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In various settings, the observation of a stochastic process at a finite
number of locations leads to natural prediction and design questions. General
problems of this type are introduced and then related to specific areas of
application. A class of processes called G-MAPs is studied with reference to
their predictive and other behavior. These processes include many familiar
ones and, through being tied to Markov processes, allow a fresh view of
prediction. Among other things, G-MAPs stand as reasonably workable
possibilities for Bayesian priors in some complex contexts.

0. Introduction. The paper is concerned with problems of prediction and
design based on finite observation of a stochastic process. The central questions
are posed in Section 1 in an abstract way and include two formulations of
observations with error. Adoption of the general context is then supported by a
list of particular settings which are subsumed, together with some information
on the literature and applications which attend them. In this way we make
contact with problems which arise in the computer simulation of product
performance, in time series sampling and in geostatistics, for example.

In Section 2 some processes called G-MAPs are introduced as objects of
interest in such a study. Material given about them is borrowed in part from a
program of Dynkin (1980, 1984) intended to bring the theory of Markov processes
to bear on problems of mathematical physics. This is closely related to the work
on harness processes in Hammersley (1967) and Williams (1973) and the work of
Kiinsch (1979). The main theme of the presentation here, however, is dictated by
the prediction interests expressed in Section 1.

In Section 3, we consider prediction and design directly for G-MAPs, observed
with or without error. What emerges is a fresh perspective that stems from a
coupling of the observed process with a Markov process. Some technical assis-
tance derives from this connection, and there is the added prospect of determin-
ing designs empirically through simulation of the associated process. The main
thrust of the: paper though is to bring forward some models of stochastic
behavior over quite arbitrary sets. Section 4 touches briefly on the case of an
unknown mean, while proofs are deferred until Section 5.

1. Prediction and design. This section first fixes the notation and assump-
tions leading to general prediction and design questions at (1.1)-(1.4). There
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2 D. YLVISAKER

follows a discussion of some concrete settings in which these problems arise in a
natural way.

Begin with a set T of “sites” and let X be a Gaussian process indexed by T,
with EX = 0 and CovX = G. (Normality can be replaced by a second-order
assumption if the conditional expectations below are given their wide-sense
interpretation.) Let I'(X) denote a (normal) random variable determined lin-
early on X—such a variable will be given specific form, typically I'(X) = (X, dT,
for some appropriate integration.

The first problem is the following: given the values X, s € S for a finite set
S c T, form:

(1.1) (i) the conditioned process ESX = E(X|X,, s € S);

: (i) the conditioned variable EST(X) = E(I'(X)|X,, s € S).

Because of normality one can write, for each ¢t € T, (ESX), = ¥, . 5¢5(s)X,, say.
In conjunction with (1.1)(ii) notice that EST'(X) can be obtained from ESX
by regularization: EST(X) = T[(E®X). Thus if I'(X)= [X,dT, one finds
EST(X) =X, ,csX,/c5(s)dT,. The process X — ESX will be referred to as the
error process, I'(X — ESX) as an error variable.

ExampLE 1.1. Let T={1,2,...,N}and S={k+1,...,N}).If X and G
are partitioned in the usual way, ESX = (G5'G,,, I)’X,. Moreover, if T'(X) =
v’X, then EST(X) = y’ESX.

ExAMPLE 1.2. For another familiar setting, let X be a Wiener process on
T = [0, ) with S = {s},...,8,},0<s, < .-+ <s, < 1. Take I'(X) = [; X, dt.
Now ESX is a linear interpolation of the observed values of the process on S,
with (ESX), = X, for t>s,. By regularization one predicts I'(X) via the
trapezoidal rule EST(X) = [{(ESX), dt.

Two variants of (1.1) will be considered as well. In the first of these the
process X is observed with error. Formally, let ¢ be a white-noise process on T
which is independent of X. Now given X, + ¢, for s € S, S a finite subset of T,
form:

(1.2) (i) €5X = E(X|X, + ¢, s €9);

. (i) #5T(X) = I(6%X).

Going further, one may allow that the process X is observed with error and with
replication allowed. Suppose for this that {&)} is a sequence of independent
white-noise processes on 7' which are independent of X. Given X, + ¢!",...,
X, + &™) for s in a finite subset S of T form:

(1.3) () &°X = E[X|X, + &,..., X, + &™), s € S];

’ (i) &5T(X) = I(&£5X).
In (1.2) predictions are linear in the observations while in (1.3) they are linear in
X, + &), the average observation at's.

For a sample of limited size, it is natural to consider the design questions
which accompany prediction. Thus, corresponding to (1.1), determine S c T
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with |S| = n to minimize
(1.4) (i) the error process X — ESX;

' (ii) the error variable I'(X — ESX).
Evidently (1.4)(i) requires some notion of a small process, while an adequate
measure of size in (1.4)(ii) is ET'%(X — ESX), since the error variable is normal
with mean zero. Analogous design problems go with (1.2) and (1.3) in the manner
that (1.4) follows (1.1).

ExamPLE 1.3. Continue with Example 1.2, S € [0,1] and |S| = n. For (1.4)(ii)
take s; = 2]/(2n +1), j=1,..., n. An apparent answer to (1.4)(i) is s; = j/n,
J=1,..., n, since the error process is then composed of n 1ndependent and
1dent1cally distributed Brownian bridges.

A direct interpretation of X is that of a Bayesian model of a response
function on 7. If X is itself observable, then (1.1) represents an up-dated mean,
and the error process X — ESX measures the resulting indeterminacy. Similar
remarks apply to (1.2) and (1.3). Passage to (Bayesian) design at (1.4) suggests
proper planning of observation sites. Other ways to look at X surface occasion-
ally below.

Here then are some rather more specific settings for these problems. The
different contexts brought forward represent a personal view and literature
citations should not be thought of as in any way complete.

T is a finite set. Suppose first that X is observable but full observation is
deemed to be not feasible. A suggestive possibility of this kind is spelled out.

Let T = { —1,1}* and regard X as a measure of the performance of a product,
where performance depends on %k factors each of which has two levels. The
objective is to design for and predict unobserved performance. This set-up is
pertinent if one measures performance via computer simulation, for example.
Measuring actual performance in various environments promises error-prone
observations with replication possible and even desirable.

For the given T, functions of particular interest are the grand mean I'y(X) =
27*¥ X, and the rth order interaction terms

IV (X)—ZkZXs RN

With this notation X can be decomposed as

X, = ZXS 12* f[(l + s,tj)}
[ZX + Z (ZXS )t + Y (ZXsshsjz) L

h#ER " 8

+(ZXSS1 sk)tl tk]

= o(X)+ ZF(X)t + Z F _]Z(X) v +F1 ..... k(X)tl st by

J= h#*R
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Then specific design problems select S to minimize one of, for example,

() max o ET?

1.5 s
(1.5) (ii) m?xE(Xt—ESX,)z.

AX — ESX), for some a, >0,

.....

If instead X is observed with error, then ESX should be replaced by £5X or
&5X. In the last instance this becomes a more standard analysis of variance
set-up. Though nothing has been done here with modelling the error variance, we
are close to Bayesian specifications as in Lindley and Smith (1972).

T is an interval of R'. Papers by Kimeldorf and Wahba (1970a, 1970b)
empbhasize the form of Bayesian response prediction when X is observed with or
without error.

Problems connected with direct observation of X might be viewed as time
series sampling with the goal of regression estimation, signal detection, etc. The
design aspect of predicting one or more linear functionals was treated in an early
series of papers by Sacks and Ylvisaker (1966, 1968, 1970a, 1970b), Wahba (1971)
and Hajek and Kimeldorf (1974). Some improvements are found in Eubank,
Smith and Smith (1981, 1982). A more general approach to sampling questions is
taken in the work of Schoenfelder and Cambanis (1982), Cambanis and Masry
(1983) and Bucklew and Cambanis (1984). There is, as well, an excellent survey
article by Cambanis (1984).

By allowing X to be a finite-dimensional process observed with error, one
meets the general area of Bayesian design for linear models, see for instance Pilz
(1981) or the recent work of Chaloner (1984) and the references therein. At the
same time infinite-dimensional processes X have been taken as models for
regression prediction and design, with an eye towards model robustness issues.
After Wahba (1978a), some examples are Steinberg (1985), Wecker and Ansley
(1983) and Sacks and Ylvisaker (1985).

The challenging question of design to make the error process small, (1.4)(i), is
relatively unexplored. Some results are in Speckman (1976) for the case of an
autoregressive X. Some recent work in complexity has dealt with related prob-
lems, viewing the distribution of X as a measure on a suitable Banach space. A
survey of this is in Wozniakowski (1985).

Other T’s. A natural progression carries one to questions of sampling over
intervals of higher dimensional space, but technical issues abound in this.

For direct observation of a process X with the goal of designing for optimal
prediction of linear functionals, there is some information on convergence rates
in Ylvisaker (1975) and Wahba (1978b). Rates of convergence for stratified or
random sampling designs can be found in Tubilla (1975) and Schoenfelder (1982).

In a noteworthy paper, Micchelli and Wahba (1979) consider a general T, and
provide lower bounds on the behavior of designs at (1.4)(i) and (1.4)(ii) in terms
of certain eigenvalues. This is then related to observation of specific processes
on R<
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In the direction of applications, there is an entire literature associated with
the technique of Kriging in earth and hydrosciences. Then X may be viewed as a
Bayesian model of, say, ore content of a field indexed by T. Interest focusses on
the prediction of an average content or of the field itself following a set of
observed measurements. Access to this literature is available in the survey of
Journal (1983) or in the recent paper by Yakowitz and Szidarovsky (1985).

2. A class of models. Throughout the section X is to be a Gaussian process
indexed by the set T, it has mean zero, covariance G, and the finite-
dimensional distributions of X are assumed to be nonsingular. Certain processes
are singled out and various facts will be established about them. Especially,
Dynkin’s program which aims to couple Gaussian fields with Markov processes is
studied in the context of the problems of Section 1.

Here are the processes of immediate interest.

DEFINITION 2.1. X is called a G-MAP on T if for any ¢ € T and finite subset
Sof T,

(2.1) ESX,= Lpi(s)X,,

where p3(s) > 0 and LpS(s) < 1.

Note in this connection that ESX, must already be a linear combination of
the given values X, s € S, as at (1.1), that the nonsingularity of X makes the
representation (2.1) unique, and that the notation now emphasizes the fact that
these coefficients form a (sub-) distribution on S. The name given such processes
is an acronym for Gaussian, Markov-associated process, and this link will come
out below.

From (2.1) one sees readily that the correlation function of a G-MAP is
nonnegative by conditioning on one-point sets S. The main working relation is
the one which follows repeated conditioning:

(2.2) pi(s) = ZUp J(u)pi(s), ScU.

Further consequences of (2.1) are extracted in the first theorem.

THEOREM 2.1. If X is a G-MAP on T, then:

(i) (Heredity) X isa G-MAPonT’, T’ c T.

(i) (Translation) — X, and X, — X,, t # s, form a G-MAP on T for any
seT.

(iii) (Conditioning) The error process X — ESX is a G-MAP on T — S for any
finite Sc T.

(v) (Decomposition) T is a disjoint union of sets T, so that X on T, and X on
T, are independent G-MAPs if a + B, and if s,t €T, for some a, then
G(s,t) > 0.
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A family of independent normal random variables provides a trivial example
of a G-MAP. General examples are produced in the following way. Start with a
continuous time Markov process Z on the state space T. Assume Z has a
symmetric transition function P; and a finite-valued Green’s function:

(2.3) G(s, t) = f0°°P£(s, t) dt.

It turns out that G is nonnegative definite on 7' X T so there is a Gaussian
process X indexed by T, with mean zero and covariance G.

THEOREM 2.2 [Dynkin (1980)]. The Gaussian process X with covariance G
given by (2.3) is a G-MAP on T, and p{ is the first-hit distribution of Z on S
starting from state t.

It should be noted that Dynkin refers to X as the Gaussian field associated
with Z. There are related results on Harness processes in Williams (1973),
tracing back to Hammersley (1967), and on Gaussian Markov random fields in
Kiinsch (1979). In these papers the focus is rather on the construction of
processes given by conditional specifications and on their Riesz decompositions.
In particular the L, or normal aspect present here does not correspond to the
deepest part of that theory.

For considering specific versions for examples of the general set-up above,
observe that finiteness of the Green’s function means transience of Z. Transience
can be effected by killing an otherwise recurrent process and this will be a
common feature below. Then view Z as a (sub-) Markov process on T or,
equivalently, as a Markov process on T'U {A}, where A is the absorbing death
state. For the process X, the death point A corresponds to a variable X, = 0. By
insisting that X, be observed, the measures pJ can be made into probability
measures: for A € S, set

(2.4) p3(s) =p3(s), fors#A, p3(A) =1- Y p3(s).

s#A

For A € S € U one has
(2.5) pi(s)= X p/(u)pi(s), s€S8,

ueU

by repeated conditioning as at (2.2). In passing we note that A is a nontrivial
state if T is finite, but is not necessarily one if T is countable.

The geometry of the situation deserves a brief mention here. If one views X,
s € S, and X, = 0 as the vertices of a convex polygon in L,, then, according to
(2.1), the projection of a vertex X, on an opposite face is not exterior to that
face. From Theorem 2.1(ii) the origin can be translated to any other vertex and
thus plays no special role. Edges of these polygons form acute angles at vertices
where they intersect, though this is not enough to characterize them. A search
for a geometric term to cover the full set-up has not been successful.
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ExampLE 2.1. Let T'= {1,..., N} and consider a Markov process Z which
jumps uniformly to a new state at exponential rate 1, but which is terminated
independently of this motion at exponential rate A. It is easy to see that G is the
covariance matrix of equi-correlated random variables with positive correlation.
A corresponding normal vector X is a G-MAP on T.

ExaAMPLE 2.2. Let Z be a symmetric stable process on the line with index
a > 1 and which is independently killed at exponential rate 1. The Green’s
function is given by
o COS|s — E|x

G(S,t)=G(|S_t|)=%j(; 1+ x©

For a =2 one has the (closed) covariance form e~ !°"‘ of the Ornstein—
Uhlenbeck process on R!.

ExampLE 2.3. If Z is a Brownian motion on the positive half-line which is
killed on hitting zero, one has G(s, t) = A - s A t and the Wiener process is seen
to be a G-MAP. Here the first-hit distributions of finite sets are easily obtained
and provide an “explanation” of the predictions in Example 1.2.

ExaMPLE 2.4. Consider a symmetric random walk on the integers making
steps of size +1 and +2 at rate 1, and which is killed independently at rate A.
An appeal to the equations satisfied by the Green’s function [see (5.2) below, for
example] leads to a recurrence relation for G(k) = G(s,s + k), k=0,1,....
One then obtains correlation sequences of the form

G(k)/G(0) = 6% + (1 - 6)(-B)",

where 0 = By(1 — B7)/[By(1 — B?) + By(1 — )] and 0 < B, < B, < 1. In par-
ticular, each such Green’s function is the covariance of a stationary second-order
autoregressive sequence. A comparison with the autoregressive correlation se-
quences as depicted in Figure 3.3(b) of Box and Jenkins (1976) places the Green’s
function examples in the first quadrant there, though they do not exhaust it [one
cannot have G(2)/G(0) < (G(1)/G(0))?, for instance]. Other correlation se-
quences corresponding to stationary G- MAPs can be explicitly obtained by
pushing this program further.

ExaAMPLE 2.5. The Brownian-sheet process X on the first quadrant of R is
not a G-MAP. The covariance is given by G((s, o), (¢,7)) = (s A t)(6 A 7)and a
computation gives, for example,

E[X(2,2)|X(2,1)’ X(lyl)’ X(1,2)] = X(2,1) - X(1,1) + X(1,2)'
On the other hand, there is much more to be said about certain prediction
problems in this case [cf. Dynkin (1980)].

Now consider the converse direction to the result in Theorem 2.2. In fact it is
not true that all G-MAPs can be directly obtained by the method explored in
Examples 2.1-2.4. In particular, the pJ given by (2.1) serve to determine an
appropriate Z if T is finite, but need not do so otherwise. '
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EXAMPLE 2.6. Let X be the Wiener process of Example 2.3 restricted to the
set {2} U {1 —1/n, n>1}. Then X is a G-MAP [Theorem 2.1(i)], but the
“first-hit” distribution p{!~!/™ »=*) assigns unit mass to the point 1 — 1/k and
yet, in conjunction with (2.2), one finds that p{l =1/ »=1} must assign zero
probability to {1 — 1/n, n < k} for every k.

We next state a converse result when T is countable. Thus assuming the
existence of a G-MAP satisfying some conditions one has an associated Markov
process on T. The present result hardly exhausts the subject, in particular, there
is the theory of Markov process construction from first-hit distributions, as in
Shih (1971). However, by playing down continuous parameter problems, we can
avoid larger technicalities and still have what will be argued to be the right
context for the design problems discussed in Section 3.~

THEOREM 2.3. Let X be a G-MAP on a countable set T so that for some
0>0andallteT,

() 0 <E[X,—- E[X,)X,, s+t]]?<EX?<07",

(ii) the probability measures {pS, A € Sc T U {A}, |S| < o} at (24) are
tight.
There is a Markov process Z on T having Green’s function G = Cov X.

The upper bound in (i) of Theorem 2.3 seems largely a convenience in the
proof. On the other hand, the simple Example 2.6 already points up the need for
something akin to the remaining hypotheses it carries. Theorem 2.5 of Kiinsch
(1979) covers similar territory but begins with what should be the transition
mechanism of Z, and it is restricted to finitely many possible transitions from
any state £ In the course of the proof of Theorem 2.3, the one-step transitions of
Z are recovered from the measures p{ and (ii) is the essential and implicit
restriction on them.

From this point on, we suppose X is a G-MAP associated with a Markov
process Z as at (2.3). It turns out that X has some simply described Markov
properties itself, and remarkably so since T is quite arbitrary. This proceeds as
follows. Let S and U be (not necessarily finite) subsets of T.

DEFINITION 2.2. A process X on T is called Markov (S, U) provided X, and
X, are independent given {X,, t€ SN U}, for s € Sand u € U.

If X is a G-MAP, another way to express conditional independence given { X,,
t € SN U} is to say that the decomposition of T for X — ES"UX afforded by
Theorem 2.1(iv) has T, c S— SN U or T,c U- SN U for all a. The main
result is

THEOREM 2.4 [Dynkin (1980)]. A G-MAP X associated with the Markov
process Z is Markov (S,U) if Z cannot move from S to U without passing
through S N U.
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For a simple illustration note that the G-MAP of Example 2.4 is Markov with
respect to the sets {k|k < 1} and {k|k > 0}. At the same time a little reflection
makes it apparent that conditional independence after finite observation is much
less a feature of processes on, say, Z2.

It transpires that the collection of covariances G satisfying (2.3) is not closed
with respect to addition, i.e., the sum of independent G-MAPs need not be
another one. For example, a direct computation shows that the covariance
matrices,

1 1 11
1 8 2 1 8 4
— |1 1 = |1 1
Gl_ 8 1 4 | G2_ 8 1 2 |
1 1 1%
2 4 1 4 2 1

correspond to G-MAPs, but under G, + G, the prediction of X; on X, and X,
assigns a small negative weight to X,. In passing we note that nonclosure is not
alleviated by weakening Definition 2.1 to insist only that the coefficient pJ(s)
satisfy T|pS(s)|] <1 (as would arise, for example, by changing the sign of a
G-MAP on some fixed subset T’ of T'). Two suitable covariances are now

e

S wi=
-

G, = G, =

EN RN
S = A
[ =]

<
= o= =
O = W

DO =

but under G, + G,, the prediction of X; on X, and X; yields positive coeffi-
cients with sum exceeding 1.

While the closure property does not hold for independent summation gener-
ally, the special case of observing a G-MAP with independent errors does
produce another G-MAP. For this let §, be the indicator function of s, € T.

THEOREM 2.5. If X is a G-MAP on T and &, ¢, are i.i.d. centered normal
random variables independent of X,

i X+ 808 isa G-MAPon T,
(i) if s§ is ad]omed to T, X}=X, +e, Xf=X, +e, X*=X for
s # 8,, then X* is a G-MAP on TU {sO}

This result will suffice to cover the models discussed at (1.2) and (1.3), see
Propositions 3.1 and 3.2 about this.

To conclude the section it is noted that G-MAPs are nonsmooth processes.
There is considerable documentation of this available for Examples 2.2 and 2.3,
but another characterization of roughness is given here since T is quite arbitrary.
To set the stage let the G-MAP X be observed only with error and with
replication possible, (1.3). Given observations X, + ¢0,..., X, + &{™) for s € S,
Yn, = n, vare? = 6, consider the prediction of I'(X) = £, 7,X, for a finite
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U c T. Predict X, by Xq5(s)(X, + &,), and compute
E(Lv(X, - Lal(s)(X, +8,))
- B(In(X- Tafx) + B Enal(o))-
s\ u
If the integer nature of the n_ is ignored in apportioning observations among the

sites and the right-hand side of (2.6) is minimized subject only to Xn, = n, we
reach the approximate design problem:
2
IREHEO) ) ,

by choice of S and ¢35, u € U. With no integer restriction on n, we may consider
that (2.7) applies to any finite S c T.

(2.6)

)y

0y
s

(27)  minimize B(Z1,(X, - Ta¥s)X,)) + =

THEOREM 2.6. If X is a G-MAP on T and if S* is optimum for (2.7), then
S*cU.

The sense of Theorem 2.6 is that when the design problem is posed in this
approximate way one cannot rely on the smoothness of X for extrapolation
purposes, contrary to what can transpire for other processes. Here is a simple
example to illustrate the last remark. Let the covariance matrix be

0

ot

G=

-t coo
-

o)

who - oo

so X is not a G-MAP, let §/n = ; and consider the prediction of X; + X;. The
best predictor based on X, + & and X, + &, alone takes n/2 observations at
each site with the accompanying prediction of 2(X, + &) + 2(X; + &;). Then
(2.7) reduces to . Meanwhile, for a scheme which takes ;n observations at each
of the three sites and predicts by $(X; + ¢) + 3(X, + &) + 5(X; + &), one
finds that (2.7) has value 3.

3. Prediction and design again. Throughout the section X is a G-MAP
on a countable set T, and X satisfies the conditions of Theorem 2.3. Thus the
covariance G of X is the Green’s function of an associated Markov process Z and
(2.3) can be read as

(3.1) G(s,t) = E(time Z spends at s, starting at ¢)

= E,(time Z spends at s).
The perspective here is that a countable T provides a sensible level on which to
think about designs. The same point is made in Li (1984), where an interval of
possible observation is replaced by a discrete set of sites, lending tractability and
leading to some interesting conclusions about optimum designs. After some
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general discussion of prediction and prediction error, attention is paid to the
error in observation variants mentioned in Section 1.

Let T’ be a probability measure on T and take I'(X) = (X, dT,=Xv,X,. If
one predicts I'(X) based on observing X on S, then

(3.2) EST(X) = Y. v,E5X, = v 2pi(s)X, = Y pi(s)X,,

where p$ is the first-hit distribution for Z on S when the initial distribution is
I'. Theorem 2.2 appears here as the special case of a degenerate I', and one can
consider signed measures I' = I'* — I'" in the same way.

To describe the prediction error attached to (3.2), notice that the error process
X — ESX is itself associated with the process Z killed on entrance to the set S.
This follows by writing

E(X - E°X) (X - ESX), = G(t,u) — X L p(s)pi(v)G(s,v)

= G(t,u) - Xp(s)G(s, u)
= E,(time Z spends at u)
— E,(time Z spends at u after hitting S).
Then if 7 is a random site with distribution T,

(3.9) ET* X — ESX) = ) Y v,v,E,(time Z spends at u, before S)

= Er(time Z spends at , before S).

The effect of adding or deleting sites at which to observe is implicit in, for
ScuU,

ET?*(X — ESX) = ET*(X — EVX) + ET*(EUX — ESX)
(34) = E(time Z spends at 7, before U)
+ E(time Z spends at 7, before U and after S).

Beyond the intuitive appeal for the question of choosing a design set S, (3.3)
and (3.4) raise the possibility of determining designs empirically by simulating Z.
Recall the set-up with T = {—1,1}* from Section 1, for example. Let |S| = n.
Particular processes, random walks say, are easily simulated on T and, for any
fixed S, one can measure the worth of S according to criteria suggested at (1.5).
To run a full-fledged competition in such a manner, algorithms for testing many
subsets are required. This problem is currently being studied.

For consideration of observation with error, suppose first that replicated
observations are not possible. Write X; = X, + ¢,, where ¢ denotes a white-noise
process with bounded variance function 6 on T.

ProrosITION 3.1. If X satisfies the conditions of Theorem 2.3, then so does
X*. Hence there is a Markov Z* with state space T and Green’s function G¢,
G(s, t) = G(s, t) + 6,9, ,.
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Not much is readily said about the resulting process Z°¢, but it is clear that
pleasant properties of the original process Z are easily destroyed in this se-
quence. Take the Wiener process of Example 2.3 confined to integers t < n + 1
for instance, and let 6, = ¢t%. Then an elementary calculation shows that
(P)7(1) > & as n — oo while (p9)47(n) — 0.

When the possibility of replicated observations is added, as at (1.3), modifi-
cations are necessary to produce an associated Markov process. Start by taking
TV ={(t,HIteT, j=1,...,N} with X, =X, + &, where the /) are
independent white-noise processes with a common bounded variance function 6
on T.

ProrosITION 3.2. If X satisfies the conditions of Theorem 2.3, then so does
XN, Hence there is a Markov process ZN with state space TN and Green’s
function GV, GN((s, i), (t, J)) = G(s, t) + 0,8, 8, ;.

Again, substantial information about Z" has not been accumulated.

4. The unknown mean. Taking the viewpoint that the G-MAP X repre-
sents a Bayesian model of a response function, the assumption has so far been
that the mean of X is known, hence it is zero with no loss of generality. In these
brief remarks we consider observation of Y = m + X, where X is subject to the
conditions of Theorem 2.3 and m is to be modelled.

Assume X is independent of m, random or not, and assess the performance of
a given predictor ZcJ(s)Y, of Y, through

(1) E(Y,- Lei(s)Y,)" = BE(X, - Lef(s)X,)" + E(m,— Lei(s)m,)’.

Supposing first that m is random with known mean (zero) and Covm = G/,
notice that minimizing (4.1) returns one to the initial problem (1.1) with G
replaced by G + G’. This Bayes set-up has an exact minimax analogue as
follows. Let m be an unknown function in the reproducing kernel Hilbert space
H(G") associated with a covariance kernel G’ and suppose ||m||%, < 1. Then

max (m, - ths(s)m&)2 = max(m, G'(-,t)— Y.c3(s)G'(+, s))ZG

[Imll<1

la"(-,¢) - Zcf(S)G’(',s)”i;'
- B(X/ - Lei(s)X:)’,

where X’ is a process with mean zero and Cov X’ = G’. In particular, under the
assumption,

(4.2) Imlg < A,

it follows readily that Y’ = ¥ p(s)Y, is a minimax predictor of Y,. Moreover
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regularization obtains and

min max E(T(Y) - Y.c§(s)Y,)" = max ETXY - Y5)
(4.3) ¢ lml*<A lIml <A

= (1 + A)ET%(X — ESX).

Hence the mean zero prediction and design problems are exactly duplicated in
this case, while maximum prediction errors are inflated.

A parametric modelling of m is common in Kriging applications. Taking
m= Zf_O,BJ- f; one finds the maximum mean squared error at (4.1) is finite only if
¢’ satisfies the unbiasedness conditions

(4.4) f(t) = Xc¥(s)fi(s),,  Jj=0,1,...,k.

These conditions have an immediate influence on the resulting minimization of
E(X, - Xc¥(s)X,)? at (4.1), and generally one finds some optimal weights to be
negative. There is, however, one case of some interest where this is not so, and
we record those details.

Let m be an arbitrary unknown constant. The unbiasedness condition (4.4)
now asks that YcJ(s) = 1 in order that the maximum value of (4.1) be finite. The
subsequent constrained minimization of

E(X, - YcS(s)X,) = E(X, - Lp§(s)X,)" + E(L(p(s) - c5(s))X,)"

yields a minimizing vector ¢® = pJ + [(1 — £pJ(s))/1’Gg'1]Gg '1, in which Gg
denotes the covariance matrix of X restricted to the set S. In fact some simple
manipulations show that the sth element of Gg'1 is given by

Det(Gg_

Hence the unbiased weights are at least as large as those from mean zero
prediction, while the maximum mean square error is increased by an amount
X'Gs'D)~'(1 — Zpi(s))*

(4.5)

5. Proofs. We will verify Theorems 2.1, 2.3, 2.5 and 2.6, together with
Propositions 3.1 and 3.2. '

ProoF oF THEOREM 2.1. (i) follows from Definition 2.1. For (ii) let S be a
finite set, s € S, and observe that

E[Xt - Xsl - Xs’ Xu - Xs’ uES - {S, t}]
=E[X,- X|X,, X,,ueS - {s,t}]
Y S B(u)X, - X,(1 - pf~1(s))

t#s

T pfO(u)(X, - X,) - X1 - Epf ().

t#s

If one conditions (5.1) on X, — X, u € S — {s, t}, it is evident that (2.1) will

(5.1)
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follow for E[X,— X, X, — X,, u€ S — {s,t}] provided (2.1) holds for
E[-X|X,—- X,, ueS—{s})]. Now E[-X|X, - X,, ueS - {s}]=

8?7

Ta, (X, — X,), where the a’s satisfy
(_Xs’ Xo_Xs)= Zau(Xu—Xs’Xo_Xs)’ vES - {S}.
But if G is the covariance matrix of X,, u € S, then a, = (G™'1),/1’G™ 1 since

G—l
g %[G(u,v) - G(u,s) — G(v,s) + G(s,s)]
G-1
=X (I’G—ll)lu [G(u,0) — G(u,s) — G(v,5) + G(s, )]

ues
—-G(v,s) + G(s,s).

It has been noted at (4.5) that each a,, is nonnegativeandso X, ., =1 — a, < 1.
If t¢ Sand UN S = g, then (iii) follows from

E[(X - ESX)|(X - ESX),,ucU|
= E{E[(X - ESX))X,, v e UU §]|(X - EX),, u € U}

= E[ZpVVS(0)X, - L pi(s)X,[(X - ESX),, u € U]

- E[Zp;w%)xo ¥ Y pYUS(0)pS(s)K.|(X — ESX), u e U]

E[LpVVS(0)(X - ESX),|(X - ESX),, u e U]
= Z thUS(u)(X_ ESX)u:
uelU
in which (2.2) is invoked at the third step, and one uses X — ESX = 0 on S.
To see (iv) take s ~ ¢ to mean p{*)(s) = G(¢, s)/G(s, s) > 0. The relation ~
is reflexive and symmetric, so suppose s ~ ¢, t ~ « and s + u. Then a calculation
of E[ X,|X,, X,] yields

G(s,u)G(t,t) — G(s,t)G(u,t)
G(u,u)G(¢t,t) — G*(u,t)
contradicting G(s, t)G(u, t) # 0 with G(s, u) = 0.0

pfeH(u) =

ProoF oF THEOREM 2.3. Let ¢ be fixed and take Sy = {s¢, $1,..., 5y} /S,
so = A. From (2.5)
DiN(s;) =f’f~”(3N+1)ﬁfﬁ“(3j) + peve(s;), Jj=0,1,..., N,

and therefore pSM(s) decreases to a limit, pJ(s), as N — oo for all s € S. It is
easy to check that the limit is independent of the particular approach of Sy to S
and, from (ii), that p{ is a full probability measure on S.
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Set Vy=(ESX),=Xg pi™(s)X, and Wy = Lg py(s)X,. Observe that
V, = ;. (ESX), and that

By - )" = B[ £ (5() - P)X, |

< 07T (P5(s) - B(s)))"
= 0—1(1 — SZﬁf(S))2 -0

as N = oo0. Thus Wy =, ,, (ESX), and one may write without ambiguity that
(ESX), = LgPS(s)X,. Nonsingularity at (i) together with repeated conditioning
shows that (2.5) holds for countable subsets S and U of T U {A}.

Next consider p/ {9 as a transition mechanism, say p;  {)(s) = =(t, 5), for
s # t with A as a death state. Let Z be a regular step process on T determined
by = and the speed function v, = (E(X, — E[X,|X,, s # t])?) "' killed on hitting
A. Tt is to be shown that the Green’s function G’ of Z is the covariance G of X.

First note that since E[ X, — E[ X,|X,, s # ¢]]> > 0 and

E[E[X)X,, s # t]|X,] = E[Ln(t, s)XJX,] = [La(t, s)Bl(2)] X,,
then Tx(t, s)pi8(t) = p < 1. Bringing in (2.5),
p= Yt s;) Xm(sy, s,)pl(8) = -+
= Z 77'(t, sl)vr(sl, t) + .-

s #t

+ Z (¢, $1)m(sy,85) + - 7(s,-1,1)
s;#1

+ Y w(t,5,)7(s,,82) -+ m(s,-1,8,)PE(2),
s;#t

and therefore eventual return of Z to ¢ is uncertain for any ¢ € T. It follows that
the Green’s function G’ of Z is finite everywhere and satisfies the equations

G'(t,t)=v, '+ Ya(t,u)G'(u,t),
G'(t,s) = Ym(t,u)G'(u,s), s # t.

In fact G satisfies these same equations (repeated conditioning) so it remains to
be seen that G is a minimal solution to (5.2).
Begin by iterating with G in (5.2). Thus for the first equation

G(t,t) =y, '+ Y a(¢t, s1)m(sy, t)G(¢, t)
+ Y 7(t, 8,)7(sy, 83)m(sy, 8)G(E, 8) + - -+
(5.3) + Y 7(t,s,) - 7(s,_1,t)G(¢, t)

s;#t

+ E ﬂ(t’ sl) T 7T(Sn—l’ Sn)G(Sn, t)’

s§;#1

(5.2)
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and for the second,
G(t’ S) = W(t) S)G(S, S) + Z W(t’ 81)77(81, S)G(S, S) + o

S #8

(5.4) + Y a(t,s) - 7(s,-1,5)G(s,5)

S;#8

+ E W(t’ sl) e 7r(sn—l’ sn)G(sn’ s)'
S8, # 8
Let R! denote the last term in (5.3), R? the last term in (5.4). It will be seen
that R! and R2 —» 0 as n — o for all ¢ and s.

Consider R, and let ¢ > 0 be given. Determine a finite set of points n = n(e, ¢)
so that pS(n®) < & for all finite S, by assumption (ii). If s & n one has p{*)(s) =
G(s, t)/G(s,s) < ¢ and thus G(s,t) <ef~ L. If s €n then G(s,t) < 8. Ob-
serve that

RL<efd 1+01 ) n(t,s) + 7(s,_1,5,)
§;#t
s, €1

<&@~ + @7 'P[Z isin 7 after n transitions]

and YP[Z is in n after n transitions] = E,[number of transitions to 1] < oo,
since uncertain return to any given state ensures that the number of transitions
to n has exponential tails. Hence R, < 2¢6~! for sufficiently large n. RZ — 0 as
n — oo by the same argument. One may now use (5.3) to conclude that G(¢, t) =
v, (P[Z does not return to ¢]) ' = G’(¢, t) and then, from (5.4), that G(¢, s) =
G'(t,s)fors +t.0O

PROOF OF THEOREM 2.5. The notation from (2.1) is used for the process X
and 0 = var ¢,. For (i) it suffices to consider

E[X)X,, + e, X,, s €S — {so}]

(5.5) = E[Tpf(s)XJX,, + e, X,y s €S = {s5)]
= X p8(s)X, + p¥(s0)E[ X, | X,, + €0, X, s € S = {50}]
$# 8

and, in turn,

(56) E[X,|X,, +¢p X, s€S— {so}] =a(X, +&)+ X X,

S#Sg
say. Condition (5.6) on X, s € S — {s,} to obtain
Lo ()X, = aXpl ()X, + X ¢, X,

S#S8,
Therefore the left-hand side of (5.6) is
(5.7) a(XSO +e) +(1— a) Y pSil(s)X,.
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Now multiply (5.6) by X, + ¢, and compute the expectation, using (5.7), to find
G(sg,59) = a(G(SO’ sp) + 0) +0- a)Epi,“s°’(S)G(so, s).
Then it follows that
(1 - @)[G(s0, 80) = LpS~C)(5)G(50, 5)]
= (1-a)E[X, - E[X,|X,, s €8S~ {s,}]]"
= af.
This shows that 0 <a <1, hence E[X; |X, + &, X,, s €S — {so}] satisfies

(2.1) as does E[ X,|X, + &), X,, s €S — {so}], from (5.5).
To establish (ii) note beyond (5.5)-(5.7) only that .

E[X)X, + &, X, + &, X, s €8 — {s}]
= E[X,)X,, +& X,, s €85 — {s,}]. m

PROOF OF THEOREM 2.6. Begin with a general S ¢ U and observe that (2.7)
is larger than :
)2

E(Lv.X, - E[Zv.Xa5(s) XX, uc U]) + %(Z

Y v.9:(s)|.

2 v.a5(s)

- B(E1% - EnZal0) Eao)x,) + - Z[Zaito

Now

<X

s

)y

v

> Y v.a5(s)pl(v)

Hence (2.7) is larger than

E(Tv.X, - Ln.Xai(s) Lol(0)X,)" +

and S is not optimum. O

< X Y pY(0) | Xv.gi(s)

=5

v

~——
-]
-

> X v.a3(s)p¥(v)

PROOF OF PROPOSITION 3.1. According to Theorem 2.5(i), X + ¢,6, is a
G-MAP on T if X is, so by induction X + ¥7_o¢,0, is a G-MAP for any finite
subset {s,..., sy} of T. This is sufficient to establish (2.1) for X*:

E(X1X;,s€8) = XprS(s)X;,

for a (sub-) distribution p{S on S. In fact X ® satisfies the conditions of Theorem
2.3 guaranteeing the existence of Z¢ as asserted. On the one hand, condition (i) is
clearly satisfied since this was assumed for X itself. Second, tightness of the
measures { p" S} follows by induction. Especially, in the step X goes to X + €505,
the resulting p®® can be identified from (5.5)~(5.7) as apy + (1 — a)py ™~ (%),
Thus no added weight goes to the “tails” and tightness is assured. O
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PrOOF OF PROPOSITION 3.2. Theorem 2.5 and a simple induction argument
show that XV is a G-MAP on TV, so it remains to be seen that Theorem 2.3
applies to X V. Again condition (i) is easily verified so the matter comes down to
the tightness condition (ii). Now if for the original process X, p,(B ) <, for
some finite set B, uniformly in S, then B, X {1,..., N} serves the same role for
the process X7V To see this note from the precedlng proof that E[ X,| X, + &,,
seS]l=% pt*s(s)(X +&,), where p*S is a probability measure satisfying

p*S(B,) < n as well. But ( pN )3 is determined from p*S by dividing the weights

*S( s) equally among those replicates at s which are in the conditioning set. O
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