may simply replace each x; by (1,x; — X,,..., x;, — X¥,)’, where
X, =n"'C}_ x,,2 <k <p,1<j<n'Since §, = 0, it is sensible to put 6,, = 0
(after calculating 6, with an unknown intercept) so that condition (i) is just a
condition on the preliminary slope estimator. Condition (iii) is stronger than the
conditions required on F for location L-estimators but is required for the weak
convergence of empirical processes based on regression residuals. We discuss
conditions (i) and (iv) further at the end of this section but note that (iv) will
often be unnecessary and for particular choices of ¢, may be implied by the first
three conditions. As in the location problem, the theoretical treatment of
trimmed L-estimators is different from that of untrimmed L-estimators with
different conditions required on F and A in each case. For trimmed L-estima-
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tors, we impose

(A) the weight function % is bounded, continuous a.e. Lebesgue and satisfies
h(u)=0for u <aoru> fB,where0) <a<p<1;

while for untrimmed L-estimators we impose

(B)(i) [[F(x + €){1 — F(x — €)}]"/?>dx < o for some & > 0
and

(B)(ii) the weight function A is bounded and continuous.

Serfling (1980, page 284) does not require & to be bounded in (B)(ii) but this
modification seems minor [see Stigler (1974, page 677)] and the remaining
conditions (A) and (B) are essentially those imposed by Boos (1979) and Serfling
(1980, page 271) with, of course, the modification that (i)—(iv) hold. For practical
purposes [see Stigler (1974, page 686)] condition (B)(i) involves essentially
Var(e,) < 0. We denote by (B’) the same set of conditions with
Var(e,) < .

We will require (B’) to consistently estimate the asymptotic variance. Bickel
(1973) requires E|e| < o and Ey(e)? < oo for the untrimmed case and when-
ever h puts positive weight on the extremes, the latter condition will require
Var(e,) < oo. Condition (B)(ii) is weaker than the corresponding condition in
Bickel (1973). '

The first theorem establishes that A, is indeed a generalization of T(F,,). The
proof which uses ideas from Boos (1979), Serfling (1980, page 279) and Bickel
(1973) is given in Section 3.

THEOREM 1. Suppose that the basic conditions (1)—(iv) hold and that either
(A) or (B) holds. Then with A, = 8, + (T(F),0,...,0) € #P, we have

nV2(A, = Ay) —n/2T7 1 Y xi¥(e;) —=p0.
j=1
It follows that provided Ey(e)? < o,
n/2(N, — Ao) —»p N(0, Ey(e)’T ).

If F is symmetric, an intercept is identifiable and T(F') being the center of
symmetry coincides with the intercept. For the trimmed mean, condition (iii) of
Theorem 1 can be weakened slightly [see Welsh (1987)].

A natural estimator of the quantity Ey(e)? may be derived by considering
n='E%_,(r;). Writing G,(G,,(¢)) = ¢, 0 < g < 1, we obtain

00 = [ [{Gu(z A 3) = Go(2)Go( )} R(G,(2))B(G,( ¥)) dy dz
+2 3 (w/6(0)) [ (21 Gu(3) = a6 (3))h(G,()

43 Y (wn/6(a0)6(a0) } (@i A 0s — 4:02),

i=1 k=1
where z A y = min(z, y). If A’ exists at all but a finite number of points, we can
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integrate the smooth term in the influence curve by parts and for n large enough
using again the convention that G,(G, (q)) = ¢,0 < g < 1, we can conveniently
write the first two terms of v, as

nt Y (rh(i/n) - 7) + a1 - a)r,?z(a)ﬁ(a)z + B(1 = B)rph(B)’
j=1
_20‘(1 .3) T ,,,(B)h(a)h(,B) - 2arnz(a)'_'h(0‘) - 2(1 - .B)rnt(ﬁ)’_'h(.B)

‘22 Z et 2 (n(j A k) = jR)R'(j/n)h' (k/n)

Jj=1k=1

n J
ry rnjh’(j/n)n_l( Y rah(k/n) —jr
j=1 k=1

+2rh(a)n™t Y 1 (a Aj/n—aj/n)h'(j/n)

j=1
21 ph(B)n" X 1 (B Aj/n— Bj/n)h'(j/n)

j=1

and
l(q.

)» {w,-/¢n(qi)}[ Z hi/n) = @iF + (a A g; — ag)ryoh(a)
i=1
_(B ANgq;— qu)’}d(ﬁ)h(ﬁ)
! Z rnj(qi Aj/n - qz]/n)hl(.]/n) ’

respectively, where 7 = n IZ" 1Tnh(j/n), and h(u) =0 for u <a or u > B,
0<a<pB<1 With A(u)= I(a<u<,8), 0 <a<pfB<1, the estimator is
equivalent though not identical to (8 — a)~2 times the variance estimator for
the trimmed mean in Welsh (1987).

Theorem 2 below gives conditions under which v, is consistent for Ey(e)2. A
similar estimator has been investigated in the location problem by Gardiner and
Sen (1979).

THEOREM 2. Suppose that the conditions (1)-(iv) hold and that either (A) or
(B’) holds. Then

n -1
un(n‘1 Y xjxj’.) —p Ey(e)’T L,

j=1

In the location problem, conditions (i) and (ii) can be omitted and (111) can be
weakened.

One-step estimators are sensitive (particularly in small samples) to the initial
estimator so that the choice of initial estimator requires some care. If conditions
(ii) and (B’) hold, the least-squares estimator satisfies condition (i) so that it may
be used as an initial estimator for the untrimmed L-estimators when asymptotic
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efficiency is sought. However, from the robustness viewpoint, a more robust
preliminary estimator such as the least-absolute deviations estimator [which,
moreover, does not require Var(e;) < oo to hold in order to satisfy (i); see
Corollary 4 of Ruppert and Carroll (1980)] should be used. Other M-estimators
may be used as initial estimators [see Carroll (1979)] but in general the fact that
a concommitant scale estimate is required makes these estimators unattractive
in the present context. While the use of a robust initial estimator is desirable for
the trimmed L-estimators, a prudent approach would be to use such an initial
estimator for the untrimmed L-estimators too.
One method of obtaining a consistent estimator of ¢ is to define
1

$ns(q) = n72%{G; (g + n7V?%(1 - q)) — G, (g — n"V%q)} ",
0<s<n?2,0<q<1.
Notice that

$ne(@) " — d(q) " = (n2/5)G Y (g + nV2(1 - q)) — (1 - q)é(q) "

—(n'?/s)G; (g — n"?sq) — q9(q) ",
so that if conditions (i)-(iii) hold and s, —p s, for some positive constant s,, we
have that for fixed 0 <¢g<1, 0<e<q—-n"Y%,9<1-¢e<1 for n large
enough so

(n172/5,)|G (g — n""%s,q) + n"'%s,99(q)
—{F(FY(q)) — q}/9(q) - F(q) + ¥(8, - 6,)|
< (nl/z/sn)lG,,_l(q -n"%,q) - F Y (qg—n"%,)
+{F(F (g —n"",q)) - (¢ - n""%,q)}/
¢(q - n_l/zan) +x'(0, - Ho)l
+(n%/5,)[{F(F (g = n™'%s,q)) - (¢ — n"%s,q)}/
¢(q —n"?s,q) - {F(F'(q)) - q}/4(q)|
+|(n*2/s,){F~'(g — n"%s,q) — F"Y(q)} + qo(q) |
-p0,

by Lemma 4.6 of Bickel (1973), the weak convergence properties of the empirical
process and the one-term Taylor series expansion for F~1. Similarly,

(n17%/5,)|G7 (g + nV%s,(1 — q)) = n'?s,(1 — q)é(g) "
—{F(FY(q)) - q}/9(q) - F'(q) + x'(6, - 6,)| > »0,

whence
|¢ns,,((1) - ‘P(‘I)I —p0.

Now s is effectively a window-width so the usual problems of selecting a suitable
s arise. Note, however, that a reasonable rather than an “optimal” (in some
sense) choice is required and that the choice may be determined after examining
the data, perhaps even fairly subjectively. The above approach is closely related
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to ideas in Siddiqui (1960) and Geertsema (1970). It is clear that approaches
based on the kernel and other methods of density estimation may also be useful;
see for example Falk (1986). Finally, we note that the problem of estimating ¢
can be avoided altogether if we restrict attention to the rich class of L-estima-
tors defined by the smooth term alone and avoid the use of the one step
analogues of the systematic statistics and the Winsorized mean.

3. Proofs. We begin by proving two preliminary lemmas which will be
needed for the proof of Theorem 1 under condition (B).

LemMA 1. Let {c;,} be any sequence of constants such that
lim, . n"'E"_;c%, < o and lim,_ max,_;_,n""?|c;,| = 0. Then if (ii), (iii)

Jj=1%jn
and (B) hold,
sup n_l/zf Y cjn{I(ejs y+axjt) - F(y+ xj’t)} dy
[t <n” 1M Jj=1

is bounded in probability for any M < .

PrROOF. Write ¢; = c;,, 1 <j < n, for convenience and, writing ¢; = ¢/ — ¢,
if necessary, without loss of generality take c; > 0, 1 <j < n. The result will
follow if we can show that for each fixed ¢, and § > 0,

T,=n"V2 [ é‘,lcj{l(ej <y+n V) — F(y+n )} | dy
and
7 f Jéc,.{z(e,. <y+n Vi) - I(e; <y + n~Vxit,)
+F(y+n"V2%jt,) — F(y + n™V%t) } | dy

n

< n_l/zf )y Cj{I(ej <y+nV%jt, + &) — F(y +n V%t + aj)} dy
j=1
+n—1/2j’ i cj{I(ej <y+ n_l/zxjto - 8j) + F(y + n—1/2xj’.t0 - 8j} dy
j=1
+2n‘1/2f ilcj{F(y +n7V%xjty + &) = F(y + n™'%xjty — 8)) } dy
jm

=Ty + T+ Tzs»

i . . -
where §; = n 2% 16, 1 <j < n, are bounded in probability.
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Now, arguing as in Lemma 8.2.4D of Serfling (1980),

l1<j<n

w12
ET, < (n_1 Ecjz) max f[F(y—i—n*l/zxjto)
j=1

X {1 - F(y + n_l/zxjfto)}]l/2 dy,

which is bounded so that T) is bounded in probability. Similarly, T,, and T, are
bounded in probability. Next, note that

n/2 [ i HAF(y+n"xjty +8) — F(y)} dy
Jj=1

& F(y+n’1/2x’~t0+8~) - F(y)
=n ! Zlcj(xj/to + Iles)f{ n*l/Z‘;j/_to +J61 - f(y) dy
Jj=

+n7t Y (%)t + |x08),
j=1
which is bounded so that T, is bounded and the lemma obtains. O

LEMMA 2. Under the conditions of Lemma 1,

sup n~ 2
|t|<n~V2M

n
Y cjn/{l(ej <y+ xj’-t) - F(y+ x;t)
j=1

—1I(e; < y) + F(y)}(F(y)) dy| - p 0,
for any M < .

PROOF. As before, let ¢, = ¢;, 2 0,1 <j < n. By standard arguments (which

are similar to those used in the proof of Lemma 1), it is enough to show that for
each fixed ¢,,

T,=n"'? i‘, cjf{I(ej <y+nV%t,) - F(y + n’l/zx;to)
j=1

—I(e;<y) + F(y) }h(F(y)) dy =50
and that for each § > 0,

T,=n"12

ilcjf{F(y +n" Y20t + 8,
i

—F(y+ n"%t, — &) }h(F(y)) dy| = 60(1),
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where 8, = n~'/?|x |6, 1 < j < n. However,

ET?2<n™! Z:: c’E [/{I(ej <y+ n_l/zxj’-to) —I(e; < y)}h(F(y)) dy]2

< Kn™! Xn: cfle(y + n‘l/zx;to) - F(y)|dy -0,
j=1

by the dominated convergence theorem, so that T, =, 0. Also, a similar argu-
ment to that used to handle Ty, in the proof of Lemma 1 yields the desired result
for T, and hence the lemma. O

Proor oF THEOREM 1. The result will follow if we can show that both

n~2C (N, = Xo) —n" V2 Y xiY(e;) >p0 and n7'C,—T —,0
j=1

hold. To this end, it is enough to show that for a fixed ¢, 0 < g <1,
n
n12 Y 1,6 (q) - F-Y(q) + x}(6, - 6,)
j=1

(3.1) —{I(r;< 6;(2)) - ¢} /9(a)

—{I(e;< F'(q)) - ¢} /()] =50,
n=V* Ele[fyd{H(Gn(y)) — H(F(y))} + x/(8, - 6,)(G,(r;))

(3.2) — [{1(; < 3) = G(3)}h(G()) dy

+ f{I(e,- <y) - F(y)}r(F(y)) dy] -p0,

and
63 w7 Tam(a(6,0) - [HF) dF) =0
We may write (3.1) as
—n"12 éxj[z(rj < G;Y(q)) - I(e; < F(q))
-(9){G:'(a),~ F(q) + x/(8, - 6,)}] /9(q)
+{6(q) " — ¢u(q) " jnV2 élx,-{l(rj <G, (q)) - q}.

The first term converges in probability to zero by a result of Koul (1969) and
Bickel (1973) [which is stated as Lemma 1 in Welsh (1987)]. It follows from the
same result that n='/2%%_ x;{I(r; < G, '(q)) — g} is bounded in probability and
hence that (3.1) obtains.

It is convenient to prove that (3.2) holds componentwise. Let d; denote any

fixed component of x;, 1 <j < n; writing d; = d} — d; if necessary, it is clear

that there is no loss of generality involved in assuming d; > 0, 1 <j < n. For
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d,=n""L"_,d;> 0, put

Q. = (nd) " L dln<y), Py =(nd)" ¥ dle;<)
J=1 J=1

and

B(y) = (nd,) " L dF(y + (0, - 6,))

J=1

and note that if d;=1, 1<j<n, ,=G, P,=F, and P,=F, The
Koul-Bickel result referred to above establishes that

(34) supn'’?|Q,(y) = P.(y) = P(y) + F(¥)| =5 0.
y
In this notation, (3.2) will hold if we can show that

R, = 7| [ya(H(G,(») - H(F())
+ [{Fy) + F(3) = 2F()}A(G(»)) dy
= —n'2 [[H(G(y)) - H(F(3)) = {F.(y) + F(y) = 2F(5) }h(Go())] dy
= —n'2 [Ws, (N{G(y) - F(»)) dy
~n2 [{G(¥) = F(y) = F(¥) + F(5)}h(F()) dy

+n12 [{F(y) + F(y) = 2F(0) H{A(GA(»)) — h(F(»))} dy
=R, + R+ Ry;y—50,

where

{H(G(y)) — H(F(y))}/{G(y) - F(y)} - h(F(¥)),
Ws, p() = if G(y) # F(y),
0, otherwise,

Ry=n"172 Y dyxi(8, - 0)h(Gu(ry)) = dn/* [ (B ) ~ F(3)}h(F(»)) dy

Jj=1

= n"%(6, - 6,)’n! f djxj[h(Gn('}')) - fh(F(y)) dF(y)]

j=1
-n" V2 Y djf{F(y +x/(6, - 00))
j=1

~F(y) ~ x}(8, = 6,)f( ) }h(F()) dy
=Ry + Ry, —50,
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and

Ry = n'/2 [{P(y) + B(y) = 2F(3)}h(F(y)) dy
—n172 [{Qu(¥) = Gu(») + F() + Fi(y) = 2F(5)}A(G,()) dy
= /2 [{B(3) + Py) = 2F()} (A(F(7)) = h(G,(7))) dy
= [{Qu(2) = B(5) = Ru(3) + F(0)}A(G(¥)) dy

+n1/2f{G,,(y) — F(y) = F(y) + F(y)}h(G,(y)) dy
=Ry + Ry + Rg3 —p 0.

Suppose first that (A) holds. Then as in Serfling (1980, page 281) there exist
— 00 < a < b < oo such that for sup,|G(y) — F(y)| < min{e,1 — B},

We,r(¥) = K(G(y)) = h(F(y)) = 0
for y < a or y > b. That is, for n large enough, we can truncate the limits of
integration in many of the terms above and then apply the dominated conver-
gence theorem. Specifically,

b
IRyl < supn'?|G(¥) = F(3)| [ |Wa, r(3)|dy =50,
y a

by the Koul-Bickel result (3.4) and the dominated convergence theorem; for
details see Serfling (1980, page 281). A similar argument applies to R,; and Rj,.
Next, letting K denote a generic positive constant,

IRl < K(b - a)supn'/?|G,(y) — F(y) = F(y) + F()[ »50,
Y

by (3.4) and a similar argument applies to Ry, R3, and Rj;. To show that the
remaining term R, —p 0, it is enough to prove that

J(G(2)) dQ.(¥) = [R(F(»)) dF(»)
- [{{#(6.(Q7(w))) = h(w)} du =50,

where to preserve notational simplicity, we omit explicit reference to the fact
that the weights {d;} used in the construction of @, here are different from
those used before. It is not hard to show using (3.4) and arguments similar to
those involved in Proposition 4.1 and Lemma 4.6 of Bickel (1973) that

G, (@, (u)) —u—-p0, O<u<l,

and then to apply the dominated convergence theorem to obtain R, —p, 0.
Now suppose that (B) holds. Then

IRyl < sup|Ws, (3) [ [|G.(y) = F(»)|dy =50,
y

(3.5)
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by the Koul-Bickel result, the continuity of A and Lemma 1. Similarly, both R,
and R; converge in probability to zero. It follows from Lemma 2 that R, =5 0
and from Lemma 1, the Koul-Bickel result and Lemma 2 that both R, —», 0
and R;; —p 0. Clearly, Ry, —p 0 as in the proof of Lemma 1 and R, —,0 as
before.

Finally, we can express (3.3) in the form of (3.5) and apply the arguments used
above to complete the proof of the theorem. O

PROOF OF THEOREM 2. It is enough to show that v, », Ey(e)? and this in
turn will hold if we can show that

. [ {6z 7 3) = GL(5)Gu(2)}h(G(2))A(G.( ) dy de
3.6
~p [ [{F(z A y) = F(y)F(2)}h(F(y))h(F(2)) dydz

and that, for each fixed ¢, 0 < g < 1,

J{a A G3) = aG(IMG(») &y =p [{a A F(y) = aF(3)}h(F(5)) dy.

Suppose first that (A) holds. Then arguing as in the proof of Theorem 1, there
exists — o0 < a < b < oo such that for n sufficiently large, we can restrict the
range of integration of all the above integrals to (a, b). Then the desired result is
obtained from the Koul-Bickel result and the dominated convergence theorem.

Now suppose that (B’) holds. Then it follows from the Koul-Bickel result
that for each y and 2z,

{G(2 A y) = G(2)G,(7)}h(G,(2))h(G,(¥))
—=p{F(z Ay) = F(2)F(y)}h(F(2))h(F(y)).
Moreover,
{G(2 A ¥) = G(2)G(¥)}A(G(2))R(Go( )| < Gulz A ¥) = G(2)G(¥)
and clearly for each y and z,

G.(z2 Ay) = G(2)G,(y) »p F(2 A y) — F(2)F(y)
and

[ (6 7 9) = 66N dvde =™ 5 (=07 £ 1

k=1

—p Var(e,)

= ff{F(z ANy) — F(y)F(z)} dydz,

by a result of Hoeffding [Proposition 5 of Stigler (1974)], so that (3.6) follows
from the extended dominated convergence theorem [Royden (1968, page 89)].
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Finally, we can apply a similar argument to (3.7) since

[{anG(») - aG(¥)) dy

=af ., (-GN} + - q) [©'G,(y) dy
Tn (G — 0

- GGG ()~ ) + [

G, \(

ydG,(y)
q)

~p [ dF(y)
F~(q)

= [{a A F(y) - aF(»)} dy,

by the Koul-Bickel result, Lemma 4.6 of Bickel (1973) and by a slightly modified
version of the argument of Lemma A.4 of Ruppert and Carroll (1980).
The result obtains. O
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