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ROBUST SPECTRAL REGRESSION!

BY ALEXANDER M. SAMAROV
Massachusetts Institute of Technology and University of Lowell

This paper addresses the problem of linear regression estimation when
the disturbances follow a stationary process with its spectral density known
only to be in a neighborhood of some specified spectral density, for instance,
that of white noise. Rather than trying to adapt to a small unspecified
autocorrelation, we follow here the robustness approach, and establish the
extent of the regressors and disturbance spectra interaction which require
serial correlation correction. We consider a class of generalized least-squares
estimates, and find the estimator in this class which optimally robustifies the
least-squares estimator against serial correlation. The estimator, when consid-
ered in the frequency domain, is of a form of weighted least squares with the
most prominent frequencies of the regression spectrum being downweighted
in a way similar to Huber’s robust regression estimator.

1. Introduction. Consider the linear regression model
(1) yt = x;B + ut,

where the disturbances u, follow a second-order stationary process with Eu, = 0.
Let p(s) be the correlation function, Eu,u,, = o%(s), and denote the corre-
sponding normalized spectral density f(A). Using methods developed in robust
statistics, we address here the problem of the efficiency of linear (in the y’s)
estimators of B when the spectral density f(A) is unknown but belongs to a
neighborhood of some specified spectral density fo(A).

The asymptotic efficiency of the ordinary least square (OLS) estimator rela-
tive to the best linear unbiased estimator (BLUE) is known to depend upon the
degree of variation of the disturbance spectral density f(A) at the frequencies
where the spectral mass of the regressors x, is concentrated [Grenander and
Rosenblatt (1957)]. In order to write the asymptotic variances in terms of
spectral distributions we will assume, following Grenander and Rosenblatt (1957),
that the regressors satisfy the following asymptotic conditions:

G.l. d}, =X} x}, > owasn— o, j=1,..., p. Denote D, the p X p diagonal
matrix with elements d;,, j = 1,..., p;

G.2. lim, , x% /d% =0, j=1,..., p; '

G3. lim, |, Y7 0%;xp 116/ Bjn@pn = Tin(8), Jsk=1,...,p; §=0,1,2,...;

G.4. The matrix R(0) = {r;,(0), j, k= 1,..., p} is nonsingular.
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100 A. M. SAMAROV

Conditions G.1 and G.2 mean that the amount of information contained in
each regressor grows with n, but not too fast. Condition G.3 requires that
asymptotically the x,’s have the second-order properties of a vector-valued
stationary time series. It turns out that the asymptotic behavior of the x,’s,
relevant to the problem in question, can be described in terms of the correlation

sequence R(s) = {ry(s), j,k=1,..., p} or its Fourier transform, the regression
spectral distribution M(A):
(2) R(s) = [ e™ aM(n),

-7

where M(A) is a Hermitian p X p matrix whose increments, M(A,) — M(}A,),
Ay > Ay, are nonnegative definite. The asymptotic covariance matrix of the
standardized OLS estimator D,(by; g — B) can then be written as

(3) V(, bows, M) = 27R0) [ f(A) dM(X) R~1(0),

provided f(A) is continuous on [—m, #]. (Integration over frequencies A will
always be performed over the interval [ —«, 7] and the integration limits here
and in the rest of the paper will be dropped.)

We will also assume that M(A) is absolutely continuous with the spectral
density m(A), which is a natural assumption in many areas of application, for
example, in economics. [The spectral density m(\A) is a p X p Hermitian non-
negative definite matrix. Since the components of the x’s are real, the real part
Re(m(A)) of m(A) is a symmetric nonnegative definite matrix the components of
which are even functions of A. The imaginary part Im(m(})) is a skew-symmet-
ric matrix whose components are odd in A; see, e.g.,, Hannan (1970, pages
34-38).] In this case, the OLS estimates will be fully asymptotically efficient only
if f(A) takes not more than p different values [Grenander and Rosenblatt
(1957)]. This rather unrealistic behavior of the noise is unlikely to be satisfied in
practice, and as a result, the efficiency of the OLS estimator relative to the
BLUE can be very low, cf. Watson (1955), Hannan (1963, 1970), Bloomfield and
Watson (1975) and Rao and Griliches (1969). In fact, the example given later in
this section shows that even small departures from a flat spectrum for the noise
may inflate the variance of the OLS estimator by arbitrarily large amounts.

Following the usual robustness approach we will assume that the spectral
density of the noise f, although unknown, belongs to some neighborhood of the
specified spectral density f,. The most important case is when fy(A) =1/2w,
when the disturbances at the “central” model are uncorrelated. More specifi-
cally, we consider the gross errors type neighborhoods [Huber (1981)], Z( f,): we
say that f € % f,) if

(4) f(A) = (1 = &)fo(A) +ep(X),

where 0 < & < 1 is a small number and p(A) is an arbitrary symmetric probabil-
ity density on [—w, #]. We will consider only normalized spectral densities f,
Jf(A) dX = 1, so that the variance o? of all time series with f € % f,) will be
the same, and we will assume without loss of generality that ¢ = 1. Neighbor-
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hoods of this type have also been considered by Hosoya (1978) and Franke (1981)
for the problem of robust prediction of time series.

The neighborhood % f,) corresponds to the additive contamination of the
disturbances of the central model:

(5) u;=e;+ v,

where Ee,= Ev,= 0, Ee?=1—¢, Evl=¢, {e,} and {v,) are stationary time
series, independent of each other, with normalized spectral densities f,(A) and
P(A), respectively. For fy(A) = 1/2# this means that an arbitrarily correlated
but weak (small ¢) noise is allowed to be added to the uncorrelated errors e,.

Other types of neighborhoods: L,-neighborhoods or those with certain degree
of smoothness of the perturbation density p(A) in (4) could be used instead of
%( f,) in the context of the minimax problem considered in the next section.

To illustrate the lack of robustness of the OLS variance consider the case of
one centered regressor (p = 1) and the neighborhood of the white-noise spectral
density #(1/2x). It is easy to see from (3) that

(6) sup V(f,bois,m)=1—e+2me sup m(A),
fex(1/2m) : Ae[—a, 7]

while V(1/27, by, g, m) = 1. So, if the regressor spectral density has sufficiently
high peaks, the asymptotic variance of the OLS estimator can be made arbi-
trarily large by even very small departure from uncorrelated errors. If, on
the other hand, m(A) is relatively flat, V( f, by g, m) will not be much inflated
by small perturbations of f. In the extreme case, when m(A) =1/2a,
sup; V(f, borss1/27) = 1, and the variance does not change with f at all.

This simple example shows that the OLS variance may be very sensitive to
departures from the uncorrelated errors. In the next section we introduce a class
of generalized least-squares (GLS) estimators which can robustify OLS against
these departures. Before proceeding to the next section we will briefly comment
on the more common, adaptive methods of serial correlation correction.

Most of the known methods of dealing with serial correlation are adaptive in
the sense that they first use the OLS residuals to estimate, parametrically or
nonparametrically, the unknown autocorrelation, or spectrum, of the dis-
turbances, and then use these estimates to obtain the improved (and, hopefully,
asymptotically efficient) regression estimates. The parametric adaptation meth-
ods, such as the most often used fixed order autoregression models, may some-
times do more harm than good when compared with OLS, if the specification of
the disturbance process is not quite correct [see, for example, Engle (1974) and
Newbold and Davies (1978)]. The nonparametric spectrum estimation approach,
proposed by Hannan (1963, 1970), leads to the asymptotically efficient estimates
but, as most nonparametric methods do, requires a large sample size.

Instead of trying to adapt to a small unspecified autocorrelation, we follow
here the robustness approach, and establish the extent of the regressors and
disturbance spectra interaction which require serial correlation correction. We
also propose the frequency domain weighted least-squares estimators which
optimally robustify the OLS estimators against that autocorrelation.



102 A. M. SAMAROV

Admittedly, the approach we propose may require nonparametric estimation
of m(A). However, unlike the nonparametric adaptive estimation, we can es-
timate the regression spectrum directly from observations and not from regres-
sion residuals, and m(A) has to be estimated only at the “high energy” frequen-
cies which is usually easier. Also, the spectrum m(A) may be known either
completely or up to a finite-dimensional parameter.

2. Results. We consider a class of GLS estimators defined with a continu-
ous, positive function g(\A), even on [ -, 7], as follows:

— S P
(7) b, = (X'G'X)'XGY,

where X is the n X p matrix of regressors, Y is the n vector of response y, and
the n X n Toeplitz matrix G = {g;_;, k, j = 1,..., n} corresponds to g(A):

(8) gt=fg()\)cost}\d}\, t=0,+1,+2,....

Notice that the estimator b, does not change when g(A) is multiplied by a
nonzero constant.

The class (7) is quite rich: b, is the OLS estimator when g(A) = 1/27, and
the BLUE when g(A) = f(A). Most of the linear estimates with one form or
another of serial correlation correction can be represented in the form (7) with
either G or g estimated from the data. Rozanov and Kozlov (1969) [see also
Ibragimov and Rozanov (1978)] studied the estimates (7), writing them in the
spectral form, and obtained the asymptotic covariance matrix of b, under the
assumptions that the regressors satisfy Grenander’s conditions G.1-G.4, and that
f and g be positive, continuous and even on [ —, 7]. Assuming also, as we do,
that the regression spectrum is absolutely continuous their result can be written
as follows:

lim D,Cov(b,)D,

n— o0

9) _on| (™) lff(x)m(x)dx(/m(x) . '
¢ g*(\) g(A)
= V(f,g, m),
[Notice that since f and g are even we can replace m(A) in (9) by its real part,
which is nonnegative and even in A. We therefore assume from now on that the
matrix m(A) is replaced by its real part without changing the notation.]

Here D, is the p X p diagonal matrix defined in the condition G.1, and
regularity of the matrix [[m(A)/g(A)]dA follows from the condition G.4 and
the positiveness of g(A). Of course, for g(A\) = 1/27 and g(A) = f(A), (9) gives
the well-known expressions for the asymptotic covariance matrices of OLS [see
(3)] and BLUE, respectively, cf. Grenander (1981). It is not difficult to show, as
in Ibragimov and Rozanov (1978), that for any g

(10) V(f,8.m) = V(f,f,m) = 2w( / f((f)) ) :

in the sense that V(f, g, m) — V(f, f, m) is a nonnegative definite matrix.
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When the regression spectral density m(A) is assumed to be continuous, as is
the case in this work, the continuity of f and g assumed in (9) could be
somewhat relaxed. This will not, however, be pursued here, rather we will
consider neighborhoods of the form

(11) Z(fo) = %(fo) N C,
with f, € C*, where C is the class of continuous functions on [~#, 7] and C*
the class of positive functions in C.

As a measure of efficiency we will use a natural scalar summary of the
asymptotic covariance matrix V(f, g, m), the asymptotic mean square error
(MSE), possibly weighted with a nonnegative definite matrix A4

w(#V(f 8 m),
where tr(-) denotes the trace of a matrix. The matrix 4" provides a certain
degree of flexibility in designing the minimax estimates, allowing us, for example,
to minimize only the variance of certain coefficients or particular linear combina-
tions.

Our goal is to find the estimator in the class defined by (7), or equivalently,
the function g € C*, which has the highest efficiency uniformly over f € 2 f,),
ie., to find g* € C* such that

(12) sup tr(A'V(f,g*,m))= inf sup tr(AV(f,g, m)).
fe2(fo) 8€C” fep(fy)

REMARK. Note that for f € 2( f,) we have from (4) and (9):

(13) V(f, g m)=V(f, g m)+eV(p,g m)— V(fy,g m)),

where the matrix difference in the last term is, in fact, the change-of-variance of
the estimator b, with respect to spectral or autocorrelation perturbations [cf.
Ronchetti and Rousseeuw (1985)]. We have therefore

sup tr(AV(f, g, m))

= tro(N'V(fy, 8, m)) + esuptr(N(V(p, g, m) — V(f,, & m))),

where p € C*, [p(A)dA = 1, and we may call the upper bound in the last term
in (14) the spectral (or serial correlation) change-of-variance sensitivity (SCVS).
The SCVS represents the largest possible variance increase resulted from the
misspecification of the disturbance correlation structure. As we saw in Section 1
the SCVS of OLS may be arbitrarily large if m(A) has high enough peaks.

Following the bounded-influence regression approach, see, e.g., Krasker and
Welsch (1982), we may set an upper bound to the SCVS, and, subject to that
bound, try to minimize the MSE at the central model f,, i.e., the first term in
(14). This approach, together with the optimal choice of the bound, is taken in
Theorem 1 below.

In order to formulate the solution of our minimax problem we have to
consider the following matrix equation:

. 1 ¢
(15) D= /m()\)mln( fo(A)’ tr/2(#' D 'm(X\)D?)

dA,
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where D is a p X p matrix and ¢ > 0. Equation (15) always has the trivial
solution D = 0 for all ¢ > 0, and the positive definite solution

(16) D, = f;:é:; dn,
for
(17) c2cp= max ﬂ(trl/z(./VDo‘lm(A)D(;l) /f(N)),

where D, is invertible because of condition G.4 and f, € C*. Denote c,;, > 0 the
smallest value of ¢ for which (15) has a positive definite solution. Using a fixed
point theorem argument, as in Proposition 1 of Krasker (1980), we can show that
Crmin < Co» 1.€., a positive definite solution of (15) exists for some ¢ £ ¢,. Clearly,
any such solution D(c) for ¢ < ¢, satisfies the inequality

(18) D(c) < D,,

i.e.,, D, — D(c) is nonnegative definite. We show in the Appendix that
tr A

(19) c

min = )
f tr'/2 (N m(N)) dA
and for p = 1 the equality in (19) is attained.

THEOREM 1. Let conditions G.1-G.4 be satisfied and the regression spectral
density m(\) be a continuous (elementwise) matrix. Then

inf sup tr(AV(f,g, m))
8<CT fe2(fy)

= min sup tr(ANV(f,gX, m))

€2 Cmin fEPfo)

1
(20) =27 min [802 +(1- e)/min{cz, W

xtr(/VD“lm(A)D‘l)}fO(}\) d?\}
= min J(c¢), say,

€= Cpyin

where

a>0,

tr'/2(#'D'm(A)D71) )

(21)  g2(A) = amax| fo(),
and D = D(c) is the solution of (15).
The proof of Theorem 1 is given in the Appendix.

Several comments on this result are in order. We note first that the optimal
function g*(A) in (21) coincides with f(A) everywhere except at the frequencies
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where the regression spectral density m(A) has high enough “peaks.” At those
frequencies it follows m(A). Notice also that if ¢ > ¢,, then g*(A) = af,(A) and

(22) gigJ(c) = J(co) = 27(ec2 + (1 — e)tr( 4Dy 1)),

which means that we may restrict minimization over ¢ in (20) to the interval
[cmin’ co]-

In the most important case of uncorrelated errors at the central model, i.e.,
fo(A) = 1/2a, the right-hand side of (22),

(23) e _max ﬂtr(aVR“(O)m()\)R‘l(O)) + (1 - &)tr(#R7Y(0)),

is the maximum MSE of the OLS estimator when f € £(1/2). Expression (23)
shows that the maximum increase in MSE due’ to small departures from
uncorrelated errors depends on the size of “peaks” of m(A), i.e., of the maximum
of the trace in (23). If m(A) is relatively “flat,” i.e., the regressors do not have
very prominent frequencies, the increase in MSE will not be significant, and the
OLS estimator may be safely used. If, on the other hand, the power of regressors
is highly concentrated near certain frequencies, the increase in MSE may be very
large. '

The function g}, suggested in Theorem 1, defines the GLS estimator which
will keep the maximum increase in MSE, i.e., the SCVS, under the bound ¢ while
minimizing the MSE at the central model, and the theorem also offers the
method for selecting the best c¢. In the next section we give an example
illustrating the choice of ¢ as a function of ¢, and showing that the gain in
efficiency of our minimax estimator over OLS may be significant.

The next theorem gives the complete solution of our minimax problem and
specifies the least favorable spectral density in Z( f,).

THEOREM 2. Let the conditions of Theorem 1 be satisfied. Then for suffi-
ciently small € > 0 the game with the loss function,

Q(f,g) = t(#V(f, g, m)),
has a saddle point ( f*, af*) with any a > 0,
inf sup Q(f,g)= sup ieng+ Q(f,g) = Q(f*, af*),

8C" fea(fy) €2l &
where
' tr'/2(#' D" 'm(N)D1)
@) 0= (- omax| 10, . ,
D = D(c*) is the solution of (15), and c* is such that
(25) [r(ydr=1.

The value of the game is
(26) Q(f*, af*) = 2n(1 — e)tr(#' D).
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The proof is given in the Appendix.

It turns out that it is easier to interpret and compute the minimax estimator
b+ suggested by Theorem 1 if we Fourier-transform the data and consider the
frequency domain approximation of b,..

Applying the discrete Fourier transform (DFT) to the matrix of regressors X
and the vector of responses Y we have

X=0X, Y=9v,

where @ is the n X n unitary matrix with (%, j)th element given by
1/ Vnexp{i2wkj/n}, k, j=0,1,...,n — 1. The estimator b, given in (7) can
then be written as

(27) b, = (X*QG'0*X) "' X*QG 10,

where A* is the transpose of the complex conjugate of A. Now, it is well known
[see Grenander and Szeg6 (1958)] that for large n the matrix QG ~'Q* is nearly
diagonal with the elements 1/g(27k/n), k = 0,1,...,n — 1[g(A) is assumed to

be periodically extended outside [ —, 7]]. More precisely, it can be shown using,
for example, results from Grenander (1981) and Davies (1973) that

Dn( b, — Eg) — 0 in probability as n — oo,
where
-1
- . 1 , . 1 ;
(28) bg= X dlag ——_Z;k—- X X d1ag -W Y
A=) A
n n

and D, is defined in G.1. The estimator I~)g has, therefore, the same asymptotic
covariance matrix as b, but is easier to compute from a given function g(A).
The estimator b, is of the weighted least-squares form with the weight w, =
1/[g(2wk/n)] being applied at the frequency A, = 27k /n. In particular, for the

optimal function g*(A) and f(A) = 1/2x, we have the optimal weights

c

27k ’
2w tr1/2(/VD‘1m(T)D_1)

(29) wy = min|1,

where we have chosen the factor a in (21) so that the maximum weight is 1. We
can clearly see now that the optimal estimator downweights the frequencies
where the regression spectral density m(A) has “high peaks,” i.e., where the
trace in (29) is large.

The computation of the estimator Eg involves the estimation of the regression
spectral density m(A) from the x-data and the iterative solution of the matrix
equation (15).

3. The case of p=1 and an example. In the case of one centered
regressor,
(30) Y= Bx,+ uy,
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the interpretation and computation of the minimax estimator b,. considerably
simplifies. Set p =1, fo(A) =1/27, #'=1 and denote p = cD/27. Then (15)
can be written as

(31) = cfm()\)mm( m ) dA.

Solving (31) for ¢ and plugging it in (20) we have

inf  sup V(f,g,m)
gec” fepa/2m)

2 — &) /m(\)min M
(32) ) u[27re+(1 ¢)fm(\)mi (1, 7 )d?\]

(fm()\)min(l, —ﬁ%) dx)2

where p_;. = min,/m(A) and p,,, = max,/m(X), as follows from (17), (19)
and the comment after Theorem 1. It follows now from Theorem 2 that the
minimum in (32) occurs at p = p* such that [cf. (25)]

mes{A°} + i*f\/m(}\) d\ = %

(here A = {A: ym(A) < p*} and mes{-} is the Lebesgue measure on [—, 7])
and is equal to

’
Fmin <= Bmax

1-—¢
fm(A)min(l, ‘/n—:—(—’;\)—) d\ ’

(1-e) (‘/E(T))

f*(A\) = —y, max 1 "

Q(f*,af*)= V(f*’af*’m) =

with

To give a numerical example we consider (30) with an autoregressive carrier

= px,_, + e,, where {e,} are iid., independent of {u,}, with the first two

moments 0 and 1, respectively, and |p| < 1. The normalized spectral density of x,
is

1-p?
27(1 + p? — 2pcosA)

m(A) =

We have now, using (6), for the OLS estimator

1+p
sup  V(f,borg,m)=1—¢+
fe®1/2m) 1-0p

€.
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The following table gives the maximum variances of the OLS and minimax
estimators for several values of ¢ when p = 0.9, together with the values of p*:

€ 0 0.01 0.05 0.1 0.15 0.2
OLS 1 1.18 1.9 2.8 3.7 4.6
minimax 1 1.125 1.425 1.67 1.86 2
p* 1.73 1.2 0.7 0.5 04 0.3

Notice that for ¢ = 0 the minimax estimator coincides with OLS while for
¢ = 0.15 its maximum variance is half that of OLS.

APPENDIX

PROOF OF (19). Left multiply (15) by #°D~! and take the trace of both sides:

c

1
f(A)’ tr2(#' D 'm(A\)D 1) dA.

(A1) tr//'= ftr(./VD‘lm(A))min
Denoting by 4%/ and m'/?(\) the symmetric, nonnegative definite square
roots of the matrices 4" and m(\), we have
|te(# D 'm(N))| = |tr(H2D " mA(N)ym!2(A)41/2) |
< tr'2(mV¥(N) D" WV 2D Im/2( X))
Xtr2( NV 2m 2 (N )m 2 () H2)
= trV}( W'D~ 'm(N) D~ )tr* (N m(N)),

where we used the inequality |tr(AB)| < tr'/?(A’A)tr'/?(B’B) which is a form
of the Cauchy—Schwarz inequality. Now (19) follows immediately from (A.1) and
(A2). O

(A.2)

When p = 1 (15) becomes

1 cD
A3 . D= |m(A)min s dA,
(49) Jm®) (fo(7\) Mm(x))
where all quantities are now scalar. Consider the function

RPN
fo(A) ’ vm(?\) ) ’

for ¢ > ey = | //ym(A) dX. For ¢ > ¢, F(0,¢) =0, dF(D,c)/dD =1 —
ef/m(A\)d\/A#"< 0, for small enough D >0, and F(D,,c) >0, where D, is
defined in (16). Therefore, by the mean value theorem there exists D = D(c) in
the interval (0, D,] such that F(D(c), c) = 0.

F(D,c)=D - /m()\)mm(
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ProoF OoF THEOREM 1. Denoting

H0) = iy ( (f (%) A)_lm()\)(fz_(%))_l)’

we can write
tr(HV(p, g,m)) = 27 [p(A)E()) dA.
We now use the fact that

(A.4) sup fp(A)k()\)d}\— sup k(M)

—ﬂSXSﬂ
fPO‘) d)\ 1

for & € C, to rewrite (14) as follows:

sup tr(AV(f, g, m))
fegze(fo)

= (1 — e)tr(A#V( fo,g, m)) + 2me sup k(X).

—7<ALZ®

(A5)

Denoting now %, = {g € C*, sup_, _»<,k(A) < ¢®} for some ¢ > 0 we can,
using (A.5), reduce the original minimax problem to a constrained optimization
problem:

inf sup tr(A#V(f,g, m))
8<C" fe2(fy)

=inf inf sup tr(AV ,m
(A.6) c gea, feng’fo) ( (f,g,m))

— inf [(1 — &) inf tr(HV(fy, g, m)) + 2wsc2].
c 8E€ERB,

Now to solve the minimization problem in (A.6) we consider the following
problem:

Problem A. Minimize

(A7) f tr(A R (AN)R(A)) fo(A) dA
over p X p matrix-valued functions A(A), subject to
(A.8) sup tr(A A (A)R(A)) < c?,
o —m<A<w

(A.9) [BOOR(N) dA =1,

where I is the p X p identity matrix and the p X p matrix B(A) = m/%()) is
the symmetric, nonnegative definite square root of m(A).
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It is easy to check that minimizing (A.7) subject to (A.9) is equivalent to
minimizing
(MNP B(A)PY
A.10 h(\) — N h(N) - ,
(A.10) ft[( () ,m) (() fo(k))]fo(A)dk

with arbitrary p X p matrix P. Now the minimum of (A.10) subject to (A.8) is
achieved [cf. Lemma 2 in Samarov (1985)] at

. 1 c
(A.11) R*(A) = B(")Pm‘n( fo(A)’ tr'2( W P'm(N)P) )

For A*(A) to be a solution of Problem A it should satisfy (A.9), which means that
the matrix P should satisfy the equation

(A.12) Pl = [m(\)min| — ¢

' = [m(\)min I(N) w2 (#Pm(N)P)

which coincides with equation (15) with P = D~L,
Denoting now

o,

(A.13) hy(A) = B(A) (jmm dk)_l,

O]
we have
tr(AV(f,, 8, m)) = 2wftr(./i/h§(>\)hg(}\))f0(}\) dX,

~and h () satisfies the constraints (A.9) and (A.8) if g € &, where %, is defined
in (A.6). It is now easy to check that if

tr'/2( 4D~ 'm(\)D) ) .
b a > b

(A19) £(0) - &2 = amax| (), c

and D! = P, the h (\) from (A.13) coincides with the optimal A*(\) given by
(A.11) and (A.12). We have, therefore, that g*(A) solves the minimization
problem in (A.6). The claims of Theorem 1 are obtained by inserting gX*(\) in
(A6). O

PROOF oF THEOREM 2. It is sufficient to show that

e oo ol )
gy o S QD) QU af)—%t(m( ) ) )

< sup inf Q(f,g).
feP(f,) 8€CY

Observe first that from (10)
1
sup inf Q(f,g)= sup Q(f,af) =27 sup tr( ( ——d}\) ),
fe2ly) 8<C 12 fo) Fe (o) / f(A)
and the second inequality in (A.15) follows since f* € Z( f,).
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Choose now in Theorem 1 ¢ =1 — € and ¢ = ¢* such that

(A.16) fg;'i()\) d\ = 1.

Since g} is continuous in ¢, such c¢* can be chosen close enough to ¢, for
sufficiently small ¢ > 0, so that ¢* > c,;,. For this choice of @ and ¢ we have
g* = f* € #(f,) where f* is defined by (24). It is now straightforward to check
using (A.16) and (15) that J(c*) = Q(f*, af*), where J(c) is defined in (20), and
the first inequality in (A.15) follows. O
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