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ASYMPTOTIC DISTRIBUTIONS OF PREDICTION ERRORS
AND RELATED TESTS OF FIT FOR NONSTATIONARY
PROCESSES

By 1. V. BaAsawa
La Trobe University

Limit distributions of prediction errors when the parameters are esti-
mated are obtained for a general class of nonstationary processes that
includes supercritical branching processes and explosive autoregressive
processes as typical examples. The estimated prediction errors are used to
construct new tests of fit whose limit distributions are also derived.

1. Introduction. Properties of prediction errors where the predictors are
obtained by minimizing the mean square error are studied extensively in the
time series literature. This work is predominantly concerned with stationary
type processes. The effect of parameter estimation on the asymptotic prediction
error variance is known to be negligible for a large class of stationary time series
models (see, e.g., Box and Jenkins (1976), page 267). More recently, Fuller and
Hasza (1981) (also see Fuller (1976), page 382) have obtained large sample
approximations for the prediction mean square error for nonstationary autore-
gressive processes. It is clear from their work that the estimation error cannot be
ignored asymptotically in the case of the nonstationary processes.

Basawa and Koul (1979) introduced a class of regular nonergodic processes
that includes the nonstationary autoregressive processes and the explosive
branching processes as special cases. This class is a generalization of Le Cam’s
(1960) locally asymptotically normal family. The monograph by Basawa and
Scott (1983) summarises the main results on asymptotic inference for such
processes and also contains several references. One of the topics not considered
previously in the literature on inference for nonergodic processes is that of the
behaviour of prediction errors when the parameters are estimated. Another topic
of considerable interest is the problem of testing goodness of fit of a model when
the primary aim is to use the proposed model for prediction. In this paper we
consider both these problems and present some preliminary results.

In Section 2 we derive, under some broad assumptions, the limit distribution
of the estimated prediction error vector of one-through-p-step ahead predictors
for the nonergodic processes. Section 3 is concerned with a test of fit, which is
based on the estimated prediction errors. Finally, the results are applied to
explosive autoregressive processes and supercritical branching processes, both of
which are typical members of the nonergodic family. Further applications,
mainly to general linear and log-linear models, are discussed elsewhere (Basawa
(1986)).
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2. General formulation and limit distributions of prediction errors.
Let X(n) = (X,,..., X,) denote a vector of sample observations from a stochas-
tic process X = {X,, X,,...} defined on a probability space (R, #%, F),
6 € Q c R*. Let P} denote a restriction of P, to (R", #"), and p,(-; 8) the
corresponding density with respect to some product measure p" on (R", #™). We
suppose that the family of densities { p,(-; 0)} is regular nonergodic in the sense
of Basawa and Koul (1979). More specifically, it will be assumed that conditions
(2.5)-(2.7) of Basawa and Brockwell (1984) are satisfied. See also Basawa and
Scott (1983) for a discussion of asymptotic inference problems for such processes.

If §, denotes the maximum likelihood estimator of 6, one can establish the
asymptotic normality of én using an appropriate norming. For strictly non-
ergodic families this norming needs to be a nondegenerate random variable for
the limit distribution to be normal. Let {§,(0), j=1,..., k},n=12,..., bea
sequence of positive random variables, £, (0)1 oo almost surely as n — oo, and
denote the (%2 X k) diagonal matrix with diagonal elements {£,(8), j = 1,..., k}
by £,(0). Suppose £,(0) is chosen such that

(2.12) £72(0)(6, — 8) ~4 N0, A(9)).
If 4, is some other estimator such that '
(2.1b) £/2(0)(8, - 8) ~a Ny(0, A*(0))

one can show, under regularity conditions, that the matrix A*(0) — A(0) is
nonnegative definite. See Heyde (1978) for a proof of the latter result for &£ = 1.

Let Y(p) = (X110 Xphgr-e s Xn+P)T denote the vector of p future observa-
tions we wish to predict using the sample X(n). It is well known and is easily

verified that the choice Y,( p), where

(2.2) Yy(p) = E(Y(p)#™),
minimizes the mean squared error of prediction when 6 is known. When the
parameter § is unknown, it is a usual practice to replace 6 by a suitable
estimator 6, in the optimal predictor Y,(p). The question as to how well Y;(p)
approximates Y,(p) in the sense of mean squared error of prediction leads to an
important practical as well as theoretical problem. If e,(8) denotes the predic-
tion error when the optimal predictor Y,(p) is used, i.e., e,(8) = Yo(p) — Y(p),
we have e (0,) = e, (0) + (Y5(p) — Y,(p)). In some nonergodic cases (see, e.g.,
the branching process application in Section 4) the optimal prediction error e,(6)
does not remain bounded in probability for any fixed p as n — oo. It is therefore
necessary to use an appropriate norming for asymptotic considerations. A
natural norming is the diagonal matrix 7,(6) whose diagonal elements are given
by
(2'3) nnj(a) = Varo(Xn+j|‘@n)’ j= 1""sp'
We therefore consider the standardised prediction errors,

n71/2(0)e,(8,) = n7*(8)e,(6) + 17 /2(0)(Ys( p) — Yu(p))

= U,(6) + V,(6).

(24)
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It follows from the properties of the conditional expectations that U,(8) and
V,(8) are uncorrelated for every n. Whereas U,(8) represents the prediction error
when 8 is known, V,(6) is a contribution to the prediction error due to the
estimation of 8. Consider the following condition:

U.(0) 3.(6) 0
(C1) (Vn(0)) a N ((O) ( 0 22(0))) under (B,),

where 3,(0) is a nonsingular matrix. The matrix I,(6) is permitted to be
singular.
One may use a linearization technique to simplify V() further as follows:

@5 0 =0 A2 ee)er o, -o)

where the norming matrix £,(8) is such that (2.1b) holds, and 6. is a (p X 1)
random vector such that for some 0 <u <1, 6*=0+ u(d, — 0) Note that
(dY¥y(p))/d8 is a (p X k) matrix. Now consider the condition

(C2) There exists a (p X k) nonrandom matrix G(6) such that, under P,

[,

() =.“g;lﬂ(ﬂ) = G(0) + 0,(1).

Under condition (C2) and the assumption (2.1b) we have
(2.6) V() =4 N,(0,G(8)A*(8)G™(9)),
and hence I,(0) in (C1) is determined by

3.(0) = G(6)A*(6)G"(6).

We can now state

THEOREM 2.1. Under (C1), (C2), and (2.1b) we have
1,%(8)e,(6,) =4 N,(0,3(8)), where
(2.7) 3(6) = 3,(8) + G(8)A*(6)G(6).

REMARKS. = As one would expect from the decomposition in (2.4), the asymp-
totic prediction error variance ¥(6) given in (2.7) is the sum of two terms, the
first one being the asymptotic prediction error variance corresponding to the
optimal predictor Y},( p) when @ is known, and the second term representing
the effect of parameter estimation. As remarked earlier (after (2.1b)) we may
minimize 3(6) by choosing the maximum likelihood estimator 0 in place of §, in
Theorem 2.1. Thus, we can state the corollary:

COROLLARY 2.1. For regular nonergodic processes, and under the conditions
of Theorem 2.1, we have

as. var( 1, /%(0)e,(9, ) — as. var(n; 2(8)e,(f ) = 0.
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Proor. If 2y(0) = 2,(0) + G(0)A(8)GT(8), where A() is defined in (2.1a),
and if J(0) is given by (2.7), we have () — Jy(8) = 0 in the sense that the
matrix difference is nonnegative definite. This result essentially follows from
Heyde’s (1978) result mentioned after (2.1b), viz., A*(8) — A(8) = 0. O

REMARKS. (i) The predictor Yy(p), where én is the maximum likelihood
estimator (or its equivalent), can be said to be asymptotically efficient in the
sense that the asymptotic mean squared error (i.e., the mean squared error
corresponding to the limiting distribution) is minimized. For the ergodic type
processes such as the stationary autoregressive processes discussed by Box and
dJenkins ((1976), page 267) it turns out that G(6) = 0. Therefore, the predictor
Y; (p), where 8, is any estimator (not necessarily the efficient estimator such as
the maximum likelihood estimator) satisfying (2.1b), would be asymptotically
efficient in the above sense since ¥(0) = 3,(9), indicating that the effect of
estimating @ is asymptotically negligible. For the explosive processes, however,
G(0) does not vanish and it is necessary to use an efficient estimator of 6 in
Y,(p) in order to obtain an efficient predictor.

(ii) We have used the random normings £,(0) and 7,(8) in (2.1a), (2.1b) and
(2.4) in order to obtain the asymptotic normality of the estimated prediction
errors in Theorem 2.1. If we use appropriate nonrandom normings instead it can
be shown that the limit distribution in Theorem 2.1 is a variance mixture of
normals and hence nonnormal. Also, in general, the use of random norming
usually results in a loss of information. However, in the type of applications
considered in this paper, the random normings used can be shown to contain
asymptotically negligible information as compared with 6, and e ( (fn). One of the
reviewers and the associate editor have noted that this phenomenon can be
related to the concept of asymptotic ancillarity.

(iii) As mentioned above, if a nonrandom norming is used for (0; —0) in
(2.1a), we obtain a nonnormal distribution. However, the (unconditional)
asymptotic optimality of é,, (with a nonrandom norming) can still be established
as stated in Theorem 3 of Basawa and Scott ((1983), Chapter 2). The latter result
replaces the usual asymptotic variance criterion used in limiting normal experi-
ments by a more general criterion in terms of the limiting probability of
concentration or a limiting risk function. The asymptotic (unconditional) opti-
mality of e,(f,), using a nonrandom norming can similarly be established by
replacing the asymptotic variance criterion in Corollary 2.1 by a more general
criterion such as the probability of concentration.

3. A goodness of fit statistic for prediction. In this section we propose a
new goodness of fit statistic based on the prediction errors. The test is useful
mainly for the situations where prediction is the primary aim of fitting a model
to data. We suppose that we have a sample of N = n + p observations X(N) =
(Xyyeees Xy Xpi1y-05 X0 p) = (X(n), Y(p)), with n large and p relatively
small, and fixed. First, pretend that the observations Y( p) are not available. We
can then estimate (or predict) Y(p) from the sample X(n) by Y, (p), assuming
for the moment that the parameter value 6, is known under the null hypothesis.
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Since the vector Y( p) has in fact been observed we can now directly compare the
estimates Y}, (p) with the observed Y(p) and compute the standardized predic-
tion errors U, (6) =, 2(00)(Y,,, (p) — Y(p)). Consider the null hypothesis

(38.1) H,: X(N) has the joint density pg(-; 6,).
The statistic proposed for testing H, is the quadratic form
(32) Q= U, (6,)37(65)U,(6)-

If we assume that (cf. (C1) in Section 2)
(3.3) U,(8,) =4 N,(0,3,(6,)) under (Py),

where ¥,(0,) is a nonsingular matrix we can deduce directly the null limit
distribution of Q2 as

(3.4) Q7 ~a4 x*(p)-

In order to study the asymptotic power properties of @° one can consider a
sequence of alternative hypotheses of the type

(3.5) K2: X(N) has the joint density p°(-; 6,(h)),

where 0,(h) = 0, + I,'/%(6,)h, 1,(6,) is a (k X k) nonrandom diagonal matrix
with diagonal elements 0 < I, (6,)1 o as n — co. Assume that the following
conditions (C3) are satisfied:

©@0) g, )( ”(”’) £.(8) = G(8,) + 0,(1),
6:2(u)

under P, (h) for all 4,0 < u < 1, where 6*(u) = 8, + ul,;'/*(8,)h, and £,(6) is a
certain random matrix; see, e.g., (C2) in Section 2.

(C3)(ii) "';1/2(00)(?0,.%)(17) - Y( p)) ., ( AV
£.(0,)I,(6,) w(6,)
where J,(#) is a (p X p) nonrandom nonsingular matrix, Z is a (p X 1) vector

of independent N(0,1) random variables, W(6,) is a (k X k) diagonal matrix
whose diagonal elements are a.s. positive random variables independent of Z.

under (P,,n(h)),

THEOREM 3.1. Under conditions (C3) we have, under (P 1),

Q: ] x?k(pa A),

where A = KTWY%(0,)G™(8,)3 {(8,)G(8,)W*/%(6,)h. The random variable x2%
is such that, conditional on A = \, it has a noncentral chi-square distribution
with p degrees of freedom and the noncentrality parameter A.



PREDICTION ERRORS FOR NONSTATIONARY PROCESSES 51

PrRoOF. We give an outline of the proof only.

U(8) = . /%(6,)(%s(P) — ¥(p))
= 17/2(86)( Yo, P) = ¥(P)) = 128V, — Ya(P))
o(P)

(
=0 0 B ) = ¥(0)) =m0 T (6.8 =0
(%

= 1,2(8,)(Yo,m((P) — Y(p))

{ 1/2(00)( B ))M )5;‘/2(00)}8/%(00)1;1/2(00)h.

Condition (C3) then gives
(3.6) Un( 0y) —a Np*( - G(ao)Wl/z(oo)h’ 21(00)) under Pan(h),

where conditional on W(6,), N* is a p-variate normal distribution. The result
in Theorem 3.1 now follows readily from (3.6). O

REMARKS. For A = 0 note that Theorem 3.1 gives the null distribution in
(3.4). For nonergodic type processes, the nonnull limit distribution is a mixture of
noncentral chi-square, with the distribution of W(6,) acting as the mixing
distribution. We assume G # 0 in the preceding theorem to avoid triviality.

Consider now the composite null hypothesis when 6 is unspecified:

(3.7) H,: X(N) has the joint density p5(-; 6), 8 € Q.
To test H, we propose the statistic
(3.9) Q. = en(8,)n,2(6,)37(G,)m: (G, ) en(6,),

where it is assumed that I is nonsingular. From Theorem 2.1 and standard
asymptotics it follows readily that

(3.9) Q, —4 x*(p) under (Pp), for any 8 € Q.
The limit distribution of @, under Hj is thus given by (3.9).

4. Applications. In this section we present two applications, both of which
are nonergodic and explosive. We give the main arguments and the results, only
omitting some details.

ExaMPLE 1. Galton-Watson branching process. Let X = {X,, X,,...} be a
Galton-Watson branching process with X, = 1, and p and ¢ denote the mean
and the variance of the offspring distribution, § = (u, 6%). We assume that the
process is supercritical, i.e., u > 1. Let E¢ = {w: X,(w) > 0, for all n} denote the
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set of nonextinction. Conditional on E¥, it is well known that X, — oo almost
surely as n — oo, and hence X is an explosive process in this sense. In what
follows all the limit results are conditional on E .

Since E(X,,, |2™) = p'X,,, t = 1,2,..., we have

A T
(4.1) Yy(p) = (,an, ,U.2Xn,..., n“’an) .

Since the predictor in (4.1) depends on 6 only through p we may assume initially
that o2 is known. However, the various norms used to obtain the limit distribu-
tions do depend on 62, and a consistent estimate of o2 will be needed for the
construction of the test statistic when o2 is unknown. We shall return to this
point later.

We propose to use the Harris estimate of p (see Harris (1948)) given by
fi, =2;X;/X7X;_,. Harris derived this as a nonparametric “maximum likeli-
hood” estimate without assuming any specific offspring distribution. The esti-
mate can alternatively be derived as a weighted conditional least square estimate
(see Basawa and Prakasa Rao (1980), Chapter 2) by minimizing D,(p) with
respect to u, where

D,(w) = T[(%, - B(x)@ )" var( X))

2
= Z{(Xj - HXj—l) /(Xj—102)}'
Taking £,(0) = 67 2L7X,_,, it is well known in the literature (see, e.g., Dion
(1974), Theorem 3.1) that
(4.3) £/%(0)(F, — 1) =>4 N(0,1) asn - oo.

Thus, (2.1b) is satisfied with A*(8) = 1.

If we assume that the offspring distribution is given by the power series
distribution, viz.,

P(X,=j)=aN/f(X\), Jj=0,1,2,...,a;>20,A>0,

and f(\) = E¥a,;N, it follows that (see, e.g., Heyde (1975)) the maximum
likelihood estimator i, of p, where p = EX, = A{d/dA(In f()))}, is identical
with the Harris estimate [, considered earlier. Consequently, at least for the
power series offspring distribution, {i, and {, in (2.1a) and (2.1b) are identical,
and A(0) = A*(0) = 1.

Returning to the general case we can verify that

W — 1) }

(4.2)

(4.4) M,,(0) = var(X,, |8") = °2X”{ (n—1)

Consider now the j-step ahead prediction error
Un](o) = n;jl/z(o)(“'an - Xn+j)

(4.5) X, ‘ '
=0,%0) L (v~ 2Z(n,))}, Jj=1,...,p,
=1
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where Z,(n, j), i=1,..., X, are independent and identically distributed ran-
dom variables each distributed as X;. Note that Z(n, j) denotes the jth
generation size of a new branching process started by the ith individual of the
nth generation of the original branching process. We have

(46) E{Z(n,j)} =p’ and var(Z(n,j)} =%/ (/- 1)/(p-1).
Using similar arguments to those in Dion (1974) we find, via (4.4)—(4.6), that
(4.7) U,;(8) »4 N(0,1), j=1,...,p.

The Cramér-Wold device then gives the limit distribution of the vector
Uf0)=(U,(8),j=1,...,p)5
(4.8) U.(8) =4 N,(0, 3,(0)),
where routine calculation yields X,(8) = ((0,(i, j))) with

W — 1\
w e >( "
w—1
Now consider '
(4.10) _ X, e (l‘ -1) 1/2§1/2(0)(ﬁj — I-‘j)
X, )\ -1 " " '
It is easily verified that
X,
(4.11) X, - (p—1) as.

Now, using (4.11), (4.3), and a well known convergence theorem (see Rao (1973),
page 385) it follows from (4.10) that, for j = 1,..., p,

(4.12) V,(8) =4 N(0, j2/ Y (p — 1)°/(n - 1)).
Finally, the Cramér—Wold argument gives
(4.13) V.(8) >4 N(0, 35(8)),

where 35(0) = ((05(3, J))) with

419) o, j) = 22w - D) (W - )W - 1)} 7 iz
Condition (C1) can then be verified using the Cramér-Wold device. It may be
noted that (C2) can be verified with G(8) being a (p X 1) vector with elements

(4.15) w2 - (-1 i=1,...,p.

In any case, we have obtained I,(#) directly in (4.14). Thus, the conditions of
Theorem 2.1 are verified for the branching process application. The predictor
Y;(p) is efficient in the sense of Section 2 for the power series offspring
distribution, since in this case 0 = 0 the maximum likelihood estimator.
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For testing the composite hypothesis Hy, where H,;: X = (X, X,,...) is a
branching process with mean 6 > 1 (6 unknown), we can use @, given by (3.8) as
a test statistic. When o2 is unknown it may be estimated by a consistent
estimate such as

(4.16) G2=n L{(X; = B X))’/ %)
1

The estimate (4.16) was suggested by Basawa and Prakasa Rao ((1980), Chapter
2) and is motivated by the expression D,(p) in (4.2) from which the estimate i,
was derived.

Suppose now that p, (> 1) is specified by the null hypothesis H, in (3.1).
Assume in particular that the offspring distribution is geometric on the set
{1,2,...} with mean p, The conditions (C3) can be verified with I,(6,) =
E,{£,(0,)} and W(f,) having an exponential density with mean 1. Theorem 3.1
then holds with G(6,) specified by (4.15) and W(4,) being a standard exponential
random variable.

EXAMPLE 2. Explosive autoregressive processes. Consider a kth order auto-
regressive process X = {X,, X,,...}, defined by

(417) X, — (0, X, ,+0,X, o+ ---+0,X, ,)=2,, n=12,...,

where {Z,} are independent N(0,1) variates, with X, =0 for 1 —p<n <0.
Consider the polynomial equation

(4.18) mk — (6,m* ! + G,m*~2+ .- +6,) = 0.

The process X will be stationary if the roots of the above polynomial equation
are all less than unity in absolute value. The prediction problem for the
stationary case has been studied extensively in the literature (see Box .and
Jenkins (1976)). We now consider the explosive case where we assume that there
exists a root B of (4.18) such that it is the largest of all the & roots in absolute
value, and |B| > 1. The remaining (k& — 1) roots are assumed to be less than
unity in absolute value. See Basawa and Brockwell (1984), Basawa and Koul
(1979) and Fuller and Hasza (1981) for discussions of various inference problems
for explosive processes.

For the above model with |8] > 1, it can be shown as in Basawa and
Brockwell (1984) that there exists a N(0,1) random variable Z(#) such that
\/(,82 — 1) B~"X, converges to Z(0) a.s. as n — oo, and consequently |X,| — oo
a.s. Consider

Yy(p) = (E(X,.8"),j=1,2,..., p)
= (y}l)’ YP2,..., Yo(p))’
where E(X,,, |#") = Y}/ satisfies the recursive relation

k
(4.19) Y= Y 6y,

i=1
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with Y{® = X, for § < n. In particular, for £ = 1, Y/’ = 6{X,. In the general
case (& > 1) the prediction error can be written in terms of the innovations Z as

(4'20) (Y;(j) n+/) Z (0) n+j— l(o)’ j= 1""’ b,
i=0

where from (4.17),
Zr(a) = Xr - (01Xr—l + 02Xr—2 + - +0er—k)'
The coefficients a;(8) satisfy the relations:
k
a,(0) - Osa;_s(0) =0, i=1,2,...,j—1,
(4.21) l( ) sgl 8%i 8( ) ’ J
al(0)=1, a(0)=0 fori<o.
See Box and Jenkins ((1976), page 128) for the details. Also, we have
J
(4'22) nn/(o) = Var( n+j|‘@ ) = 2(0)
i-0

where a,;(0) are determined by (4.21). For the first-order autoregressive process,
we have k£ =1,

‘ -1 2 021 -1
i=0

Now, for any k2 > 1,
(0) _n—1/2(0)(Y0(j)—Xn+j)’ j= 1’2,-”’])’
are correlated N(0,1) variables, and thus
(4.23) U,(0) —4 N(0, 3,(0)),
where 3,(0) = ((0(i, /) and
i1 21
(a20) 906 = T ai(0) { ¥ a%(o)}

=0 =0

-1/2, .

{’zla,(o)aj-m(o)},

=0
i<j,1<i,j<p.
For the special case k& = 1, we have

] 2l -1
0,(i, j) = 011-;( 7 , i<j,1<i,j<p.

Let 6, be the maximum likelihood estimate of # obtained as a solution of the
equation :

n
(4.25) Y X, (X, -6,X,_,—-—0,X,_,)=0, 1<i<k.

r=1



56 1. V. BASAWA

Taking £,,(0) = X2, 1 <j <k, it can be shown using Theorem 5.1 of Basawa
and Brockwell (1984) that the result in (2.1a) obtains with A(8) = ((a,{(9))),

1-8-2)"? .
(4.26) a,,(8) = {%} B2, 1<i,j<k.

Also, see Anderson (1959) for early work on this topic. For the special case 2 = 1,
we have a,,(8) = 62 — 1. It may be noted for k£ > 1 that the matrix A(f) given
by (4.25) is singular with rank unity.

From (4.20) we have

(@)
azz - 30 l 2% (0) nﬁ/z(o)l
) dai(6) )
(427) = —[i);() 36 Znvi- (0) + Z (0) o l
- [Jg; aaTi;a-)-Znﬂ'-i(o) - Jg ai(o)Xn+j—i_r], 1<r<k,

where a,(0) are determined by the difference equation (4.21).

Note that the first term on the right of (4.27) is a linear combination of a
finite number of independent and identically distributed (innovation) random
variables, and hence remains bounded in probability as n — co. We can check
(C2) (of Section 2) taking 1,,(0) = YiZla?(0) (free from n), £, (0) = X2 and

using the fact that ‘/( B%— 1) B"X, converges in probability to a N(0,1)
random variable Z(8). We finally get

-1/2

—1 —1

(428) £,,(6) = {Jz a(O)Bi(r, j)}{'z a?(o)} . ls<r<hisisp,
i=0 i=0

where

(4.29) B(r, j) = {sgn Z(9)} rll_l{r:o BrTirgITn,

sgn Z(6) stands for 1 and —1 for Z(8) > 0 and < 0, respectively. Note that we
have ignored the case Z(6#) = 0 in obtaining the preceding limit (in probability)
since P(Z(8) = 0) = 0. Thus, Theorem 2.1 holds with X,(6), A(8), and G(8)
determined by (4.24), (4.26), and (4.28), respectively.

For the special case k = 1, we have a,(0) = 6}, B = 8,, giving

1/2
(4.30) &,(6,) = { Y 6iB,(1, 1)}(02, 1) , l<js<p,

where B;(1, j) is given by (4.29) with B replaced by 6,. Thus, for £ =1,
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3(8) = ((o(i, 7)) in (2.7) is seen to be

0% -1

1/2
ot i) =G|+ (8=

x (02 — 1) 70 )(jo77Y), i<

(4.31)

We now consider the stationary case. For simplicity take &£ = 1, and assume
16,] < 1 for stationarity. Set ¢,(8) = n and 1, (0) = (8% — 1)/(6% — 1). It is
then easily verified that V,(6) in (2.5) converges in probability to zero since G(6)
in (C2) equals zero and Vn (0; — 8) is bounded in probability as n — oo. Thus, as
remarked in Section 2 for the nonexplosive ergodic case |8,| < 1, the second term
in (2.7) vanishes. Consequently, 3(#) is determined by the first term on the right
of (4.31) when |6,| < 1.

Returning to the nonstationary case, the results of Section 3 are directly
applicable. Consider the case £ = 1 and |8,| > 1 (explosive). The composite null
hypothesis (3.7) here is:

H: X is a first order Gaussian explosive autoregressive process
with the unknown parameter 6,, |6,| > 1.

The statistic @, with J determined by (4.31) will then have the limiting
chi-square distribution under H, (see (3.9)).

The statistics @2 in (3.2) can be used to test the simple hypothesis H,: X is a
first order Gaussian autoregressive process with a specified parameter 6, = 6,,,
|6,0] > 1. Conditions (C3) can be verified with W having a chi-square distribution
with one degree of freedom if we take £,,(0) = X? and I,(0) = 62"/(67 — 1).
The nonnull limit distribution in Theorem 3.1 then obtains.

Acknowledgment. My thanks are to the referees for helpful comments and
suggested improvements on an earlier version.
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