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ADMISSIBLE ESTIMATION OF THE BINOMIAL
PARAMETER n
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Suppose that X has a binomial distribution B(n, p), with known
p €(0,1) and unknown n € {1,2,...}. A natural estimator for n is given
by T(0) = 1, T(x) = x/p, x = 1,2,... . This estimator is shown to be inad-
missible under quadratic loss. It is shown that modifying 7T(0) to T(0) =
—(1 = p)/(p In p) results in an admissible estimator. For p > 5 it is further
shown that this is the only admissible modification of T'(0). A partial result is

also obtained for p < }.

1. Introduction. Suppose that X has a binomial distribution B(n, p), with
known p € (0,1), and consider estimating the unknown parameter n. The
problem has an obvious interpretation: estimate the number of tosses of a
(biased) coin on the basis of the observed number of heads [hence the title of the
paper by Ghosh and Meeden (1975)]. For a practical application (an animal
counting problem), see Rukhin (1975). Estimation of n, when several indepen-
dent observations are available, is considered by Feldman and Fox (1968), who
develop some asymptotic results, and, more recently, by Olkin, Petkau, and
Zidek (1981), who compare the stability of various estimators. Draper and
Guttman (1971) present a Bayesian treatment. We shall be concerned with the
decision theoretic aspects of the problem.

When the parameter space is N = {0,1,2,...}, Rukhin (1975) has shown that
the estimator T, given by

T%x)=x/p, x=0,1,2,...,

is (i) a variant of the maximum likelihood estimator, (ii) the only unbiased
estimator, and (iii) minimax under a weighted square error loss function. Ghosh
and Meeden (1975) then showed that T° is admissible (and minimax) under
quadratic loss.

In this paper, we consider the case when the parameter space is N* =
{1,2,...}; i.e, when the possibility n = 0 is excluded. This may be a more
natural parameter space in some contexts, e.g., in the context of tossing a coin.
The class of estimators to be considered is not restricted to that of range-preserv-
ing (integer-valued) estimators. Also, quadratic loss is assumed throughout.

2. Preliminary analysis. When the parameter space is restricted to
N7, the family of distributions {B(n, p),-n € N*} is not complete
(E{—(1 —p)/p)X=0forall n e N*), and T° is no longer the only unbiased
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estimator. In fact, it is known that a UMVU estimator of n € N* does not exist.
Also, since T°0) < 1, T is clearly inadmissible for n € N* [see the remark by
Ghosh and Meeden (1975), page 524]. The obvious modification is to increase
T°0) to 1, which is in fact the maximum likelihood value. The resulting
estimator is denoted by T'':

TY0)=1;, TYx)=x/p, x=12,....

However, as will be shown in Section 4, T is not admissible either. Since the
dominating estimator constructed in Section 4 is rather complicated, we il-
lustrate this result by giving a simple dominating estimator for the special case
p = 1. For p = 1, it can be shown that the estimator 7",

TY0)=1, TXx)=2x, =x=12,...,
is dominated by the estimator T, given by
T(0) =11, T(1)=198, T(2) =401,
T(x) =2x, x=3,4,....

The source of inadmissibility of T! is apparently the value of T(0) = 1.
[Intuitively, T(0) should be a (decreasing) function of p—and not a constant.]
The question considered in tiis paper is how to modify the value of T'(0) so that
the resulting estimator is admissible. The motivation for the answer (which, for
p > 1 turns out to be unique) comes from the observation, made by Rukhin
(1975) and also by Ghosh and Meeden (1975), that, for x > 1, x/p is the

generalized Bayes estimator of n with respect to the improper prior
( : 1,2,3
7(n) = —, n=123,....
) n

(Note that this prior excludes the possibility n = 0; therefore it is more natural
in the present case.) Now with respect to this prior, the estimate of n, when

x =0,1is
%) . 00 . _ q
(n2=:lq )/(nglq /n) plnp’

where g =1 — p. It will be shown in the next section that the resulting
estimator, denoted by T *,

T*0)=—-q/(plnp), TH=x)=x/p, x=12,...,

is admissible. In Section 4 we further show that, for p > §, this is the only
admissible modification (for p < § we obtain a partial result).
The following simplifying notation is used:

g=1-p, r=gq/p, c*=—-q/(php).
Note that
T*(0) =c*=r/In(1 + r).
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Also, T denotes the estimator
(2.1) T<0) = c, T(x) = x/p, x=1,2,....

The estimators T°, T' and T * then correspond to ¢ = 0, 1 and c*, respectively.
3. Admissibility of T'*. In this section we show that

THEOREM 1. The estimator T* is admissible for n € N* under quadratic
loss.

The method of proof is a well-known method [see Blyth and Roberts (1972)
and Blyth (1974)], originally due to Hodges and Lehmann (1951). [This is one of
the two methods used by Ghosh and Meeden (1975) to prove the admissibility of
T° when n € N.]

Consider the estimator T, defined by (2.1). T is inadmissible if there exists
another estimator T such that

(3.1) E(T~-n)’<E(T°—n)’

for all n € N™, with strict inequality for some n [E, denotes expectation with
respect to B(n, p)]. Letting Z = T — T, (3.1) may be restated as

(3.2) E.(Z?) + 2E {Z(T° - n)} <O0.
As in Ghosh and Meeden (1975), it may be shown that
(3.3) E,(Z(T¢ - n)) = nr{E,(Z) - B, (2)) + cq"2(0),
for all n & N, where we define E(Z) = Z(0). Therefore (3.2) may be restated as
(3.4) E . (Z?) + 2nr{E,(Z) — E,_(Z)} + 2¢q"Z(0) < 0.
Clearly, (3.4) implies the weaker inequality
(3.5) (E(2))* + 2nr{E(Z) — E,_\(Z)} + 2¢q"Z(0) < 0.
Letting
m, = Z(0); .=E(Z), n=12,...,

inequality (3.5) may be restated as
(3.6) m2 + 2nr(m, — m,_,) + 2ecmyq" < 0.

Therefore, to prove the admissibility of 7', it is sufficient to show that the only
solution {m,, n € N} to the system of inequalities (3.6) is the trivial solution
m,, = 0; since this would then imply that there is no Z satisfying (3.2) except the
trivial solution Z = 0, i.e., there is no T satisfying (3.1).

In this and the next section, we show that the system of inequalities (3.6) has
no nontrivial solution only if ¢ = ¢*. In the proof we use the following result,
which is based on the admissibility proof of Ghosh and Meeden (1975) for the
case n € N.
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LEMMA 1. Suppose that the sequence {b,, n € N} satisfies
b2+ an(b,— b, ,) <0,
for all n € N*, where a > 0. If b, <0 for some k € N, then b, =0 for all
n =k
Proor oF THEOREM 1. It is sufficient to show that the inequalities
(3.7) m? + 2nr(m, — m,_,) + 2¢*myq" <0, neN"

imply that m, = 0. If m, = 0, this immediately follows from Lemma 1. We show
that the other possibilities m, < 0 and m, > 0 result in contradictions. First, we
note that (3.7) may be restated as (m?%/n) + 2r(m, — m,_,) + 2c*my(q"/n) <
0. Hence, for all n € N*,

n n
> (m¥/i) + 2r(m, — my) + 2¢*my Y. (q'/i) <0,
i=1 _ i=1

which may be rewritten as

(3.8) t, +2rm, — 2c¢*myd, < 0,

where

3

n

t,= Y (mi/i) and d,=-Inp- ¥ (¢"i).

=1 i=1

It is convenient to define ¢, = 0, so that m2 = n(¢, — t,_,) holds forall n € N*.
Note that d, |0 as n — co.

(i) Suppose that my < 0. Then (3.8) implies that, for all ne N*, ¢, +
2rm, < 0. Since ¢, >0, it follows that ¢2 < 4r’m?. But m? = n(t, — t,_,).
Therefore ¢2 — 4r®n(t, — t,_,) < 0, for all n € N*. Since ¢, = 0, it follows from
Lemma 1 (with b, = —¢,) that ¢, = 0. Hence m, = 0, for all n € N*. But then
(3.8), with n = 1, gives mc*d, > 0. Since c¢*d, > 0, this contradicts the assump-
tion m, < 0.

(ii) Suppose that m, > 0. Then (3.7) implies that

m2+2m(m,—m, ) <0, ne N,
n n n—1

If m, <0 for some k£ > 1, then by Lemma 1, m, = 0 for all » > %. But in that
case, (3.7) (with n =k + 1, say) implies that c*m, < 0, which contradicts
mg > 0. Therefore m, > 0 for all n, But then (3.8) implies that ¢, < 2¢*m,d,
for all n € N*. Since ¢, > m? and d, |0 as n — oo, it follows that m, = 0. This
contradiction completes the proof of Theorem 1. O

4. Inadmissibility results. The question considered in this section is
whether there is any other value of ¢ # c¢* for which T is admissible. For p > ;
we have a complete answer in

THEOREM 2. Forp > 3, the estimator T is inadmissible if
c#c*=—(1-p)/(plp).
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For p < ; we have a partial answer in

THEOREM 3. Forp < 3, the estimator T¢ is inadmissible if either ¢ < 1/(In2)
orc>(1-p)/(pln2).

COROLLARY. The estimator T! is inadmissible.

REMARK. As regards the values of ¢ not covered by Theorem 3, we observe
that even if for some ¢ # ¢* T is admissible, the method used in Section 3 fails
to prove it (this follows from Lemma 2 below). Also, this remains true of a more
refined version of the method [see Blyth and Roberts (1972)], wherein instead of
(3.5) the stronger inequality

{Cov(T<, Z)}?/Var(T) + (E(Z)}* + 2E{Z(T*—n)} < 0

is used [it can be shown that, for 8 sufficiently small, Z, as defined by (4.1) below,
satisfies this inequality as well].

To prove the inadmissibility of T, it is sufficient to show that inequality (3.4)
has a nontrivial solution for Z; since then T = T°¢ + Z would dominate T°°. But
first we consider the weaker inequality (3.5), and show that, for any ¢ # c*, this
has a nontrivial solution.

LeEMMA 2. If ¢ #+ c*, then Z, defined by
tx
1+rt

dt, x=0,1,...,

< f1

(4.1) Z(x) = 8(-r) /
0

satisfies (3.5), provided 8 is between 0 and 2(1 — c/c*).

(A proof of this lemma is given in the Appendix.) However, it can be shown
that Z, as defined by (4.1), does not satisfy the stronger inequality (3.4). A
suitable modification is given in the following lemma, which is proved in the
Appendix.

LEMMA 3. Let Z be defined by

X

[0 _
Z(x) =8{e + (-1)"}r fo o x=0,1,...
If €6 > 0,0 < 6 <min{1,1/r}, and
(4.2) 18] < [e](1 — r8) /(1 + [e])?,

then
(4.3) E(Z%)+2nr{E(Z) - E,_(Z)} + 2cZ(0)q" < 28q"g,(8, ¢),
where

8.(0,¢) = {e(1 —r8)/2} + (1 -60)" + {(c/r)(1 + ¢)ln(1 + r8)} — 1.
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ProoF oF THEOREM 2. First note that p > ; corresponds to r < 1.
(i) Suppose that ¢ < c*. Since
g.(6,¢) > (¢/r)n(1 +r)—1=(c/c*) —1<0,
ase—>0and § — 1,

there exist &* >0 and 0 < 6* <1 such that g,(6* ¢*) <0. Then, since
(1 —6*)"< (1 — 6*), we have g,(6* ¢*) <0, for all n € N*. Now choose §*
between 0 and e*(1 — r6*)/(1 + ¢*)%. Applying Lemma 3, it follows that (3.4)
has a nontrivial solution.

(ii) Suppose that ¢ < c*. Since

e(1—r0)/2+ (¢/r)(1+ ¢)ln(1 + rd) - (c/c*) — 1> 0,
ase > 0and 0 — 1,
there exist ¢* < 0 and 0 < 8* < 1 such that
e*(1 — r*)/2 + (¢/r)(1 + e*)In(1 + r6*) — 1 > 0.

Since (1 — 8*)" > 0, it follows that g,(8*, ¢*) > 0, for all n € N*. Now choose
8* < 0 such that condition (4.2) is satisfied. It then follows from Lemma 3 that
(3.4) has a nontrivial solution. O

PrROOF oF THEOREM 3. The proof is similar to the proof of Theorem 2, but
with 8§ — 1/r (note that in this case r > 1). O

APPENDIX

PROOF OF LEMMA 2. It is easily shown that
Z(0) = (8/r)ln(1 + r) = §/c*,
="
E(Z) = 8q fo o
and
nr(E,(Z) - E, (2)} = —8q"

(see the proof of Lemma 3). Since 0 < {(1 — ¢)"/(1 + rt)} <1lfor0 <t <1, we
have

{E(2))" < (181g") < 8%".
Therefore
(EN2))" + 2nr(E,(Z) — E, (2)} + 2¢Z(0)q"
<q"8{8 —2(1 —c/c*)} <0,
for any 8 between 0 and 2(1 — ¢/c*). O

ProorF or LEMMA 3. We have
E(Z)=6¢eA, + 8B,
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where

and

It is easily shown that

1+1¢)" 1-¢)"
A =q"f0( ) dt and B =q”f0( ) dt
0 0

" 1+ rt " 1+ rt

Hence

. n—1
_ _ n—1 0 _ n—1 _pq _ n_
B,- B, ,=—-pq fo(l t)" dt = P {(1-6)"-1)
and
gl —rt _

- = —pg" ! 1+¢)" 't
An An—l bq fol+rt( ) dt

Since 0 < 6 < 1/r, we have {(1 — rt)/(1 + rt)} > {(1 — r8)/2} > 0
for 0 < t < 8. Therefore

1-1r6
2

"1 -r8) n
=pq—2n—{1—(1+o) ).
Noting that 8¢ > 0 and rp = q, it follows that
2nr{E,(Z) - E, ((Z)} = 2nrée(A, — A,_,) + 2nr8(B, — B,_,)
(A1) < —edg"(1—r8)(1+ 8)" + edq"(1 — )
+28q™(1 = )" — 28q".

We now consider E,(Z?). Since 0 < § < 1, we have

A, -A, < —(pg"") f0(1+t)"“dt
0

g t7
f dt < 6*, x=0,1,....
ol+rt

Therefore
{Z(x))” < 82(1 + |e)*(r?02)" < 8%(1 + [e])*(r6)",
since rf < 1. Hence
E(Z%) < 8*(1 + |e])"E,{(r0)*} = 82(1 + |¢e])’q"(1 + 6)".
Using condition (4.2), it follows that
(A.2) E(Z%) <e8(1—rf)q™(1 +6)".
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Finally, it is easily verified that

31 +e)
(A3) Z(0) = 7ln(1 +rd).

Inequality (4.3) now follows from (A.1), (A.2) and (A.3). O
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