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STRONG CONSISTENCY OF LEAST-SQUARES ESTIMATORS
IN THE MONOTONE REGRESSION MODEL WITH
STOCHASTIC REGRESSORS!

BY N. CHRISTOPEIT AND G. TOSSTORFF

University of Bonn

In this paper it is shown that in the monotone regression model the
unknown regression function can be consistently estimated by the least-
squares method.

1. Introduction. A situation frequently faced by a researcher who is analyz-
ing real data is the following. A sequence y,, t = 1,2,..., of real-valued observa-
ble outputs is to be explained by observable inputs x,. This is usually done
by approximating the y-values by functions f(x,8), where the choice of
the function class f(-,#) is based on theoretical a priori considerations and the
parameter - is to be chosen so as to minimize a certain criterion—usually the
least-squares distance. If a sound theoretical basis is available, it will often be
possible to reduce the problem to one in which 6 is a finite-dimensional parame-
ter. In cases where no theory at all is available that could suggest an appropriate
function type, one will often resort to the use of plots in connection with ad hoc
assumptions to specify such a class (cf. [13]).

A minimal and often theoretically well-motivated assumption about the
relationship between two variables x and y is that of monotonicity, e.g., in many
situations, rising inputs will tend to increase the output, without any specific
functional relationship being more plausible than others.

For scalar valued x, Kruskal [8] gives an algorithm that computes, for given
observations (x,,..., X, ¥;,..., Yr), values 911, -+, 05 7 that preserve the order
of the x, in the sense that x, <x;= 9T,,~ < 9T, ; and that approximate the
y-values by minimizing the least-squares distance

1 T
(1.1) T L b= 6
t=1

in the class of all admissible (i.e., order preserving) 8, (cf. [12]). This algorithm is
equivalent to formula (2) in [6].

Going beyond description, the underlying statistical model would assume that
the y, are monotone transformations of the x,, disturbed by random shocks

(1~2) X = 00(xt) + &,

where 6, is the “true” monotone function. Minimizing (1.1) under the restriction

Received February 1985; revised October 1986.

!This work was supported by Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 303.

AMS 1980 subject classifications. Primary 62J02; secondary 62F12.

Key words and phrases. Consistency, least-squares estimators, nonlinear regression, monotone
regression.

568

[ ,Q
e
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é,%}ﬁ

The Annals of Statistics. MIKGIS ®
www.jstor.org



CONSISTENCY IN MONOTONE REGRESSION 569

of order preservation then gives approximate values 0y, |, . 0T r of 6, at the
observed x,values. A desirable property of this procedure would be that,
asymptotically, we can get complete knowledge of the function 6,. To show that
this is indeed true is the objective of this paper.

For deterministic x, the problem may be looked upon as one of determining
the unknown mean 6(x) of a family F,, x € &, of distribution functions by
drawing random samples y, ~ F, . In this case the variable x is merely treated as
a parameter. Using an “explicit” formula for the least-squares estimate, con-
sistency results for the determination of the location parameter 6(x) have been
obtained in [6], [9] and [14]. The model (1.2) is, however, in a certain way more
comprehensive, admitting predetermined stochastic regressors and hence depen-
dence among the y,. f,(x,) is then not merely a location parameter but may
contribute essential features of the stochastic properties of the output y,
Knowledge of the regression or “response” function 6, may therefore be of vital
importance for the choice of input level or dosage to obtain a certain desired
output.

The approach taken in this paper will be along the lines of nonlinear
regression theory as exposed, e.g., in [7]. To this end, we may think of the model
(1.2) as a special case of the general nonlinear regression model

(1.3) %= f(x,,0y) + ¢,

in which f(x,#) is a known function and the unknown parameter 6, is to be
estimated by the least-squares method, i.e., by minimizing

2
(1-4) QT(B; Xyseeos X1y Y5 o ,yT Z |yt f(xna)l ’

over all values 6 in some (topological) parameter space. Any 6 minimizing (1.4)
and depending in a measurable way on the observations (x,,..., Xy, ¥,,..., ¥r)
will be called a least-squares estimator. For the special case of the monotone
regression model, where f(x, #) = 6(x) and O is an appropriate function space,
we shall be interested in the question whether any such sequence 0T, T=1,2,.

of least-squares estimators is strongly consistent, i.e., if 0 - 0, a.e. in the
topology of the parameter space.

The paper is organized as follows. In Section 2, after formulation and a brief
discussion of the assumptions, the problem is imbedded in a suitable setting with
infinite-dimensional parameter space and the main result is stated. In order to
obtain compactness of any sequence 9T of monotone least-squares estimators—a
property that is crucially exploited in the proof of the main theorem—it is
shown that the monotone least-squares estimators are uniformly bounded (in T')
on sets J, exhausting the support of any asymptotic distribution of the
regressors. This is done in Lemma 4 and the discussion following it, and leads us
to consider modified estimators 0” that are uniformly bounded (in 7') on the
whole regressor sample space. Lemmas 1-3 are prerequisites to establish this
result (Proposition 1). In Section 3, the proof of the main theorem is given;
besides on Proposition 1, it relies mainly on Proposition 2, which gives the
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asymptotics for terms appearing in the binomial expansion of the sum of squared
errors (1.4). In both sections, some care needs to be taken concerning certain null
sets, leading to the various remarks. In Section 4, a truncation procedure is
suggested to cope with the effect of over- or underestimation at the endpoints of
a compact interval.

2. Assumptions and preliminary results. On Euclidean d-space, we have
the canonical (i.e., coordinatewise) partial ordering, which will be denoted by
“ < ” Later on we shall also use the symbol “ < ” to mean: x <y « x' < y* for
all coordmates A function 8: R¢ = R will be called monotone increasing if x < y
implies 6(x) < 6(y). The notations [x, y] and (x, y) will be used for the
multidimensional intervals {z: x < z < y} and {2: x < z <y}, respectively. We
shall assume that the x, take finite values in some finite or infinite interval Z of
Euclidean d-space.

Without further mentioning, it will be assumed henceforth that 6, is a
measurable monotone increasing function.

It will be convenient if we work on the canonical probability space @ = N X
RN, whose elements are infinite sequences w = (x;, Xg,..., Y1, Y2».-.), endowed
with the product Borel o-field and with the distribution measure . Besides, we
shall use the space of finite histories ;=27 X RT with elements w =
(X1y+s Xy Y15+ -5 ¥r), endowed with the Borel o-field and the projection pr of
p. The random variables x,, y, and ¢, are then well defined on @ as the
projections or by (1.2).

We shall make the following assumptions:

Let Fp(x,w)=QQ/T )):fglltxtsx] denote the empirical distribution function
of the x, (1, = indicator of A).

(A1) The ¢, t =1,2,..., form a martingale difference sequence with respect
to some increasing family %,, ¢ = 0,1,..., of c-algebras, ie.,

E(e)J%,_) =0 ae,t=1,2,....

For all ¢, x, is measurable with respect to %,_,.
(A.2) sup,E(|&|?%%,_,) < c a.e. for some a > 1.
(A.3) For every nondegenerate interval J in &

lim inf j dF; >0 ae.

T—- o

Let A(w) = {x € Z: lim SUP7 o Jixy dFr(w) > 0} (a countable set), and define
distribution functions F§, F¢ by

o= [y [t ]

for every Borel set A. Note that F, = Fg + Fg.

(A4) (i) A(w) is a.e. equal to some fixed countable set A.

(i) If, for each w, (T"(w)) is a subsequence of (T') such Ff, (-, w) converges
weakly to some (not necessarily probability) distribution function F¢(-,w) as
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T'(w) = oo, then with probability one, F° does not charge any monotone graph
(cf. [3] for a definition).

REMARK 1. If we put o = E(¢?|%,_,), then (A.2) implies that

supo? =62 < o0 a.e.
t
Moreover, by Chow’s theorem (cf. the proof of Lemma 2), (1/T)X7_ (¢? — 62) — 0
a.e. and hence

T
limsup— Y e < 5% ae.
T- o t=1

A more precise statement will be made in Lemma 2 below.

REMARK 2. We shall assume that we are given fixed versions of the condi-
tional expectations in (A.2). Then the set (of p-measure 1) of those w for which
the a.e.-statements in (A.2)-(A.4) do actually hold will depend on the chosen
interval J [in (A.3)] and the collection (7T'’/(w)) of subsequences [in (A.4)]. Note,
however, that it suffices to require (A.3) for all intervals J with rational
endpoints. Hence, let {, denote a set of p-measure one on which (A.2) (together
with its two consequences in Remark 1), (A.3) and (A.4)(i) hold, and let €,
denote a subset of QO of full measure on which (A.4)(ii) is true for a given
collection (T'’(w)). Note that, by Helly’s theorem, every subsequence (F., (@ @)
contains a further subsequence (Frmo(» w)) that converges weakly to some
(right-continuous, not necessarily probability) distribution function. Hence the
chief requirement of (A.4)(ii) is that no new point charges are created in 2\ A
asymptotically. Moreover, as a consequence of (A.3), every limit distribution
function F{(-, w) assigns positive measure to every nondegenerate interval in Z.

A field of application for which (A.1)-(A.4) provide a natural setting is the
determination of the regression function of a bivariate distribution, i.e., let
(%4 %), t=1,2,..., be independent observations distributed as (X,Y) and
suppose it is known that the regression function f(x) = E(Y|X = x) is mono-
tone increasing in x. Then the experiment may be written in the form (1.2) with
&, =¥, — E(y,|x,), and the ¢, form a martingale difference sequence with respect
to the o-algebras % = o{x,, ,, %, ¥,...,%,, »,}. The other assumptions in
(A.1)~(A.4) amount to certain regularity conditions to be imposed on the distri-
bution of (X, Y) (see also Remark 3 below).

REMARK 3. (A.3) and (A.4) are automatically satisfied for ii.d. x, whose
common distribution charges every nondegenerate interval and has a continuous
part not charging any monotone graph [(A.4)(i) is then a consequence of the
Glivenko-Cantelli theorem]. More generally, let x, be stationary ergodic with
common distribution function F = F°+ F? having an absolutely continuous
part F¢ Then the Glivenko-Cantelli theorem applies to yield A = support of
F9. Moreover, by ergodicity, Ff - F€.
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In order to put the monotone regression model (1.2) into the framework of the
general nonlinear regression model (1.3), let

f(x,0) = 0(x),
where 6 ranges in the class .# of all measurable monotone increasing functions
on % . The kind of consistency we shall be interested in is of the following type:

A sequence 9T, T=1,2,..., of least-squares estimators of 6, will be called
(strongly) consistent on A C & if, with probability one,

(2.1) 8,(x) > 8,(x) asT — oo for all continuity points x € A of 6.

The corresponding topology to be chosen on .# will be the topology of pointwise
convergence on a countable dense subset of Z (cf. Section 3). Let 0T Awr),

=1,...,T, denote the unique order preserving values minimizing (1.1) corre-
spondmg to the observations wp = (x,..., X, ¥1,-.., ¥r) (cf. Section 1). A
monotone least-squares estimator (based on the first T observations) is then any
measurable (with respect to the Borel o-field on ©) function w; — 0T( wr) €M
such that 8,(x,, w;) = 0T [(w7), t =1,..., T. A natural candidate is the follow-
ing. Define

max{ﬁT o x,<x} ifx, < x forsomet=1,...,T,
min{GTyt, = 1,...,T}, else.

A different canonical choice is given in [6]. Also, for one-dimensional x,, one
might prefer to interpolate the 0T ~values linearly.

The vector (0T,l’ 0T ) is the projection of (y,,..., yy) on a convex cone
that changes with the (xl, ., X7) in such a way that the mapping w, —*ﬁT’ (w7)
becomes measurable. This property carries over to the mapping w; = 0,(wy) if
we endow # with the Borel o-field corresponding to the topology of pointwise
convergence on a countable dense subset, so that 9T as defined by (2.2) is indeed
a least-squares estimator as defined in the Introduction.

Our purpose is to prove the following result:

(22) O,(x, wp) =

THEOREM 1. Under (A.1)-(A.4), every sequence 9T, T=1,2,..., of mono-
tone least-squares estimators is strongly consistent on int(Z).

The proof will be given in Section 3.

As pointed out in the Introduction, our approach is along the lines of
asymptotic theory for the general nonlinear regression model. A salient feature
of this approach is the need for a certain compactness property of the parameter
space (cf. the proof of Theorem 1). The space .# does not have this property.
What we need is a uniform bound for the true function 8, and the 8. We shall
therefore first show that the problem may be reduced to one in which all
monotone functions involved are uniformly bounded.

To this end denote

9r(ar) = {0 € Qr(0; 0r) = int @r(8; wr),

0p(wp) <b(x) < 5T(wT) forall x € él”},
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where we have put §= mln{HT p L= T} and 0 = max{ﬂT p t=
, T}. Obviously, 0(wy) as defined by (2 2) is in gT(wT) Let Ay be finite
subsets of A such that A N7 A, and let JN be finite open intervals (with rational

endpoints) such that cl(Jy) C int(Z), Jy / int(Z). Put Jy = Jy U Ap.
LEMMA 1. Under (A.4) (letting A denote complement),

lim liminf | dF;. =0 a.e.
N-ow T-w 73,

ProorF. For fixed w € @, let (T"(w)) be a subsequence such that (omitting
in the sequel) F7, - F<, [, dF¢ N\ a; or 2 a; for all x; € A. Then it is easily
verified that Ya; < 1. Anticipating some results explained in more detail below
(cf. Sections 3(a) and (b) and the following discussion), and defining F¢ as in
(3.6), it can be shown that on £,

f_ dFs, — f_ dF°¢ and f_ dFg, - fj dFe,

as T’ — oo [cf. (3.2) and (3.7)]. But [; dF°\ 0 on @, and since JyNAc
A\Ay, [7,dF*\N0Oas N > 0. O

If & is open, we might have simply taken oJy = Jy (since then c_,;N NAN 9)
LEMMA 2. Suppose that, for every w, (T''(w)) is a subsequence such that
1/T" (@) o} w) = 64 w) < o a.e. Then, under (A.1)-(A.2) and (A.4),
T/
Tl,linw 5,—, Z e2 =02 a.e.
and

1
lim limsup — ) e =0% a.e.
N> 754 T x,€dn

(Here we use (1/T’')X,, <, as a shorthand notation for (1/T’ wr -1, x,€d°)
Proor. Note first that, by Remark 1, 62 is a.e. finite. Then, for each interval
J, =1, cy(e} — o}) defines a martingale difference sequence such that

T2 E(|€,)|%ZF-,)/t* < o a.e. [with a > 1 from (A.2)]. Hence, by Chow’s theo-
rem (cf. [11], Theorem 3.3.1)

1 T
(2.3) T Y 1y enlef—02) >0 ae.
t=1
This shows the first assertion and that

1
—llmsup T Y o2 = limsup — T Y & ae.

T - x,€dy T'—> x,€dy
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But

. 3 1 T, 2 1 2 . . 1 2

l;r’nmf T Y 02— T Y of| = l;rlnmf—; Y o

- ® t=1 x,Edy —® x,&dy
—21: . — -2
<o hmlnf/ dF; = oy,
T' > o0 Y7,

whence

02 — sy < 5ay.
Since sy < 62 and ay \ 0 (by Lemma 1), this implies
N N

2

lim sy =0% a.e. a

N- oo

REMARK 4. Again, the exceptional w-set will depend on the collection
(T’(w)). Let £/ denote an w-set of full measure on which the assertions of
Lemma 2 hold for a given collection (T'’(w)).

LEMMA 3. Let Gp(x,e,0) = (1/T)L]_il{, u)<x, eqw)<e] denote the joint
empirical distribution function of the (x,,¢,). Then, under (A.1)-(A.3), with
probability one,

lim limsup dG;> 0
N=w© Tog J[x,y]X(~w,N]

for all x < y with rational endpoints. Moreover, the above conclusion is valid
for all x € A with [x, y] replaced by {x}.

Proor. For fixed N, let a, = E(1[,, . x| %;-1), 0 = E(¢}|%,_,). Then
1 T

17
dG = - 1 ]_ . — + — 1 .
‘l;x,y]x(—w,N] T TEI teeete (Lo ny — ) Ttgl [z €lx,5]]

1 T
T Ell[x,e[x,y]]E(l[e,> wlFi-1):

Since §, = 11, (s, ;1 <~ — @) defines a martingale difference sequence [with
respect to (%,)] such that 2, E(¢2.%,_,)/t? < « a.e., it follows from Chow’s
theorem that

1 T
1}1_120 T tglét =0 ae.
The third term on the right-hand side may be estimated (in absolute value) by

1 117 3
fEIE(l[s,>N]I9’¢-1) *NZT t‘:_:lot <Nz
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by virtue of the (conditional) Chebyshev inequality. Consequently,

62

lim sup dGp > limsup dFy — —,
Tooo J[%, ¥1X(~ o0, N] T-o0 %] N

from which the assertion follows in view of assumption (A.3) and Remark 1. O
Note that, for x < y, the assertion holds even with lim sup replaced by liminf.

REMARK 5. The w-set on which Lemma 3 is valid is some fixed subset of @,
(cf. Remark 2) and is determined by the choice of certain conditional expecta-
tions. Call it ©, in the sequel.

Let now int(Z) = (a, b), the cases a = — o0 and b = oo being admitted [as a
shorthand notation for X{(— o0, b,), etc.]. For x < y, let
Ip(w,%,y) = {t:1<t< T, x,€ (x,5)}
(x = —o0 and y = oo admitted). Define

min 0 (wp), if Ip(w,x,b)+ &,
l}(w,x) — feIT(w,x,b)
0 (wrp), ifI(w,x,b)=0

and

max 9T,t(wT)’ if In(w,a,x) # &,

l;(w, x) — telp(w, a,x)
0, (wrp), if In(w,a,x)= 2.

LEMMA 4. Under (A.1)-(A.3), for all v € Q,,

(2.4)(i) L*(w,x) = sg‘pl;(w,x)‘< )
and
(2.4)(ii) L (w,x):= ix;‘fl;(w,x) > —o0

for all rational x € int(%).

Proor. Note first that, by virtue of (A.3), I, (w, @, x)# @ and
I(w,x,b) # @ for T large enough (depending on w). Suppose that for fixed
w € 2, there is a subsequence (T’) such that

i 9 ’ ’ .
L CTO
For notational simplicity, let us assume that (T’) = (T') and omit w in the
sequel. Choose x <y, y € int(%’) and rational, N so large that sup, <, < ,0(2) <
N and Ty, so large that I (x, y) # & and

A

0r ,> 3N, forallT> Ty, t < I(x, y).
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Then, for every 0 € 4,

1 A
Qr(0) > T Z |y, — 0T,t|2
telp(x, y)
1 1
>— Y N?’>— Y N?
T te€lp(x, y) T telr(x, y)
»<2N g<N

= N“’/ dG,
(x, y)X(—00, N]

for all T > T,,. Hence, by virtue of Lemma 3,
limsup @,(8) = .

T- oo

In particular, if we choose 8 = §,, then

T
limsup @,(6,) = limsup — Y e < 6% < o0.
T- T— t=1

Hence, by contradiction, (2.4)(i) must hold on £,. (2.4)(ii) is proved in a similar
way. O

Note that the same argument shows that

(2.5)(i) A*(x) = sup minby , = supf; (x) <
T X=X T

and

(2.5)(ii) A(x) = ix%f mEXéT,z = il;féTJ(x) > — o0,

on £, for all x € A.

The following inequalities follow easily from the definitions. For y < x <,

L (y) <L (x)< inf 4(x)
= T,0ew,

(2.6) A _
< sup O(x)<L*(x)<L*(y).

T,0e 9,
Let us remind ourselves that our aim is to show (2.1) for every sequence 9T,
T =1,2,..., of least-squares estimators in . But corresponding to any such
sequence there exists a sequence 0, € 9, T = 1,2,..., which is asymptotically
equivalent in the sense that, with probability one,

|9T(x) —0p(x)| >0, forallx

(simply put §,(x) = QT \% 9T(x) A 9T). Hence, in order to show consistency of
any sequence of the least-squares estimators, we may confine ourselves to
sequences 0,€ 9, T=12,....

Let Jy = (yn> ¥n), Ay and Jy be defined as above, and put

Ly=L (yy) A min A (x), L{=L*"(yy)V maxA™(x).
- x€Ay x€ly
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Then, by virtue of Lemma 4 and (2.5), (2.6) for every T, 9T € Yp,and all x € Jy
-0 <Ly <bp(x) <L} < o0,

on §,. For fixed w € Q,, put My = sup, . ;,|0,(x)| and ay(w) = |Ly| V L] V
M,,. Then, for every T and every 6, € 9(wy),

(2.7) -0 < —ay(w) < 0p(x) < ay(w) < 0, forall x € Jy

and

(2.8) — 0 < —ay(w) < by(x) < ay(w) < 00, forall x € Jy.

If 9T, T=1,2,..., is a sequence of least-squares estimators such that ‘91' € Y,
let us put

(2.9) 07(0)(x) = (—ay(@)) V r(0r)(x) A ay(w)

and

(2.10) 05 (x) = (—an(w)) V 8p(x) A ay(w).

Then, for each N and w € Q,, the 0N(w), T=1,2,..., and 8 are uniformly

bounded [by a,(w)] monotone increasing functions and, by virtue of (2.7) and
2.8)

(2.11) B7(w)(x) = 8p(wr)(x) and 6](x) = 6,(x),

for all x € Jy.
Hence we have proved

PROPOSITION 1. Under (A.1)-(A.4), any sequence 9T, T=12,..., of mono-
tone least-squares estimators in 9 coincides on Jy for each N and v € Q, with
sequences O, T = 1,2,..., of uniformly (in T) bounded monotone increasing
functions.

3. Proof of strong consistency. The considerations at the end of the
previous section show that for fixed w and on finite intervals in £ we may work
with the truncated least-squares estimates, which are uniformly bounded on the
whole of 2. This suggests as an intermediate parameter set the class .#; of
measurable increasing functions taking values in some finite interval I. In
accordance with (2.1), the topology to be chosen on .#; should be such that it
leads to convergence at all continuity points of the limit function. To achieve
this we shall endow .#; with the topology of pointwise convergence on a
countable dense set D containing A; i.e., a neighborhood base of a point § € .#,
is given by the sets

(3.1) N={0eM|0(x) - 0(x,)|<e,x,€D,i=1,..., k},

with ¢ > 0 and & € N. Call the resulting space 0, (or simply 0, if the interval I
is of no concern). The next lemma shows that (3.1) is indeed an appropriate
topology in the sense required above. In fact, convergence holds even in a
somewhat stronger sense than just pointwise at the continuity points of the limit
function.



578 N. CHRISTOPEIT AND G. TOSSTORFF

LEMMA 5. Let 6, — 8 in ©. Then for every continuity point x of 6 and every
sequence x,, = x

0r(x,) > 0(x) asT — o0, n > .
Proor. This is a standard result on monotone functions. O
LEMMA 6. O is sequentially compact.

Proor. By constructing a diagonal sequence, as in the proof of the first
Helly theorem. O ,

For the results to follow, recall some facts about the weak convergence
of distribution functions. Suppose that the H, are (not necessarily probability)
distribution functions on Euclidean d-space converging weakly to some limit
distribution function H, i.e., H,(x) — H(x) for all continuity points x of H.
Then the following assertions are true.

(a) For every bounded continuous function % and every finite H-continuity
interval J

(3.2) Lh(x)dHn(x) N th(x)dH(x) asn — .

Hence, in particular, denoting by p, and p the measures induced by H, and H,
resp., p,(J) — p(J), for all such intervals, so that on J we have complete
convergence.

(b) Let h,, h be measurable functions such that A,(x,) —» h(x) whenever
x, = x and x & E. Then, if p(J N E) = 0, for every bounded continuous func-
tion f

_/:]f(hn(x)) dH (x) - j:]f(h(x)) dH(x) asn— oo.

This follows from Theorem 5.5. in [1] applied to the measures p,|; and p|; on
the metric space J. In particular, if the £, and % are bounded by some constant
M, choosing f(t) as in the proof of Theorem 5.2. in [1] will lead to

(3.3) jJ h,(x) dH, - jJ h(x) dH(x).

Let us return to the situation in assumption (A.4). If F., — F weakly, then we
may extract (by the usual diagonal procedure) a further subsequence (7'*’) such
that Ff, — F° weakly and either

(34) a;pn= f dF;, 7a;or Na;, asT"” > ooforalli=1,2,...,
{x:}
if we let A = {x,, x,,...} for a moment. Since [, dF;. < 1, it easily follows that

Ya; < 1. From Lemma 8 below it then follows that [writing (n) = (T") for
simplicity]

s

00
Zam—> a;, asn — oo,
i=1

i=1
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and, as in the proof of Scheffé’s theorem (cf. [1]) we may conclude further that
even

(3.5) Yla,,—a] >0 asn— o
i-1

holds. Define now a distribution function F¢ by setting

(3.6) Fix)= Y a,.

x, €A

Then, with F¢ defined as in Section 2, if the A,(x,) are uniformly bounded in 7,
i and A, (x;) = h(x;) for all x; € A as n — oo, it follows from (3.5) by some
straightforward estimates that

(3.7) fhn(x) dF? - fh(x) dF? asn - .
Note that F = F¢ + F<.

LEMMA 7. Let, for each w, (T'(w)) be a subsequence of (T) such that

—Fp (s @) = F(-, 0) weakly;
—Ff (5 @) = F(-, w) weakly;
— Jtx) dFp/(-, w) converges in a monotone way [cf. (3.4)] for all x € A.

Then, if 65— 0 in ©, § € ©, and the Jy are defined as in Section 2,

1 ~ 2
lim —_ O0.(x,) — 0(x
8, T (w)»w T'(w) xz:;JN| s(x) = 8(x/)]

= [ 16(x) = 0(x) [ F(ds, o)

holds for all N = 1,2,..., and all w € Q.

(3.8)

PRrOOF. Let the double sequence (S, T(w)) be ordered into a linear sequence
(n) by enumeration. Put A, (x) = |05(x) — 8(x)|%, h(x) = |0(x) — O(x)|%, H, =
Ff.(-, w), H= F%-, w). Then the left-hand side of (3.8) is

/J Nhn(x)an = [J () dF; -+ [J ) dFe.

Since A ,(x)1, — h(x)1, (x) boundedly for all x € A, the last term converges to
S, h(x) dF? by virtue of (3.7). As to the first term on the right-hand side, note
that A ,(x,) = h(x) for all continuity points x of & (cf. Lemma 5). Hence the set
E in (b) above is contained in the set of discontinuity points of k, which is a
countable union of monotone graphs (cf. [3]) and thus has F°-measure 0 by (A.4).
So (3.3) applies. O

LEMMA 8. Let, for eachn=1,2,..., i=1,2,..., a,, and a, be nonnega-

tive real numbers such that ¥,a,, < © for all n and Y,a;=a < . Then
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a;,, 7 a;(a;,\ a;) asn — oo for all i implies that
Ya, a, Ya,\a
i i

Proor. This is a consequence of the monotone convergence theorem using
counting measure on { = 1,2,... . 0

LEMMA 9. Let (T'(w)) be as in Lemma 7. Then, under (A.1)-(A.2) and
(A.4), there exists a set Q' of p-measure 1 such that, whenever 5 — 6 in ©, for
all N=1,2,...,

Y Os(x,)e(w) =

x, €y

lim
S, T"(w)—»o0 T’ (

for all v € Q.

PROOF. Let 09, i=1,2,..., be a countable dense set in ©. Fix N. For each
i, &9 =09(x,)1, ¢ defines a martingale difference sequence such that
© E(&P21F,_)/ t2 < o0 a.e. (since 6 is bounded), hence by Chow’s theorem

(3.9) = Z g0 =— % 09(x,)e, >0 ae,

T x, €y

and we can find a set SZ of full measure such that (3.9) holds for all w € @, all
i=12,..., and all N. _
If § € O is arbitrary, then §¢”) — @ for some subsequence (i’) and

e(w)] < D(x,)e(w)

(w) x, €y

1/2
= ( R |0<‘ (x,) = 8(x,)| )

1 T'(w) 1/2

X Y 2(w)] .
( T(0) 2"

For w € Q) and i’ and T'(w) large enough, say > n(e), the second term of the

nght-hand side is smaller than & by virtue of Lemma 7, and, for fixed i’ > n(e),
the first term can be made arbltrarlly small for w € © by virtue of (3.9). Hence,

T/ ( ) ngNa(x:)et(w) -0,

for all w € Q" == Q N Q). The assertion follows now from the estimate

1 , 1/2
)y Os(x,)e,| < (}T Z |0S(xt) - 0(xt)l )

(w) X, €y

x,€dy x, €y
(T' Z Et) Z a(xt)et s
t=1 x,EJN

applying Lemma 7 again. O
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REMARK 6. Note that Lemmas 7 and 9 are valid for random (%,_,-measur-
able) x, and any nonrandom sequence 65 — 6, with the set £’ on which the
assertions of the lemmas hold true being independent of the particular sequence
(0). The basic content is that convergence holds uniformly in the parameter 6.
Moreover, since ® = @, C O;_y y; for some N, {2’ may also be taken indepen-
dent of I.

Fixing w € £ and letting (S) = (T"(w)), 5(x) = 07/ (,(x, w), we obtain

PROPOSITION 2. Let (T'(w)) be as in Lemmas 7 and 9. If 07, (w) = 0(w)
in O forall w € Q" and §(w) € O, then

1 ~ 2
lim Ori (2, 0) —0(x,, w
T'(w)— 0 T (w) xzeJN| e )( ! ) ( ! )|

= [ 16(x,0) = 0(x, &) F(ds, 0)
and

Z 0T’(w)(xt’ "-’)8:(‘*’) =0,

x, €y

li —_—
T'(cil;xloo T'(w)
for all w € Q' and all N.

ProoF oF THEOREM 1. Let (T'/(w)) be any subsequence of (T') satisfying the
assumptions of Lemma 7 and (1/7T’(w))L7.()o2(w) = o%(w). Let @, R, and @’
be defined as in Remarks 4 and 5 and Lemma 9 and let, for w € , N 9’ N SZ{,
(T"(w)) = (T') for notational simplicity. Let 8¥(w) and 6 be deﬁned as in
Section 2 [cf. (2.9) and (2.10)]. For each N, the O}V(w), =1,2,..., and 6 are
then in #; ., with Iy(w) =[—ay(®), ay(w)]. Let TN(w), i=12..., be
further subsequences such that (TN (w)) C (TN(w)) for N’ > N and 0TN(w) -
6Mw)in® =0 Iv(w)- EXistence of such sequences is guaranteed by Lemma 6. Put

Q;V(o)—— T 16)(x) — 0(x) + o]

xtEJN
QY(0) = [ 16(x) — 6(x)|" dF(x).

It follows from Lemma 2 and Proposition 2 that, for fixed N,

limsupQ}\fn(é»}YN) = QN(8Y) + sy

i— 00

(cf. notation in proof of Lemma 2), with s, > 6% as N — c0. On the other hand,
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since 0.~ is a least-squares estimate
i

QT‘N(GO) = N 2_: 8, = QT~(0T~)

1 o 2
= =N Z |00(xt) 0T,N(xt) + £t|
i x, €y
= QTlN(oTlN),
where the last equality follows from (2.11). For i —» oo
(3.10) QM) + sy < ol

Again by (2.11), for N’ > N,
6N(x) = (),
at all continuity points x € Jy of 6N and at all x € A N Jy. By monotonicity,

the continuity points (in Jy) of 6N and 8" coincide. There exists then a
monotone increasing function 8 (not necessarily bounded) such that for all N

QY(@") = QN(0) = [ |6(x) - b(x)[" dF(x).

Moreover, taking the diagonal sequence Ty = Ty, GTN(x) oy (%) for x € Jy
implies that

(3.11) 9TN(x) - 0(x) asN - oo,

at all continuity points x of § and all x € A. Hence, letting N — oo, it follows
from (3.10) and sy — o2 that

/ |6,(x) — 8(x)|" dF + 0 < o?,
int()uA
from which

(3.12) f . A|60(x) —b(x)["dF = 0.

By virtue of (A.3) this implies that 0(x) = fy(x) at all continuity points x €
int(Z) of 4. But these coincide (by monotonicity) with the continuity points of
6,. Consequently, by (3.6), 0 (%) = 0,(x) at interior continuity points of 6,.
Hence we have shown that every subsequence (T'’) contains a further subse-
quence (7'"") such that OT (x) = 6y(x) ‘at the interior continuity points of 6.
This shows the assertion. O

REMARK 7. Let A’ = {x: liminf;_, .., dFy > 0}. Note that, since Jixy dF >
0 for x € A", we get from (3.12) the additional information that

(3.13) 0,(x) > 0)(x) atxeA.

If 6, is continuous on some finite interval [a, b] C int(Z’), convergence holds
even uniformly on this interval.
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CoROLLARY 1. Suppose that 6, is continuous on [a, b] C int(%Z). Then,
under (A.1)-(A.4), every sequence 9T, T=1,2,..., of least-squares estimators
converges a.e. to 6, uniformly on [a, b].

ProoF. Use Lemma 5. O

COROLLARY 2. Suppose that the x, are i.i.d. (stationary and ergodic) with
common distribution function F assigning positive measure to every nondegener-
ate interval, and its continuous part charging no monotone graph (being
absolutely continuous). Then under (A.1)—(A.2), every sequence 0T, T=1,2,.
of least-squares estimators is strongly consistent on int(%). Moreover, if the
(x,,¢,) are stationary and ¢, i.i.d., then (A.2) may be weakened to o = 1.

Proor. The first part follows from Theorems 1 and 2 together with Remark
3. For the second assertion, note that a > 1 is only needed in Lemma 2 in order
to prove (2.3). But in the indicated special case (2.3) follows from Theorem 2.19
in [5]. O

In [4] it is shown that for monotone 6, with Sup,;> ml0g(x)| < 1 for some M
and i.i.d. e, with positive density the scheme

¥ =0p(5,_,) + €

possesses a unique solution y, with a.e. positive density such that (y,_,, ¢,) is
stationary ergodic, so that Corollary 2 applies. Actually, for jointly stationary
ergodic (x,, ¢,), no additional assumptions about the dependence structure of the
error process need to be made, as the following corollary shows.

COROLLARY 3. Suppose that (x,, €,) is stationary ergodic with the distribu-
tion function of x, having vanishing singular part, E(e?) < oo and E(g(x,)e,) =
0 for every bounded measurable function g. Then strong consistency obtains.

ProOOF. Lemmas 1-3 are obtained from ergodicity. The predeterminedness of
the x-process is exploited in the proof of Lemma 9. O

We want to compare the results obtained with those known in the literature.
Let us first stress that our assumptions do not presume any a priori knowledge
on continuity of §, and that a wide range of dependency patterns of ¢, and «x, is
admitted (cf. the example just mentioned). A comparison is best made by
specializing to the case of independent ¢, and i.i.d. x, (independent of the ¢,). As
far as the ¢, are concerned, the best known results (cf. [14]) work with the
condition

(3.14) H(y) >0 asy— o and fnydH(y)I < o0,
0

where H(y) = sup,P(|¢,| = ¥). In the ii.d. case this is apparently weaker than
our condition (A.2), requiring only first moments. In [6], (3.13) is sufficient only
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in the case d = 1; for d > 2, the conditions imposed [cf. (22)] imply our (A.2) if
r > 1 is taken large enough to make the Borel-Cantelli lemma work on (26).

As to the common distribution of the x, in the i.i.d. case, it is required in [14]
that the singular continuous part vanish. With the improvement provided by
Smythe (cf. [10]) that no monotone graph be charged by the continuous part,
this amounts to a case covered in our Theorem 3 [(A.3) is needed in all
approaches]. A further improvement by Wright (cf. [15]) allows one to treat
certain special cases not covered by our results. As for deterministic regressors,
(A.2) is implied by (25) and (27) in [6] for d > 2. In the case d = 1, only (A.3) is
needed in [6]. So there seems to be some redundancy in (A.4) for this case.

4. Truncated estimators. In practical applications, the values which the
regressors may take are often confined to some compact interval £=[a, b] in
Euclidean d-space. Theorem 1 guarantees consistency of the monotone least-
squares estimator in the interior of Z. At the boundary, however, things will
usually go wrong (unless there are enough observations in the sense that a or b
are in A’), as the following counterexample in dimension 1 shows.

Counterexample. Let 6, be continuous on [a, b] and let the ¢, be normal
iid. and the x, numbers < b satisfying (A.3) and (A.4). Denote x,r, = max{x,:
1<t<T). Thend r(Xy1)) = Yyr) [and hence 0p(x) > Yury for all x, ) < x < b].
Since limsupy_, ,.e,r) = © a.e., for a.e. w there exists a subsequence (7’(w))
such that e, (w»(w) / 0. Consequently, limsup;_, 0,(b) = co, showing that
convergence of OT( b) to 0)(b) does not hold with probability 1. A similar
argument applies to the left endpoint. If the x, are i.i.d. (with their common
distribution not charging the endpoints) and independent of the ¢,, inconsistency
at the endpoints remains true by virtue of Fubini’s theorem.

The fact that the least-squares estimate systematically over- (under-)esti-
mated the true value at the right (left) endpoint of the interval is well known to
practitioners. The annoying thing is not so much that 9T is not consistent on the
boundary itself, but rather that the impact of the right- (or left-)most observa-
tion leads to poor speed of convergence near the boundary. We shall therefore
suggest a modification of the monotone least-squares estimator that guarantees
consistency on the whole interval, including its boundary. To simplify the
exposition, we shall only treat the case of a one-dimensional interval £ = [a, b],
but the results are easily carried over to the multidimensional setting. Let the ¢,
be ii.d., Ee? < co. Consider first deterministic regressors x, satisfying (A.3) and
(A.4). For fixed T, let 1 contain the n, largest observation points x,, 1 < n, <
T. Let

1
bp=— )y Y

(neglecting ties for the moment) pr can be written in the form

(4.1) = Z Oo(x,) + Z Q,réys

nr tellp
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where a,, = 1/n; or =0 according to whether ¢ € II; or not. If the n,

T =1,2,..., are chosen in such a way that, for some positive constant C,
(4.2) np>C-TYV?,
then

M=

a,re, >0 ae.
t=1

(cf. [1], Theorem 4.1.5.) Let x = min{x,: ¢ € I1;}. Then since

[
o1+ T’

it follows from (A.3) that x;, = b as T — oo, provided the n, are chosen in such

a way that

4.3) "t Lo
Lo

( * T

Then, if 6, is continuous at b,

1
— Z 0o(x,) = 6(b).
T telly
Hence,
(4.4) pr — 0,(b) ae.

Consider now the following truncated monotone least-squares estimator

0,(x) = min{@T(x), pr).
Then 6, is increasing, and

(4.5) Or(x) = 6,(x),
at each continuity point x of 6, including x = b, i.e., the truncated monotone
least-squares estimator is strongly consistent on the interval (a, b].

If ties occur, there may arise the need to choose among different y,-values
belonging to one observation x,, t € II,. In this case, any choice independent of
the actually observed y-values will do. Finally, for i.i.d. x, independent of the ¢,,
(4.5) will follow from the result for deterministic regressors together with
Fubini’s theorem.

Of course, a corresponding modification can be done at the left endpoint of Z,
thus providing us with a modified least-squares estimator that is consistent
uniformly on [a, b]. The choice of n; [within the limits provided by (4.2) and
(4.3)] will heavily influence the rate of convergence of 8. A “good” choice will
have to take into account the distribution of the x, and—if known a priori—the
rate of increase of 6, at the endpoints. In general, it will be left to practical
experience to find an appropriate nr.
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