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CONFIDENCE REGIONS IN CURVED EXPONENTIAL
FAMILIES: APPLICATION TO MATCHED CASE-CONTROL
AND SURVIVAL STUDIES WITH GENERAL RELATIVE
RISK FUNCTION!

BY SURESH H. MOOLGAVKAR AND DAVID J. VENZON

Fred Hutchinson Cancer Research Center

Differential geometric methods are used to construct approximate con-
fidence regions for curved exponential families. The a-connection geometries
discussed by Amari (1982), and another geometry introduced here, the ¢
geometry, are exploited to construct confidence regions. Survival and case-
control studies with general relative risk functions are interpreted in the
context of curved exponential families, and an example illustrates the con-
struction of confidence regions for matched case-control studies. Simulations
indicate that the geometric procedures have good coverage and power proper-
ties.

1. Introduction. The goal of this paper is to set out a systematic general
approach to the construction of approximate confidence regions for hypotheses
in multiparameter exponential families. It is well known that when the hypothe-
sis is nonlinear in the space of natural parameters, i.e., when, in the terminology
of Efron, the hypothesis forms a curved exponential family, confidence regions
based on the Wald statistic may be seriously misleading. A discussion of
curvature in the case of nonlinear regression models and its effect on confidence
regions can be found in papers by Beale (1960), Bates and Watts (1980, 1981),
and Hamilton, Bates and Watts (1981).

Suppose that Y is a random variable belonging to the n-parameter exponen-
tial family. The density of Y can be written

h(y,0) = exp{0'y — ¢(0) + x(¥)},

where § € Q C #" is the vector of natural parameters. Let 8 € #%, k < n, be
the parameters of interest and suppose that 6 = f(8) and that rank f (i.e., rank
of the Jacobian matrix (df/dB)) is k. Then, in general, f(B) is a curved
exponential family, and Efron (1975) defined a curvature of embedding for this
family when B is a scalar parameter, i.e., when %2 = 1.

The notion of curvature of embedding can be extended to the case & > 1. The
appropriate concept from differential geometry is that of second fundamental
form. In fact, it is possible to impose on the 6 space, and therefore, on the locus
f(B), a one-parameter family of geometries, via the so called a connections (see
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Amari (1982); Lauritzen, (1984)). Efron’s geometry corresponds to the geometry
defined by a = 1 in Amari’s construction.

Likelihood-based confidence regions have the desirable property of being
invariant under parameter transformations. In the single parameter case, Sprott
(1973) considered specific transformations that symmetrized the likelihood, and
argued that Wald intervals be constructed after such reparametrization. In the
multiparameter case, suitable reparametrizations are much more difficult to find.

Our aim in this paper is to exploit differential geometry to construct ap-
proximate confidence regions in curved exponential families. Detailed simula-
tions, to be described elsewhere, indicate that the geometric procedures have
good coverage and power properties. We will be concerned with reparametrizing
the model so that it looks as much like “ uncurved” Euclidean space as possible.
For each a geometry, such a reparametrization is accomplished by using geodesic
normal coordinates. For some of the a, geodesic normal coordinates have appeal-
ing statistical interpretations as is discussed in the next section.

In addition to the a geometries, it seems natural to consider another geometry
in the context of hypothesis testing. Let 1, = E,(Y) = {/(8) be the expectation
of Y and =, = y(0) be the variance of Y. Note also that =, is the Fisher
information matrix for 6. Let §, = f(B,) be a fixed parameter. Then, since =, is
positive definite, it defines an inner product on the 6 space. The embedding
f: #* - R™ then defines an inner product on %* by the pull-back G, = J§Z; Js,
where J; is the Jacobian of f at B. Note that G is the Fisher information
matrix at B,. This inner product then defines a Riemannian geometry on S
space, and reflects “local” curvature near B,. We call this the constant metric
geometry or the ¢ geometry on S space. The relationship of this geometry to the
a geometries is briefly discussed in the concluding remarks.

In Section 2, we briefly review some relevant notions from differential geome-
try. The construction of geodesic normal coordinates requires the solution of
systems of quasilinear differential equations. We provide easily computable
approximations. The concepts introduced here are intimately related to the
concepts of curvature described by Efron (1975,1978) and Bates and Watts
(1980). Some of these relationships have been explored in a recent paper by Kass
(1984), and others are discussed briefly in the concluding remarks. The goal of
this paper is the rather practical one of demonstrating that geometry may be
exploited to construct adequate approximate confidence regions. In Sections 3
and 4, we discuss some of the statistical properties of the 0 geometry and the ¢
geometry. Of particular interest is the relationship between the 0 geometry and
variance stabilization. In Section 5, we show how the probability models of
matched case-control and survival studies can be considered as curved exponen-
tial families. In Section 6, we consider a detailed example. In Section 7, we
summarize some simulation results.

2. Geodesic coordinates and confidence regions. We give a quick intro-
duction here to geodesics and normal coordinate neighborhoods. The reader
interested in the details should consult the books by Boothby (1975), Milnor
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(1963) or Hicks (1965). We begin with a discussion of the ¢ geometry. The
appropriate modifications necessary for the a geometries are described later.

The inner product G = G, imposes a Riemannian geometry on 2*. We need
to find the “straight” lines, or geodesics, for these geometries. Let g;; be the
entries of G. The Riemann-Christoffel symbols are defined by

(1) I‘i'm = Z%(ajgml + 0,87~ 0:8;m)8",

where, for simplicity of notation, d, denotes d/dB,, and g are the entries of
G~ Here, the c on the I' denotes that we are working in the ¢ geometry. A
geodesm in the geometry defined by G is then a curve B(¢) that satisfies the
system of quasilinear differential equations

d’B; c, dp; dp, .
(2) e +J§nr,mdt -0 1,...,k.
Given a point B, € #* and a tangent vector v at B,, the above system of
differential equations has, for ¢ small enough, a unique solution B(¢) such that
B(0) = B, and B(0) = v. That is, for any point 8, and any direction and velocity,
there is a unique geodesic starting at B, in that direction, and with prescribed
velocity. Under some regularity conditions, the geodesic can be defined for all ¢.

In order to introduce geodesic coordinates, we now make a distinction be-
tween Euclidean 8 space, and B8 space equipped with the geometry from G. The
latter space will be labelled M. At each point of M, the tangent space at that
point can be identified with #*. For any point 8, € M, let v,(¢) be the geodesic
starting at B, and satisfying the condition vy,(0) = v. Then, there exists an open
neighborhood V of 0 in #* and an open neighborhood W of 8, in M such that
the map Exp: V — W defined by Exp(v) = v,(1) is a diffeomorphism. The map
Exp is called the exponential map, and defines the geodesic coordinate system at
Bo-

Now, if B, is the maximum likelihood estimate, an approximate confidence
region for 8 may be constructed as follows. Let C be a Wald confidence region in
the tangent space to M at ,. Thatis, C = {v € %”W’GBOU < c}, where c is some
positive constant. Then an approximate confidence region R for B is the image
under Exp of the elliptical region C, R = Exp(C). If one wanted a confidence
region based on the observed information matrix rather than the Fisher informa-
tion matrix, the region C may be appropriately redefined with G, replaced by
the observed information matrix. In either case, obtaining Exp(C) requires the
solution to a system of quasilinear differential equations, which can be quite
cumbersome in practice. In many situations, the approximation given below
should suffice. The confidence region Exp(C) may be thought of as follows. First,
B space is reparametrized in terms of the geodesic normal coordinates, the Wald
confidence region is found in this system of coordinates, and then this region is
reexpressed in terms of the original coordinates.

From the definition of Exp, it is clear that the Jacobian of Exp at 0 is the
identity. Second derivatives may be computed from the differential equations for
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the geodesics. Then, an approximation to Exp is given by the first few terms of
the Taylor series

(3) [Exp(0)]’ = Bi + o = 3 ¥ T%(Bo) oo™,

J,m

where u’ represents the ith component of the vector u. The first two terms of
this approximation correspond to the usual Wald confidence region for 8. Thus,
this procedure can be thought of as refining the usual procedure when curvature
is present. Additional terms can be computed if necessary.

At the risk of belaboring the obvious, we point out here that if f is linear, all
the Riemann-Christoffel symbols are zero, the geodesms are the straight lines
and one recovers the usual confidence region.

The entire discussion here was carried out in terms of the geometry de-
termined by G, i.e., in terms of the ¢ geometry. An entirely parallel development
can be based on the a geometries. Geodesics are defined as solutions to the
quasilinear equations (2) whether or not the geometry is metric (Riemannian).
For the a geometries, the Riemann— Chnstoffel symbols may be defined as
follows.

The Fisher information =, defines an inner product, and hence, a Riemannian
geometry, on @ space. This is called the information or 0 geometry. Then for any
real a, the a geometry can be defined by means of a connection that is the sum
of the information connection and —(a/2)T, where T is an appropriately defined
tensor (see Amari (1982) for details). Now this allows the a connections to be
easily computed on B space. Let GB J, ‘20 JB be the pull-back of the Fisher
information matrix to 8 space. Note that Gp is the Fisher information matrix at
B, and thus defines the information or 0 geometry on B space. The
Riemann-Christoffel symbols for this geometry are defined as in (1), with the
entries of G and G! replacing the entries of G and G~! in that expression.
Then, the Riemann—Christoffel symbols for the a-connection are given by

% 9 @ 3%(6) 5il
(4) Ljm=T jm 2212 GEC( aab mc)aa 38, a9, g
where as before 9, is d/dB,, etc. Here, the first term on the right-hand side
represents the Riemann—Christoffel symbols of the 0 connection on 8 space and
the second term on the right-hand side represents the pull-back of the tensor T
from 6 space to 8 space. Note that (9%)(0))/3d0, 36, are just the entries of the
Fisher information matrix, 3,, in 4 space.

When f is linear, i.e.,, when B space is an affine subspace of # space, the ¢
geometry coincides with the 1 geometry. However, in general these geometries
are different. Further, even if f is linear, the Riemann—Christoffel symbols are
nonzero in all the a geometries with the exception of a = 1. Linear hypotheses
are flat submanifolds of # space only in the 1 geometry (equivalently in the c
geometry). Thus, even for linear hypotheses, it is of some interest to construct
confidence regions based on the a geometries, a # 1.
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When k=1, ie, when the model is one-dimensional, there is a single
Riemann-Christoffel symbol for any of the geometries. For example, for the 0
geometry it is given by the expression

- ag d(In g2
5) poL(08),,_ ")
B B
The system of quasilinear equations (2) reduces to
dZB N dB 2
: — +TI|—] =0.
©) az " ( dt )

Using expression (5) for I', equation (6) can be easily integrated once to yield

the first-order equation

daB 5172
(7) . = bg
where b is the constant of integration. The initial condition df/dt|,_,, of course,
determines b. In order to construct the upper and lower bounds of the 1 — ¢
confidence interval the constants b are chosen, respectively, to be the upper and
lower ¢/2 points of the 47(0, 1) distribution. Thus, to obtain the 95% confidence
interval, for example, b = +1.96. Equation (7) can be integrated numerically
from ¢t=0 to ¢t=1 to yield the desired confidence interval. Alternatively,
approximation (3) may be used. If necessary, one more term in the Taylor series
expansion can be easily found. With appropriate modifications, the entire discus-
sion above applies to the ¢ geometry.

In order to construct a confidence interval for a single parameter in a vector of
parameters, we use the notion of profile likelihood. Suppose, without loss of
generality, that a confidence interval is to be constructed for 8,. Consider the
function (8,) = Uy, B_(By), where B_,(B,) = (By(B1):-.., Bi(By) is that
value of (B,,..., B8,) that maximizes the likelihood for a given value of B8,. The
mapping B; - (B, I3 _1(B,)) now becomes the (one-dimensional) model of inter-
est, and a confidence interval can be constructed as before once the
Riemann-Christoffel symbol is computed. Note that because of the tensorial
property of the Fisher information, g is computed as

&= JiGas,

where J; = (1 a[B_ (BD1/3B,) is the Jacobian of the mapping B, -
(By, ﬁ 1( B1)). An easy calculation shows that the vector d( B_(B,)/B, is glven
by —A~'w, where A is the (k — 1) X (k — 1) matrix (%1/3B; 3B,); -1, and w is
the (k — 1) vector with entries 321/38, dB;, with j = 2,3,. k Slmllarly, for
the ¢ geometry, g is obtained by replacing G by G in the preceding expression.
The tensor T can also be pulled back to yield the a geometries, a # 0. The
Riemann—Christoffel symbols for the 0 geometry and the c¢ geometry are
constructed as in expression (5).

The small sample properties of these procedures need to be thoroughly
investigated by Monte Carlo simulation. We did extensive simulations with the



CONFIDENCE REGIONS 351

proportional hazards model for survival data, the 0 and ¢ geometries and the
profile likelihood method previously described for construction of confidence
intervals. These simulations will be described in detail elsewhere (Moolgavkar
and Venzon (1986)). A brief summary of the results is given in Section 7.

3. The 0 geometry and variance stabilization. Vaeth (1985) has noted
that Wald confidence regions are most appropriate in variance-stabilizing para-
" metrizations. It is well known that when & > 1, a variance-stabilizing parametri-
zation does not, in general, exist. In fact, a variance-stabilizing parametrization
exists if and only if there exists a 1-1 transformation § — B, such that the Fisher
information matrix in & space, G = JGps)Js, is constant. If k=1, such a
transformation always exists and, in fact, its existence is simply a restatement of
the fact that a curve can always be parametrized by its arc length. When & > 1,
a very stringent condition must be satisfied for a variance-stabilizing transforma-
tion to exist: A tensor constructed from Gy, the Riemannian curvature tensor,
must be equal to zero.

ExXAMPLE 1. Consider a univariate normal family with unknown mean and
variance. This family has nonzero Riemannian curvature tensor. In fact, Amari
(1982) has shown that this family has constant negative (sectional) curvature. A
consequence is that a variance-stabilizing parametrization of this family does not
exist. It is of interest to note that this family is isometric to the hyperbolic or
Lobachevski plane. In this geometry, Euclid’s fifth postulate is violated: Given a
straight line (geodesic) and a point not on the straight line, there exists an
infinite number of straight lines passing through the point and not intersecting
the given line.

ExaMPLE 2. Consider a multinomial family M(m, p,,..., p,), m fixed. This
family is isometric to an open subset of the sphere of radius 2m'/2 in £2"*!, and
hence has constant positive (sectional) curvature. In fact, we show this by
constructing an explicit isometry, i.e., a map f to the sphere of radius 2m!/2 such
that J'IJ = V™1, where o is the Jacobian matrix of f, I isthe (n + 1) X (n + 1)
identity matrix and V is the covariance matrix of the multinomial family. The
map f is given explicitly by (p,, ..., p,) = m*(—2p¥/?,2pV?,...,2py/?), where
we note that p,=1-p;, — --+ —p,.

An immediate consequence is that there exists no submodel of dimension
larger than 1 with a variance-stabilizing parametrization. For case-control and
survival studies we shall be dealing with Cartesian products of multinomial
distributions (see the following). The conditions under which variance-stabilizing
parametrizations of submodels exist in this case can be worked out after
computing the Riemann-Christoffel symbols. However, we do not discuss this
further here.

Although variance-stabilizing parametrizations do not, in general, exist, geo-
desic normal coordinates in the 0 geometry are almost variance-stabilizing in the
sense of the following geometric proposition, which was known to Riemann.
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ProPOSITION. Let (u,,..., u,) define geodesic normal coordinates centered
at By; i.e., with B, = (0,...,0). Let h,; be the entries of the matrix G (or G) in
this coordinate system. Then, h; = c,, where c; is constant along u; and further
(0h;a/0u;),..., =0,Vi, j,d.

ProoF. The first part of the proposition follows immediately from the
definition of geodesic normal coordinates and the fact that the tangent vectors to
a geodesic have constant lengths. For the second part, note that the equations of
geodesics through B, take the form u,(t) =a;t; i =1,2,..., %, a; arbitrary
constants. Thus, equations (2) for geodesics through B, become

Z daad l=1 k=rd(0)_0 Vl ],d.

Now, it follows from the definition of the Riemann-Christoffel symbols that

dhjq ..
E ,gZd+Z dglj=>(al:) =0 Vi, ,d.
i /(0 )

8
This proves the second part of the proposition. O

This proposition makes it clear in what sense the geodesic coordinate system
in the 0 geometry is almost variance-stabilizing. The diagonal entries of the
Fisher information matrix are constant along coordinate curves, and the off-diag-
onal entries are constant to first order at S,,.

The above proposition says, in particular, that any geodesic in the 0 geometry,
when considered as a one-dimensional model, is variance-stabilizing. The a
geodesics, when a = —1, — ; or ; can likewise be interpreted as (one-dimen-
sional) parametrizations that reduce asymptotic bias, reduce asymptotic skew-
ness and make the expected third derivative of the log-likelihood zero, respec-
tively (Hougaard (1982); Kass (1984)). Thus, confidence regions based on these
geometries are of interest. However, the second term in expression (4) is compu-
tationally cumbersome, and our main interest is in the 0 geometry and the ¢
geometry.

4. The ¢ geometry and Wald regions. Consider the Wald regions W, and
W, in 0 space and B space, respectively, defined by

W, = {0116 — 8(B,)] ‘Zo(s, [0 — 6(By)] < constant)
and
Wy = {BI(B ~ B,)'G,(B — B,) < constant},

where G, = JBIEO(BI)JB , for some point B, in B space. If the embedding of 8
space in 6 space is linear, ie., if § = f(B) is a linear function, then f(W;) =
W, N f(B). This is not true in general Suppose, however, that B represents the
geodesic normal coordinates in the ¢ geometry defined by 2, py- Then, by the
construction of these coordinates, (8, — B;) Gﬂl( Bz — B,) is the squared length
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(in @ space) of the curve f((1 — ¢)B8, + ¢B,), 0 < t < 1, joining B, and B,, and is
thus approximately equal to

[0(/32) - 0(31)] tzowl)[o(ﬁz) - 0(:31)],

if the embedding of B space into 6 space is not too badly behaved. Consequently,
f(Wj) is approximately the intersection of W, with the submanifold f(B).

5. Matched case-control and survival studies. The conditional likelihood
of the logistic regression model for matched case-control studies is formally
identical to the partial likelihood of the proportional hazards model for survival
data. In either case, the appropriate likelihood function (Thomas (1981)) is

n P(B’ zO)
I;IZMLOP(B, l])

where n is the number of risk sets, p(8, 2) is a generalized relative risk function
and z;; is a vector of covariates for the jth individual in risk set i, with j =0
corresponding to the case or the individual who failed. In this expression, m; is
the number of controls for the ith case or the number of individuals whose
survival time exceeds the ith failure time. For the usual logistic regression model
and the original proportional hazards model proposed by Cox (1972), p(B, 2) =
exp(B%).

The likelihood L can be viewed as arising from a multinominal sampling
scheme as follows. Let R,, i = 1,..., n, be a multinominal random variable with
sample size 1 and cell probabilities

Y ;n='0P(,B, 2;) '

Then L arises as the likelihood of this multinominal sampling scheme if the
success for each R, is associated with P,,.
Now for each R,, the natural parameter

t Rl I:)im,-
6:(B) = (ln(a),...,ln( P, ))

= (In p(B’zil) l (ﬂ ztm)

p(IB’ZiO) o p(,B, zo)
Let 6 = (6},...,6"). Then the locus 6(8) defines, in general, a curved subfamily
of the exponential family with natural parameter # and covariance (Fisher
information) matrix 2,, where =, is block diagonal with the ith block corre-
sponding to the covariance matrix of R;. In matched case-control studies, the
matrix (360/9B)'= 0, (d68/dB) is the Flsher information matrix in B space. This is
not true for survival studies. However, this matrix has the appropriate asymp-

totic properties (as the number of failures, i.e., the number of risk sets, ap-
proaches infinity) for inference and may be used to construct Wald type
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confidence regions (Prentice and Self (1983)). It is clear that § = X8 (ie., 8 is a
linear funciion of B) if and only if p(B, z) = exp(8%). In this instance, the
entries of the design matrix X are the differences in covariate values between
controls and the case in the risk set. Thus, when p(B, 2) = exp(8%), the model is
uncurved in the sense of Efron (i.e., in the a = 1 or the ¢ geometry).

There has been some recent interest in relative risk functions other than the
exponential, e.g., in p(B, 2) =1 + B%. With this relative risk function it is
known that inference for 8 based on the Wald statistic is seriously misleading
(Storer, Wacholder and Breslow (1983); Lustbader, Moolgavkar and Venzon
(1984)). The considerations of Section 2 may be used to construct approximate
confidence regions in such situations. In the next section we illustrate the
procedure with a detailed example.

6. An example. In this section, we illustrate the construction of approxi-
mate confidence regions for a matched case-control study of endometrial cancer
in Los Angeles. These data are taken from Appendix III of Breslow and Day

TABLE 1
Results of the analysis of the example in Section 5. Variance
stabilized intervals obtained by numerical integration of (7) using
the profile likelihood (see text).

Results of analyses with p(B,2) =1 + B2, + B2,

mle = f = (4.263,0.122); maximized log likelihood = —70.53

9.5680 0.072 )

Expected covariance matrix = G5 ! = (O 072 0.004

95% confidence intervals for:
B, B,

Wald based (—1.803,10.329) (0.005, 0.239)

Likelihood based (0.502, 16.67) (0.042,0.374)

Variance stabilized (0.545,16.11) (0.047,0.347)
(0 geometry)

Results of analyses with p(B,2) = exp(B;2; + B223)

mle = § = (1.06302; 0.02070); maximized log likelihood = —73.10

0.18696 0.000016)

Expected covariance matrix = G5 * = ( 0.000016  0.000019

95% confidence intervals for:

By B,
Wald based (0.216,1.911) (0.012, 0.029)
Likelihood based (0.206,1.918) (0.012, 0.030)
Variance stabilized (0.196,1.928) (0.012, 0.030)

(0 geometry)
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(1980), and are also available from us upon request. There are 63 cases (63 risk
sets) with 4 controls per case in that data set. Two covariates, one of them
discrete (presence (1) or absence (0) of gallbladder disease), and the other
continuous (length of estrogen use in months, range: 0 to 96 months), were
chosen for analysis. We eliminated 6 risk sets because these had a missing
covariate value for the case. In addition, we eliminated 1 control from each of 8
other risk sets because a covariate value was missing on that control. Thus, we
analyzed a total of 277 observations arranged in 49 risk sets consisting of a case
and 4 controls each, and 8 risk sets consisting of a case and 3 controls each. Two
relative risk functions were used in the analyses: p(8,2) =1 + 8,2, + B2, and
p(B, z) = exp(B;2; + By2,). Recall that the latter formulation defines a linear
hypothesis (cf. last section) in an exponential family,

The results of the analyses are presented in Table 1. With p(B,2) =1 +
B2, + By2,, the null hypothesis 8 = 0 is resoundingly rejected by the likelihood
ratio test (38.8 on two degrees of freedom), whereas it is not rejected by the Wald
test (4.56 on two degrees of freedom) at the 0.05 level of significance. Figure 1
shows that the 95%-likelihood-based joint confidence region is far from elliptical
as is noted in a recent publication (Lustbader, Moolgavkar and Venzon (1984)).
The correction based on the 0 geometry is shown in that figure. We note that the
corrected Wald region is in excellent agreement with the likelihood-based region.

0.6
Corrected Wald
First approximation

0.5+

|
Likelihood—based

Y R
2

-0.1-

Fic. 1. 95% confidence regions for the example in Section 6. The corrected Wald region was
obtained by numerical integration of the equations for geodesics in the 0 geometry. The first
approximation was obtained by using expression (3) for the 0 geometry.
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However, the approximation based on (3) seems to be inadequate for this
example. With p(8, z) = exp(8,2; + B,2,), all the methods for the construction
of a confidence region yield similar results.

The profile likelihood was used, as previously described, to compute con-
fidence intervals based on the 0 geometry, i.e., to compute variance-stabilized
confidence intervals. The likelihood-based confidence intervals were computed as
suggested by Cox ((1970), page 88). Thus, for example, to compute the confidence
interval for B,, consider the profile likelihood I(8,, /§2( B1). A 1 — & confidence
interval is then defined by

{Bl'l(ﬁp ﬁz) - l(ﬂp :é2(ﬂl)) < %c}’

where ¢ denotes the upper & point of the chi-squared distribution on one degree
of freedom (Table 1). :

7. Some simulation results. Extensive simulations were carried out to
investigate how well some of these methods did in the analysis of survival data
via the proportional hazards model. The details of the simulations appear
elsewhere (Moolgavkar and Venzon (1986)). Covariates were sampled once from
each of three different distributions (uniform, normal, lognormal) and then used
for all the replicates. With an additive form of the relative risk p(8,2) = 1 + Bz,

TABLE 2
Results of simulating survival data with the proportional hazards model, no
censoring and with relative risk = 1 + Bz. Covariate distribution was chosen to be
uniform, lognormal, or normal, and 50 failures were recorded. All results are
based on 1000 replicates. Coverage reports the proportion of computed 95%
confidence intervals that included the true value of B. Power reports the proportion
of computed 95% confidence intervals that excluded 0.

Coverage Power

Var. stab.
B Wald Il-based (0geom.) c geom. Wald [-based Var.stab c geom.

Covariate distribution: Uniform
0 0914 0.956 0.960 0956 0.086  0.044 0.040 0.044

2.5 0.896  0.958 0.950 0952 0 0.658 0.640 0.645
50 0.892 0.961 0.957 0960 0 0.900 0.906 0.896
100 0.874 0977 0.966 0964 0 0.985 0.987 0.982

Covariate distribution: Lognormal
0 0919 0954 0.946 0.955 0.081  0.046 0.054 0.045

25 0928 0.932 0.936 0945 0 0.498 0.438 0.534
50 0916 0.944 0.954 0959 0 0.828 0.802 0.842
100 0.904  0.960 0.956 0962 0 0.972 0.968 0.980

Covariate distribution: Normal
0 0898 0958 0.966 0962 0.102  0.042 0.034 0.038
25 0.880 0.962 0.949 0961 0.002 0.418 0.404 0.374
50 0.850 0.968 0.960 0961 0.002 0.655 0.651 0.618
100 0.780 0.966 0.978 0946 0 0.821 0.830 0.798
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the coverage and power, defined as the probability of excluding zero, were
computed for the Wald interval, the likelihood-based interval, and the intervals
based on the 0 geometry and the ¢ geometry. The Wald region behaved poorly
with respect to both the coverage and power. This was especially noticeable with
a normal covariate distribution. The other intervals had good coverage and
power. In order to compute the geometric intervals, equation (7) was numerically
integrated using the Adams-Gear algorithm. The approximation given in expres-
sion (3) was not evaluated. The results of one of the simulations are presented in
Table 2. Simulations were also carried out with two covariates, one continuous
and the other binary. Again, the likelihood-based and the geometric intervals
had good coverage and power properties, whereas the Wald interval behaved
poorly.

8. Concluding remarks. In this paper, we have discussed reparametriza-
tions based on geometric considerations. Two of these, based on the 0 geometry
and on the ¢ geometry, are easy to implement. Geodesic normal coordinates in
the 0 geometry have a natural and appealing statistical interpretation, and Wald
confidence regions in these coordinates appear to have good coverage and power
properties. The ¢ geometry measures local curvature near the mle. Its statistical
properties remain to be investigated. However, confidence regions based on this
geometry have good properties. We note that the procedure described in this
paper for the construction of confidence regions consists of transforming Wald
regions from a canonical coordinate system, the geodesic coordinate system,
which is unique for a given geometry. Thus, like the likelihood-based regions,
these confidence regions are parametrization invariant, whereas the Wald region
and the approximation based on (3) are not. This is of particular relevance to the
example considered in the paper. For a binary covariate, the assignment of a 1 or
0 to one of two exposure groups is entirely arbitrary. With an additive relative
risk, a change in the assignment corresponds to a nonlinear transformation of the
parameters. Thus, while the likelihood-based and the geometrically constructed
regions are invariant under the choice of assignment, the Wald region and the
region based on (3) are not.

A few words on the relationship among the connections defined here and those
defined by Amari (1982), Kass (1984) and Lauritzen (1984) are in order. The
exponential or 1 connection on # space is not usually viewed as a Riemannian
connection. However, it is a Riemannian connection when 8 space is endowed
with a constant inner product. In fact, Efron’s (1975) computations of the
curvature in the single parameter case may be viewed in this way: To compute
the curvature at f,, pretend that 8 space is endowed with the constant inner
product 2, , and then compute the geodesic curvature as usual in Euclidean
geometry. An alternative point of view as in Amari (1982) and Lauritzen (1984)
leads to the definition of “geodesic curvature” in a non-Riemannian manifold.
This involves measuring lengths in a metric that is not compatible with the
connection.

Now, there are two different ways in which connections, and therefore
geometries, can be induced on B space. First, the ¢ connection and the 0
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connection may be induced via the pull-backs of the appropriate inner products
as done in this paper. Convex combinations of these connections then give rise to
a one-parameter family of geometries on B space. Second, a one-parameter
family of connections may be constructed on B space via the log-likelihood
function as in Amari (1982). This construction is equivalent to considering B
space as an embedded submanifold of 4 space and projecting the a connection of
0 space onto B space via the Fisher information matrix as suggested by Lauritzen
(1984). The 0 connections defined in these two ways are identical, although the
other connections are, in general, different. In addition to the a geometries, it
seems natural to consider the ¢ geometry described in this paper. This geometry,
based on G, is simply the geometry that the B space inherits from the 6 space
viewed as a Riemannian manifold with constant inner product =, . Since, for the
maximum likelihood estimate B, inference usually proceeds via the Fisher
information matrix at f,, it seems natural to study the curvature in terms of this
constant metric on 6 space.

In normal theory regression with known covariance, the 0 geometry and the ¢
geometry obviously are identical. Further, the tensor T' involves the derivatives
of the information matrix (this can be seen by examining the second term on the
right-hand side of (4)), and thus is zero. It follows that all geometries coincide.

Reparametrizations of single parameter curved exponential families were
systematically investigated by Hougaard (1982), who showed that parametriza-
tions with various desirable properties could be obtained as solutions to differen-
tial equations, and that in the normal family, it was possible to find a single
parametrization with all these properties. This work was extended to the
multiparameter situation by Kass (1984). Our approach here is somewhat differ-
ent in that we exploit the fact that both the ¢ geometry and the 0 geometry in
space are Riemannian with the appropriate metric. This facilitates the computa-
tion of the Riemann-Christoffel symbols and the geodesics in 8 space.

The 0 geometry of 6 space has another interesting property. Let I(4,, 6,) be
the information “distance” between 6, and 6,, and consider the constant infor-
mation surfaces about a fixed point 6,, 1(6,,0) = constant (see Efron (1978)).
Then, in the 0 geometry, these surfaces are totally umbilical submanifolds of 6
space. That is, at any fixed point of these submanifolds, the second fundamental
form has only one distinct eigenvalue or, in other words, all principal curvatures
are identical. Thus, this submanifold has sphere-like properties in analogy to the
constant information “circles” considered by Efron (1978). An appropriate gener-
alization of expression 4.4 of Efron (1978) can likewise be given. These issues will
be discussed elsewhere.
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