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STANDARDIZED LOG-LIKELIHOOD RATIO STATISTICS FOR
MIXTURES OF DISCRETE AND CONTINUOUS
OBSERVATIONS

By J. L. JENSEN

University of Aarhus

When the log-likelihood statistic is divided by its mean, or an approxi-
mation to its mean, the limiting chi-squared distribution is often correct to
order n~%2, Similarly, when the signed version of the likelihood ratio
statistic is standardized with respect to its mean and variance the normal
approximation is correct to order n~3/2, Proofs for these statements have
been given in great generality in the literature for the case of continuous
observations. In this paper we consider cases where the minimal sufficient
statistic is partly discrete and partly continuous. In particular, we consider
testing problems associated with censored exponential life times.

1. Introduction. In this paper we shall be concerned with likelihood ratio
statistics for situations where the minimal sufficient statistic is partly discrete
and partly continuous. Discussing first the case of a one-dimensional parameter,
we let w be the usual likelihood ratio statistic

w=2{10) - 10)},
where [ is the log-likelihood function. Letting R be the signed version,
R=+w,

with the sign determined by 6 — 0, we shall be interested in standardized
statistics of the form

w
(1) YT TH B/n
and
R—-B/Vn
2 R’ = ,
) J1+1/n(B - B?)
where
B
Ew=1+—+ Oo(n=3%)
and
B 1
ER = ﬁ + O(;)

In recent years there has been considerable interest in these standardized
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statistics, and for a large class of problems with continuous variates it has been
shown that the standardizations improve the chi-squared and normal approxi-
mations such that the error is of order n~3/2; see Chandra and Ghosh (1979),
Barndorff-Nielsen and Cox (1984), McCullagh (1984), Barndorff-Nielsen (1986)
and DiCiccio (1983, 1984). These approximations may be summarized by stating
that the distribution of R has the expansion

(3) P(R < 1) = 0(r) = T-0(r) ~ 53-r9(r) + O(n"5")

For a curved exponential family with continuous variates the proof of (3) is
based on the following two parts. First an Edgeworth expansion is derived for
the distribution of the minimal sufficient statistic, which is valid to order n~3/2,
Next R is replaced by its Taylor expansion in terms of the minimal sufficient
statistic, and using this Taylor expansion the Edgeworth expansion is trans-
formed to give an expansion for the distribution of R, see Chandra and Ghosh
(1979) and McCullagh (1984). That the terms of order n='/2 and n~! take the
explicit form given in (3) is based on the fact that certain relations exist between
the coefficients of the Edgeworth expansion for the minimal sufficient statistic
and the coefficients of the Taylor expansion of R in terms of the minimal
sufficient statistic. The case of an exponential family of order one is very
illustrative and another instance of such relations may be seen in Jensen (1986).

When the minimal sufficient statistic is partly discrete and partly continuous,
the formal Edgeworth expansion of its distribution is no longer valid to order
n~32, say. We can therefore not use the method outlined above to obtain the
result (3). Instead we shall obtain an expansion of the distribution of R
conditioned on the discrete part and then integrate out the conditioning vari-
able. The use of a conditional argument to establish an Edgeworth expansion is
not new. This approach has been extremely successful when dealing with linear
rank statistics, see, e.g., Albers, Bickel and van Zwet (1976), Bickel and van Zwet
(1978) and Does (1983). The main difference in the problems encountered here
and in the above-mentioned papers is that in the conditional distribution, that
we consider, the mean does not tend to zero in probability. Because of this it is
not possible to write the conditional expansion as a main term, which does not
depend on the conditioning variable, and a number of smaller terms. Conditional
expansions have been considered in the literature recently, both for the case
where the conditioning variable is continuous [Does, Helmers and Klaassen
(1984)] and where it is discrete [Hipp (1984)].

In Section 2 we prove a result that will enable us to establish (3) in the most
simple ii.d. cases. We shall prove an Edgeworth expansion for the one-dimen-
sional statistic

‘/_ liX liK
ngnl i’nl il

where (X, K,),...,(X,, K,) are i.i.d. with X and K both one-dimensional, X
is a continuous variable and K is a lattice variable. Here g(x, r) is a sufficiently
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smooth function of two variables. As an example we consider observations from
an exponential distribution with fixed censoring time T. The variate X is then
the censored life time and K is the indicator function for the event that the
observation is censored. In Section 2 we also discuss the possibility of obtaining
the result (3) in more general cases. The general cases cover both multi-dimen-
sional parameters and testing problems with nuisance parameters. In Section 3
we find the coeflicients 8 and B appearing in (3) for the case of varying censoring
times and also for a two-sample problem involving a nuisance parameter. Finally,
in Section 4 we give a numerical example. '

2. Proof of the validity of the expansion. In this section we obtain an
Edgeworth expansion for the one-dimensional statistic vng(XX,/n,XK,/n),
where X and K are both one-dimensional and K is a lattice variable with
minimal lattice equal to the integers. We make the following assumptions.

ASSUMPTION A.
@) EX = 0, Cov(X, K) = (,,1, ';;') with o2 > 0 and |p| < 1.

(i) E(e™) < o0 and E(|x|%™®) < o0 for —7, < 7 < 7, with 7,> 0.
(iii) For some d > 0 we may for all ¢ > 0 find a § < 1 such that for |{| > c,
|7] < d and all s
|E(eitX+('r+is)K) | < SE(eTK).
(iv) The function g(x, r) is four times continuously differentiable for (x, r) in
a region containing (0, ), where p = EK.
(v) 08(x, r)/ax|(o,p) # 0and g0, p) =

Let ¢ (it, 7 + is) = E{exp[itX + (7 + is)K ]} and define the cumulants vy,,, =
Ykm(T) by
1 9™ y(it, 7+ is)
Ykm(T) = ik+m atk ds™

0,0)
In the following we let 7 be the saddlepoint in the second variable determined by

(4) You(7) =1
We first prove the following expansion which is of the mixed Edgeworth-sad-
dlepoint type [Barndorff-Nielsen and Cox (1979)].

LEMMA 1. There exist constants c, and c, such that
P( (11.) [ ZX V/—Ym( )] <z|K = r)
6) =)+ = la()e(e) + a(r)e(2)

LB (2) + ) + A)OE)] + 05,
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for || < ¢, and with 6| < 1. Here w*(T) = Yy — Y&/Yoz and the other coeffi-
cients may be obtained by following the guidelines of the proof.

PrRoOF. Define
v(it, T+ zs)

H(t:s) = =000

From Bartlett’s (1938) representation of a conditional characteristic function we
find, after shifting to the conjugate distribution determined by ,

E(e#0/WXX|K = r)

—isr—ity,o+w?t? /2,

_ pitino—t/2 f_":'; H(\/_ ‘/_ " / % )n
(6) =eitﬁvlo—w2t2/2{1 f[fqrﬁ aH(u/‘/E s//_) (% %)n—lds]
—m

[l ) o]

The expansion (5) is now obtained by a standard argument from (6) via a Taylor
expansion of In H(t,s) and the use of Esseen’s smoothing theorem [Esseen
(1945)]. The Taylor expansion is used for |f| < c; and |s| < c,, say. For |f| > ¢,
the characteristic function is bounded by the use of assumption A(iii) and a
similar bound applies for |s| > ¢, due to the lattice character of K. O

From Lemma 1 we may obtain an expansion of the conditional distribution of
Vng(x, K) given that K =r. Without loss of generality we assume that
dg(x, n)/0x|y > 0. Let in the following

d*g(x,r)
gk(") = T

b
Y10(7)

where 7 is determined by (4).

LEMMA _2; There exist constants c3, ¢, and c; such that the probability
P(/ng(% K) < w|K = r) has the expansion (5) with z given by

) r 1 N\ w r

1) z=u &s( ) 2y 2|2 wgz( )) ___gs( )
2\/— gl(r) &(r)

2 6 g(r)
Here |0] < 1,

|ue|*

\/T_l3

w — Vng(v,(7), r)
(8) u=
w(7)g(r)
and the expansion holds for |u/ Vn| < ¢, and |r — p| < c;.
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Proor. We want the probability of the set

9) g('Ylo + %y, ") — 810, 1) < %(w - ‘/;g(YIO’ r)),

where y = Xx,/Vn — Vny,,. From the conditions A(iv) and (v) we find that
the left-hand side of (9) is strictly increasing in y/vVn for |y/Vn| < ¢z and
|r — | < c,, say. Taylor expanding we obtain for |u/ Vn | < cg, with u given in
(8) and ¢4 suitably small, that the set (9) includes

1
(10) 09\/'7 < ;y < z,

with z given in (7). Furthermore, the remaining part of the set (9) is contained in
the set |y/w| > co/n which, according to (5), has probability of order O(n~%2).
The result of the lemma now follows from (10). O

Before integrating the conditional expansion given in Lemma 2 with respect to
the distribution of K we put v = yn(r — p) and expand (7), (8) and the
coefficients in (5) in powers of n~ /2, Let in the following g, =
a**mg(x, r)/(dx*dr™)|q, ) A careful analysis of the error term gives the
following expansion,

P(Vng(z K) < wik = r)

1 1
(11) = ‘1’(?) + ﬁQl(w’D)¢(£) + ;Q2(w,v)<p(§)

0
+ 3c6 Z |w|k|0|l,

Vo k+i<e

for |v/Vn | < ¢, with ¢, and c, suitable constants. Here

£ = [w— (g100/0 + g0)0] /(8101 - *)

and Q,, @, are polynomials of degree 3 and 5, respectively. From Lemma 2 the
validity of (11) is established for |{/Vn | < cg, say. From the magnitude of the
terms in (11) this, however, implies that (11) is valid for all £.

We may now show our final theorem.

THEOREM 1. The formal Edgeworth expansion of the distribution of
Vng(z, K), as defined in Bhattacharya and Ghosh (1978), with O(n™1') terms
included is uniformly valid to order o(n™1).

PROOF. The expansion (11) is only valid for |v/Vn| < c,. However, when
integrating with respect to the distribution of v we use (11) for all o. This is
because the probability P(|v| > c¢;yn) = P(|K — p| > ¢,) is exponentially small
in n, see Petrov (1975), and so by Holder’s inequality E|v|*1{|o| > c;/n ) is also
exponentially small.
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Since the right-hand side of (11) is a smooth function in v with bounded
derivatives we obtain from the results of Gétze and Hipp (1978) that we may
replace the distribution of v by its formal Edgeworth expansion when integrat-
ing (11). Since w* appears in the error term of (11) we may use the resulting
expansion for |w| < dlogn thus giving an error of order O(n~%%(log n)®).
Furthermore, the same expansion shows that P(|lw| > d log n) =
O(n~*?(log n)®), for d sufficiently large, so that the expansion may be used for
all w.

It is a trivial matter to check that the expansion obtained here is identical to
the formal Edgeworth expansion. However, it also follows directly from the way
the formal Edgeworth expansion is obtained, see Bhattacharya and Ghosh
(1978), and the fact that we could replace the distribution of v by its formal
expansion above. O

Let us now return to expansions on the form (3) for the signed version R of
the log-likelihood ratio statistic. As explained in the introduction we only have
to establish the validity of the formal Edgeworth expansion for R in order to
obtain (3). This we may do from Theorem 1. As an example we consider
observations x,..., x,, from an exponential distribution possibly censored at the
fixed time T. If the mean of the exponential distribution is ! the log-likelihood
function, I(9) is ‘

i6) = (n— K)nd — 65 x,,

where K .= YK, is the number of censored individuals. The signed version R of
the log-likelihood ratio statistic becomes R = yng(% — ¢,/0, K ) where

¢)]}1/2sign(0y +(r=e ),

with ¢ =1 — e 7. It is easy to check the conditions in Assumption A, in
particular we have that dg(y, r)/dy|q ,-ory= 0/ \/;'17 # 0. The coeflicients 8 and
B in the expansion (3) are given in Section 3 below.

Let us now briefly discuss the case of exponential life times with varying
censoring time 7. We then have to extend the proof of Lemma 1 and the result of
Gotze and Hipp (1978) to the case of independent but not identically distributed
observations. For the case in hand this may be done if we assume that there exist
T, < T, and a > 0 such that the fraction of T, values between T, and T, is
greater than o for n > n, say.

Let us conclude this section by discussing general testing problems with a
partly discrete and a partly continuous minimal sufficient statistic. As mentioned
in the introduction the reason that an expansion of the form (3) exists in the
continuous case is that there are certain relations between the coefficients of the
Edgeworth expansion for the distribution of the minimal sufficient statistic and
the coefficients of a Taylor expansion of the likelihood ratio statistic. These
relations of course hold also in the partly discrete case using the formal

0y +
1+ln(iy

g(y,r>=ﬁ{oy+¢—(1—r)
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Edgeworth expansion. What we have seen in the proof above is that by going via
the conditional argument the results obtained from the formal expansion actu-
ally hold. This is based on the result given for example in Gitze and Hipp (1978)
that the mean of a sufficiently smooth function f(x), where x is a standardized
sum, may be approximated to the required order by replacing the distribution of
x by its formal Edgeworth expansion. If therefore it is possible to obtain a
continuous expansion of the distribution of the likelihood ratio statistic in the
conditional distribution given the discrete part, as in (11), the final expansion (3)
should be generally true. Furthermore, in order that the conditional expansion
exists in exponential models, it seems that the only requirement is that the
problem is not degenerate. By this we mean that the main term of the Taylor
expansion of the likelihood ratio statistic should not be entirely in terms of the
discrete part of the minimal sufficient statistic but should also include the
continuous part, see assumption A(v) above.

The above discussion covers both multi-dimensional parameters and problems
with nuisance parameters. An example with a nuisance parameter is given in the
next section where we consider a two-sample problem. Another quite special case
is given in Jensen (1984) where the pure birth process is considered. Here the
discrete part, i.e., the number of births, acts as an approximate ancillary
statistic, and an expansion similar to (3) exists both in the conditional distribu-
tion given the number of births and in the marginal distribution.

3. Approximations for the one-sample and two-sample cases. In Sec-
tion 2 we showed that an expansion of the form (3) holds for censored exponen-
tial life times with identical censoring times and we also discussed more general
situations. However, the detailed discussion of Section 2 is not needed in order to
derive the bias correction 8 and the Bartlett adjustment B. We now derive these
coefficients for the one-sample and two-sample situation, respectively, and with
varying censoring times 7.

The Bartlett adjustment may be obtained by using the method given in
Lawley (1956). For this we need no more than the means of the first four
derivatives for the log-likelihood function. For the one-sample case we find that

B= A;2{1A4 — (Ag), + (7\2)2} - 7\53{15—2>\23 — 2X5(A,); + 2(7\2)?’}

4
(12) , 2
= i{_l_ + ﬂ _2& +2_;}’
Yol6 Yo Yo 0

where

)\i=E(%dZ‘(9?)) =(-1)"(i-1 .%E(_’L;_If)
=(-1)"7G- 1)!?,

(A), = %
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and
12 1 1n )

(13) Yo=1-=Xe ", ¢, ==20Te ", y,=—=3(0T)) e "
n 1 n 1 n 1

In the two-sample case we consider a sample of size n, from a censored
exponential distribution with mean 6~! and a sample of size n, with mean
(x0)~'. We then want to test the hypothesis x = x, with § a nuisance parame-
ter. The new Bartlett adjustment takes the form
14) B " B n B,- B

= — + — —_ R
( n,o1T 0t 0
where n = n, + n, and B, and B, are the Bartlett.adjustments from the two
samples, respectively, calculated from (12) [with 6 = x,0 in (13) for the second
sample]. The term B, is also on the form (12) but with the y; coefficient given as

a weighted mean of the coefficients from the two samples, i.e.,
n, n,
¥, = ;‘Pli + ‘;‘Pzi,

with obvious notation. When using the Bartlett adjustment (14) we replace the
nuisance parameter § with its estimate under the null hypothesis.

The bias term may also be calculated from the formulas given in Lawley
(1956). For the one-sample case we find

1
ey
with the sign of the likelihood ratio statistic determined by 6 — §. And for the
two-sample case we find after some calculation and with «; = n,/n,

B = 7181 — Y28,
and B; is the coefficient (15) for sample i and
y, = ( 2% 10¥90 )1/2(1 + a;¥;o ) l
' Yo¥io ¥

Q;
Hereéth; sign of the likelihood ratio statistic is given by the sign of X — x, with
X = 0,/0,. ;

(15) B= (24’0 - 34’1),

4. Numerical examples. In this section we discuss two numerical examples
for the one-sample case, one to show that the approximations work satisfactorily
for moderate sample sizes, when the probability of censoring is small, and one to
give a warning when the probability of censoring is high.

In Bartholomew (1963) an example is considered with 20 survival times
subject to censoring at T = 150 hours. During that period 15 items fail with the
following life times, measured in hours: 3, 19, 23, 26, 27, 37, 38, 41, 45, 58, 84, 90,
99, 109, 138. A test for the hypothesis § = 1/65 is wanted and under this
hypothesis the bias term 8 from (15) and the Bartlett adjustment B from (12)
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become
B=—-0217, B =0417.

To check the approximations to the mean of the likelihood ratio statistic w and
the signed version r and to check the adequacy of the distributional approxima-
tions 100,000 samples of the size 20 were generated. For the mean of R we find

ER = B _ —0.049, ER= —0.051 + 0.003,

Vn
where here and in the following to gives the standard deviation of the estimate
ER based on 100,000 samples. For the mean of w we get

B —_
Ew=1+ P 1.021, Ew = 1.024 + 0.005.

In both cases we see that the theoretical approximations to order 1/n are good.
Next, we compare the approximation to the distributions of r, r’, w and w’ with
the estimates of the exact distributions as obtained from the simulation. For a
few selected values of u,, where ®(u,) = a with ® the normal distribution
function, we compare a, P(R < u,) and P(R’ < u,) in the first table below. In
the second table we compare 2a, P(w < u2) and P(w’ < u?). All the values in
the tables are given in percentages.

Approximation 1.0 2.5 97.5 99.0

r 1.17 £ 0.03 296 £ 0.05 97.72 +£ 0.05 99.10 + 0.03

Exact ;. 974003 2541005 9755+ 005 99.02 + 0.03
Approximation 95.0 97.5 99.0
Bxact W 94761007 97361005 9892 % 0.03

w’ 94.99 £ 0.07 97.52 + 0.05 99.00 + 0.03

We see that an improvement is obtained by using the standardized statistics and
that the approximations are satisfactory.

For the second example we let again the sample size be n = 20 and choose the
censoring time 7T such that under the null hypothesis the probability of censor-
ing is p = 0.9. For the mean of R and w we find

- F
T

B —_
Ew=1+ o= 1.084, Ew =1.136 £ 0.005,

ER = 0.100, ER = 0.125 + 0.003,

which show some discordance. The table of the distribution functions becomes

Approximation 1.0 2.5 97.5 99.0

R 1114003 190+0.04 8795+ 010 100.00 + 0.00

Exact b, 1727003 240+ 005 100.00 £ 0.00 100.00 + 0.00
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Approximation 95.0 97.5 99.0

Exact w 86.05 + 0.11 98.88 + 0.03 99.70 + 0.02
w’ 86.75 + 0.11 98.89 + 0.03 99.76 + 0.02

We see now that serious problems occur in the upper tail of the distribution of
the signed likelihood ratio statistic R. The reason is, however, quite simple. The
exact distribution of R is bounded to the right and has a point probability—in
the simulations at v2nT —corresponding to all the observations being censored.
This point probability is in the above example 12.2 percent and so the upper
10-20 percent of the distribution cannot be well approximated by a continuous

distribution.
For a more thorough simulation study with small samples from an exponential
distribution with censoring see Schou and Vath (1980).
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