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A PROBABILITY INEQUALITY FOR ELLIPTICALLY
CONTOURED DENSITIES WITH APPLICATIONS
IN ORDER RESTRICTED INFERENCE!

By Hart MUKERJEE, TiM ROBERTSON2 AND F. T. WRIGHT

University of California-Davis, University of Iowa and
University of Missouri-Rolla

Anderson (1955) established the monotonicity of the integral of a sym-
metric, unimodal density over translates of a symmetric, convex set. A similar
result is developed for integrals of elliptically contoured, unimodal densities
over translates of an asymmetric, convex set in certain directions related to
the set. This result is used to establish some monotonicity properties of the
power functions of the likelihood ratio tests for determining whether or not a
vector of normal means satisfies a specified ordering.

1. Introduction. Anderson (1955) studied the monotonicity of the integral
of a symmetric, unimodal density over translates of a symmetric, convex set. In
particular, he showed that if f(-) is a unimodal probability density with respect
to Lebesgue measure on R*, A is a convex subset of R*, and f(-) and A are
symmetric about the origin, then for all p € R*,

h(8) =[

f(x) dx
A-8
is nonincreasing in |8|. We give a related result for asymmetric, convex sets and
particular directions, u. This result is useful in the study of the monotonicity
properties of power functions of certain tests in order restricted inference. For a
fixed direction u, we give conditions on the convex set A, which imply that A(8)
is nonincreasing in 8 > 0. (Results for 2(8) with 8§ < 0 are obtained from those
with § > 0 with direction —p.)

In the case k = 1 with p > 0, it is clear that if the reflection of A N (0, c0)
through the origin is contained in the closure of A, then A(8) is nonincreasing in
6 > 0 for any symmetric, unimodal density f(-). In fact, the converse is true. In
Section 2 this result is extended to £ > 1. In particular, suppose f(-) is unimodal
and elliptically contoured (defined in Section 2) and let A* denote the positive
part of A in the direction p (defined by (2.3)). If the reflection of A* through the
orthogonal complement of the subspace generated by p is contained in the
closure of A, then A(8) is nonincreasing in § > 0. Also, the members of a large
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collection of convex sets are shown to satisfy this condition. This collection
contains the convex cones in R*.

Although the results of Section 2 hold for arbitrary closed, convex cones such
as those considered by Kudd (1963) and Perlman (1969), we focus on some
quasiordered cones for which the estimates (i.e., projections) are easier to
compute and the distributions of related test statistics are more tractable.

In Section 3, our result is applied to a problem in isotonic inference that
motivated this generalization of Anderson’s inequality. Let < be a quasiorder

on {1,2,..., k) (i.e., it is reflexive and transitive) and let H, = {x € R¥; x, < x;
for all i < j}. The likelihood ratio tests of p € H, versus p & H, with
By, o, - .-, 4, Normal means are considered, both when the variances are known

and when they are unknown but equal. The monotonicity properties of the
power functions of these tests are studied, assuming independent random sam-
ples. By conditioning on the variance estimate, monotonicity properties of the
power function in the unknown variance case are implied by the case of known
variances.

Robertson and Wegman (1978) proved that homogeneity, p, = gy = -+ = p,,
is least favorable within H,, and the results in Robertson and Wright (1982;
1984) imply the monotonicity in certain directions, of the power functions of
such tests. The ideas involved in their arguments are given by Perlman (1969),
who considered, with C a fixed cone, the likelihood ratio test (LRT) of u € C
versus u & C based upon a random sample from a multivariate normal popula-
tion with unknown covariance matrix. He also studied the limits of the power
function as the distance between p and the cone becomes infinite. The monoton-
icity properties given in the above references are based upon containment
arguments, and the geometric approach used here extends the monotonicity of
the power functions of these tests to other directions. In Section 4 we discuss the
bias of these tests.

2. A probability inequality. In this section, we study the monotonicity of

h(8) :f

f(x) dx

A-du

for a fixed direction p € R*, a convex set A with restrictions on its asymmetry in
the p direction and a unimodal density f with elliptical contours. Das Gupta
et al. (1972) studied elliptically contoured distributions. A probability density
function of the form f(x) =|2| /%g(x’= 'x), where = is a positive definite
k X k matrix, is said to be elliptically contoured. We assume that f is an
elliptically contoured density that is unimodal, that is, g is nonincreasing on
[0, o0).

Since the “symmetry” assumption of A needs to be matched to the distribu-
tion, we consider the inner product (x, y)s = x’2” 'y and the corresponding
norm ||x||s = ((x, x)5)"/2. For C a closed, convex cone in R*, Es(x|C) denotes
the unique projection of x onto C, i.e., Ex(x|C) is the unique element in C that
minimizes ||x — y||s for y € C. Theorem 7.8 of Barlow et al. (1972) characterizes
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E(x|C) as follows:
E.(x|C)e C, (x— Es(x|C),Es(x|C))s=0,
and forall ye C, (x— Es(x|C), y)s<0.

It follows from (2.1) that for x € R* and a > 0, E5(ax|C) = aEs(x|C) and that
for x € R*%,

(2.2) (x, Ex(x]C))s = (Ex(x]C), Ex(x|C))s = | Ex(x]C)]|3.

For u € R*, S, = {bu: —c0 < b < o0} is the subspace generated by p, and for
A C R*, the positive part of A, in the u direction, is defined by

(2.3) A* = {x € A: Eg(x|S,) = bpwith b>0}.

(2.1)

Since the boundary of A has Lebesgue measure zero, we may without loss of
generality, assume that A is closed.

THEOREM 2.1. Let u € R, let f be a unimodal density that has elliptical
contours determined by £ and let A be a convex subset of R". If

(2.4) x —2E5(x|S,) € A foreachx € A*,

then h(8) is nonincreasing for § > 0.

PROOF. Let V be the positive, symmetric square root of £~ ! and make the
change of variable y = Vx to obtain (recall, f(x) = |Z|"/%g(x’Z x))

oY= [ IV dy= [ elyy)dy/V)

VA-8
with B = VA and n = Vu. With I the k& X k identity, it is easy to show that
VE(x|S,) = E/(Vx|VS,); VS, =S;; VA" = {Vx: Ex(x|S,) = by with b > 0} =
{Vx: E[(Vx|S,) = bn with b> 0} = B”; and for y € B, there is x € A" with
y = Vx and

y—2E,(yIS,) = Vx — 2E,(Vx|VS,) = V(x — 2E(x|S,)) € VA = B.

Hence, it suffices to prove the result for ¥ = I.

Without loss of generality we assume ||p|| = 1 (we omit the subscript on || - ||,
(-,-) and E(-|-) when 2 = I) and let O be an orthogonal transformation with
Op = (1,0,...,0). The transformed distribution has elliptical contours
with 3 =1, 08, = S,,, OA" = (OA)" and for y € OA ", thereis an x € A" with
y = Ox and

y ~ 2E(315,) = 0(x — 2E(x1S,)) € 04,
Hence, we assume that p = (1,0,...,0) and denote the (x,,..., x,) section of a

set D by D(x2 YYYYY ) = {x;: (x,%,,...,%,) € D}. Since (A — 6;1)('{2,._
o § and A is convex,

r@)= [ [ e xex) dxdey o dx,

,,,,, xp)

"xk) -

(Xp,eeey x
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and A, . ., is an interval. Furthermore, if x€ A", then x — 2E(x|S,) =
(=X, Xgy--r %) EAOr x, € (A, . ., implies that —x, €A, . For
(%y,...,%,) fixed, h(x;) =g(x?+ -+ +x}) is symmetric and unimodal. The
desired result follows from the case & = 1, discussed in the introduction. O

REMARK 1. One wonders if the assumption that f is elliptically contoured
could be weakened. However, the matrix, =, in the definition of elliptically
contoured densities, is used to compute the projection in (2.4). We give an
example of a convex set A and a density with square contours for which the
conclusion of the theorem does not hold. Since the density has square contours,
we take 2 = I and note that (2.4) holds with £ = I. Let £ = 2, f be uniform on
the square S, with vertices at (1,0), (0,1), (—1,0) and (0, —1); let p = (1,tan @)
with 0 < 8 < 7/4 (S,* is the line perpendicular to p); let BC be a line segment
parallel to u with B a point on the negative part of the y axis inside of S and C a
point on SMl outside of S; and let A be the triangle OBC with O the origin (see
Figure 1). For small positive 8, S N A has smaller area than S N ( A — 8u) which
shows the conclusion of the theorem does not hold. Hence, Theorem 2.1 does not
hold for an arbitrary symmetric unimodal density.

REMARK 2. The “reflection—inclusion” argument used in the proof of Theo-
rem 2.1 has also been used in the proof of Lemma 5.1 in Das Gupta et al. (1972).

Next, we study a collection of convex sets of interest in isotonic inference,
which satisfy (2.4). For C a closed, convex cone in R* and ¢t > 0, set A(C,t) =
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{x € R*: ||Eg(x|C)||2 < t}. Theorem 2.4, to be given, states that for certain
directions, u, the set A(C, t) satisfies (2.4).

The dual of C, which is defined by C** = {y € R*: (x, y)s < 0 for each
x € C}, is of interest. Clearly, C** is a closed, convex cone and using its
definition together with (2.1) and (2.2) we see that

(25) Eys(x|C*%) = x — E5(x|C) and

IEs(x|C**)(13 = lIx]|% — | Ex(x]C)]I3.
It is also well known that
(2.6) (C*3)** = C.

If ¢t =0, then since Ex(x|C) = x — Ex(x|C**) = 0 if and only if x € C*3, it
follows that A(C,0) = C*. Hence, the collection of sets of the form A(C, t)
contains the closed convex cones.

For A = A(C, t) and certain directions p, the monotonicity of A(8) follows
from a containment argument. The following lemma is given implicitly in the
proof of Lemma 8.2 in Perlman (1969) and explicitly in Robertson and Wegman
(1978).

LEMMA 22. If x € C*3, then ||[Ex(x + ¥|C)|ls < |Es(¥|O)||s-

Applying this lemma, we see that if p € —C**(—D = {—x: x € D}) and
a@>0,then A —apC A. Hence, A — p,—8p DA — p,— &u forp, € R%, § <
8’and p € —C**, So, h(8) is nonincreasing in 8 € (— o0, ) for p € — C*=,

Because E(:|C) is not necessarily linear, the following lemma is used to
bound [|Ex(x + ¥IC)s-

LEMMA 2.3. Forx, y € Rk,
IEs(x + ¥C)lls < |1Es(x|C) + Ex(yIC)lls < [1E5(x[C)|ls + |1 E<(¥IC)]|s-
ProorF. We need only establish the first inequality, because the second
follows from the triangular inequality for norms. Because
x +y=Ey(x|C) + Ex(x|C**) + Eg(y|C) + E5(y|C**)
= Ex(x|C) + Es(HIC) + 2,
with z = Ex(x|C*%) + E5(y|C*%) € C*5,
IEs(x + yC)lls = |1 Es(Ex(x|C) + Ex(¥C) + 2|C)]|s-
Applying Lemma 2.2, the last term is bounded above by
| Es(Es(%(C) + E5(¥IC)[C)llz = | Ex(x(C) + Ex(¥IC)|ls-
The proof is completed. O
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If x, ye A(C, t) and 0 < a < 1, then
|Es(ax + (1 — @)y|C)ls < [laEx(x|C) + (1 — «) Ex(¥IC)lls
< o Ex(x(C)lls + (1 = @) | Ex(¥IC)lls < VE.
So A(C, t) is convex. We now establish

THEOREM 2.4. Let C be a closed, convex cone, t>0, p, p, € R* and
A = A(C, t) — po. The subset A is convex. If p € C and (p, py)s = 0, then for
eachx € A", x — 2Ex(x|S,) € A.

ProoOF. The convexity of A is immediate. Since Ex(y — p|S,) = Ex(¥|S,)
and y — p,— 2Ex(y|S,) € A if and only if y — 2E3(y|S,) € A(C, t), we may
assume p, = 0. Let x € A™. Applying (2.5),

IEs(x = 2E5(x1S,)IC)13 = IIx — 2E5(%1S,)13 — I Ex(x — 2E5(x1S,)IC**)II3
=x'S " — 4(x — Eg(x1S,)) S 'Ex(xIS,)
—|E(x — 2bp|C**)|13,
with b > 0. Using Lemma 2.2 with C replaced by its dual, we see that

|Es(x — 2bp|C*%)||2 > || Ex(x|C*¥)||%, and using (2.1), the characterization of a
projection, we see that (x — Ex(x|S,), Ex(x|S,))s = 0. Hence,

IEs(x — 2E5(x1S,)IC)I12 < |Ix12 — || Ex(x|C*¥)|1 = | Ex(x|C)|13 < t.
As required, x — 2E(x|S,) € A.O

3. Monotonicity of power functions. We assume independent random
samples from each of & normal populations. Denote the sample items by X,
i=12,...,k j=12,...,n; the sample means by X,, i = 1,2,..., k; and the
population variances by o2, i = 1,2,..., k, so that X; ~ n(u;, «; ') with o, =
n,/e?, i=1,2,..., k. Let < be a quasiorder on {1,2,..., k} and assume that
H, denotes the closed, convex cone {x € R*; x; < x; whenever i < j} as well as
the hypothesis that p = (g, pg,-.., p) € H,. We consider LRT’s of the null
hypothesis H, against the alternative that p & H, (see Perlman (1969) and
Robertson and Wegman (1978)). If the population variances are known, then the
LRT rejects H, for large values of the statistic

Ty, =X — Ex(X|H))|% = IEs(X|H*)|%,

where X = (X,, X,,..., X,) and = denotes the diagonal matrix whose ith
diagonal element is w; for i = 1,2,..., k. If the population variances are un-
known but assumed to be equal, the LRT rejects H, for large values of

Sip = I1X = Ex(X1H) 1%/ [(N — k)(8%/0) + | X - Ex(X|H,)II%]
or, equivalently, for large values of

L12 = (N - k)Sm/(l - S12) = 02T12/62a
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where N = TF_ n; and 62 = (N — k)7'TF_ T (X;; — X,)% We will apply the
results from Section 2 to obtain results regarding the monotonicity of the power
functions of T}, and L,,. Robertson and Wright (1982; 1984) obtained analogous
results for the LRT s of Hy: p; = py = -+ = p, against the alternative H, — H,
(H, but not H,) using cone orderings and containment arguments like those
mentioned in the introduction. These containment arguments can be used to
show monotonicity of the power function of the test developed by Kudé (1963)
and the geometric approach used here provides no new information in these
cases.

The null hypothesis distribution of T, and S,, are given in Robertson and
Wegman (1978). The statistic, L,,, is an increasing function of S;, so that
critical values for L, can be found from those for S;,. Assume that we have
specified a significance level and found critical values ¢ for T, and ! for L, for
these tests. We denote the power functions of T}, and L,, by m5(pn) = B,[T}, > ]
and w{y(p) = P,[L,, > 1]. If we let fy(-) denote the density of 6°/0® then,
because X and 62 are independent,

mio(n) = [ “PITy > bl in(y) dy.

Hence, the monotonicity of #/,(:) will follow from that of #,4(-). Furthermore,
since m4(+) is invariant under translations by elements of H,, we need only
study 7,,(+) on the subspace S = {u € R*; ©*_ w,u; = 0}.

For k=2 and H, = {(py, ty): #; < py}, Ty, rejects for large values of
X, — X,. This test is known to be unbiased, uniformly most powerful, and ,(+)
is known to be nondecreasing in p; — p,.

For k=3, H = {p € R p; < py < p3}, and @, = w, = wy, one can employ
the techniques used by Bartholomew (1961) to obtain an expression for a,(-).
For p € S, Bartholomew considered the parameterization

(py = p)/V2 =AsinB,  (2pg— py — py)/V6 = Acosp.
With this notation,

—A?/2 o
ralp) = 2872 [77 %y (asing, 1) ds

2m B—a
+®(—Asin B — Vt)®(Acos B)
+®(—Acos(B + 7/6) — Vt )®(Asin(B + 7/6)),

where {(x, t) = (x®(x — Vt) + ¢(x — Vt))/p(x) and ® and ¢ are the c.d.f. and
p.d.f. of the standard normal distribution. Straightforward calculations yield

dmy 3t 1 T
oA = —¢(ﬁ)(zm—1ﬂ+§)00$(ﬁ—g),

which is negative for 8 € (—«/3,27/3) and positive for 8 € (27 /3,57 /3).
Figure 2 shows H/ = H, N S, H** and A’ = A(H*%, t) N S where A(H*>, t)

is the acceptance region for T,. It follows from the discussion following Lemma

2.2 that #,,(8) is nondecreasing for § € (— 00, 00) provided —p € H,. Applying

A=0
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B=5
p=-=2r
5
B=-5
Al
N;
/

H1*):

=%
FiG. 2.

Theorems 2.1 and 2.4, it follows that if p is in the larger set, H** & H,, then
7,2(0p) is nondecreasing for § > 0. Because A’ is symmetric for 2 = 3, one can
apply Theorem 2.1 to extend this result to 27 /3 < B < 57 /3. However, this type
of reasoning cannot be used for & > 3 since A’ is not symmetric for such k. Even
for k£ = 3 this result cannot be extended beyond [27 /3,5 /3] for the following
reasons: Using arguments like those given in the proofs of Theorem 5.3 of
Perlman (1969) and Theorem 3.4 of Barlow et al. (1972), it can be shown that
T9(8p) > 1 as 8 > oo for p & H,. Also recall that for B8 € (—n/3,27/3),
075/ 08| is negative so that = ,(8u) decreases for small but positive 8. Thus
75(+) is not monotonic for rays beginning at the origin for g € (—x/3,0) U
(7/3,27/3). We conjecture that in higher dimensions there are also directions of
monotonicity not given by these results, but because of the complexity of the
power function this cannot be verified by direct computations.

We now return to the general case (i.e., arbitrary k, quasiorder, <, and
weights, w,, w,,..., w,). The radial monotonicity of m,(+) is a corollary to the
following theorem.

THEOREM 3.1. If v € R* and p € H, then, as a function of 8, m,(v + du) is
nonincreasing for § € (— o0, 00) and m,(v + SEx(v|H}**)) is nondecreasing for
6> —1.
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ProofF. The first conclusion is a consequence of the discussion follow-
ing Lemma 2.2 by setting C = H**, u, = v and p = —p. For the second conclu-
sion, write v + SEs(v|H}**) = Ex(v|H,) + (8§ + )Es(v|H**), note that
(Es(v|H}**®), Ex(v|H,))s = 0 and invoke Theorem 2.4 with C = H** p,=
E<(v|H)) and p = Es(v|H**). The proof is completed by applying Theorem 2.1.

O

Because of the translation invariance of #,(:), the following result is an
immediate consequence of Theorem 3.1.

COROLLARY 3.2. If p € —H, then m,,(8) is nondecreasing for § € (— o0, 00)
and if p € H¥* ® H,, then m,,(8) is nondecreasing for § > 0.

It follows immediately from Corollary 3.2 that H, is least favorable within
H,. Also, the containment arguments show that ,(-) is nondecreasing along
rays in —H, and the geometric approach shows that m(-) is nondecreasing
along rays in H** ® H,. It is of interest to compare the sizes of —H, and
H¥* & H, for various partial orders. For the total order, 1 < 2 < -+ <k,
Hy*={x e R} T\ wx;>0;i=12,...,k—1and Z%_ wx; = 0} (cf. Barlow
et al. (1972), page 49). Thus, —H, C H** @ H, and the containment is easily
seen to be proper. On the other hand, for some partial orders, the containment is
reversed. For example, for £ = 3 and the simple tree ordering (i.e., 1 < 2 and
1 < 3) and w, = w, = wy, H* is the region with 8 € [0,27/3] and H** is the
region with 8 € [77/6,37/2] so that — H, > H** & H,. It is interesting to note
that in some cases, the containment arguments, which make no assumption on
the underlying densities, provide stronger results than the geometric techniques
employed here.

4. Bias of the T, test. We now study the bias of the T}, test for the total
order 1 < 2 < .-+ < k. As we have seen, sup,c (1) = m(0) and from
Theorem 8.4 of Perlman (1969), we see that inf, ., m,(pn) = 0. Hence, we
consider the behavior of 7 ,(n) for p & H,. As noted previously, it can be shown
that lim; _, 7 ,(0n) = 1 for p & H,. We will partition the complement of H, into
several sets and examine the behavior of ,(:) on each of these sets. It follows
from the above observation that the supremum of 7 ,(-) over each of these sets is
one.

The set H, has 2¥~! — 1 faces and the complement of H, can be partitioned
into sets, each of which is paired with one of these faces. The infimum of y(-)
varies over the members of this partition. The idea is best explained by
considering an example. Suppose k = 3 and H, = {p € R% p, < p, < p,} and
keep Figure 2 in mind. The complement of H, is partitioned into the following
three sets:

E, = {x & H;; Ex(x|H,), = Ex(x|H,), = Ex(x|H,),} = (Hl*2 - {0}) ® H,,
E, = {x € H;; Ex(x|H,), < Ex(x|H,), = Ex(x|H, )3},
Ey = {x & H;; Ex(x|H,), = Ex(x|H,); < Es(x|H,);}.
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E, is paired with H,, E, is paired with the face 8 = 7/3 and E, with the face
B =0.If u € E,, then letting v = p in the second part of Theorem 3.1 we find
that inf, . ; 7,5(p) = 7,5(0), which is the significance level of the test.

Suppose p € E,. Using (2.1) and a straightforward argument, it is easy to see
that for § > —1, Ex(p + 8Ex(u|H,)|H,) = (1 + 8)Ex(p|H,) and thus the points
p+ 8Es(p|H,) with § > —1 are all in E,. Incidentally, this also implies that
they are all equidistant from H,. Then, using the first part of Theorem 3.1 it
follows that 7,,(p + 8 Ex(u|H,)) is nonincreasing in 8. On the other hand, using
the second part of Theorem 3.1, it follows that for 0 <8 <1 and v € R%,
o Es(v|H))) < mo(v — SE5(v|H**)) < 7,,(v). Applying the second observation
with v = p + 8Eg(p|H,), it follows from the first observation that inf, ¢ pmo(p)
can be obtained by taking the infimum of lim_, 7,,(8p) over all u in the face of
H, corresponding to E, (i.e., p; < p, = p,). However, for such a p, as 8 — oo the

probability that X, < X, A X, converges to one so that
Jim mo(8u) = P{IX —Ex(XIG,)I13 > ¢],

where C, = {x € R® x, < x,} and the probability on the right-hand side is
computed under the assumption that u, = p,. It then follows from Corollary 2.6
in Robertson and Wegman (1978) that inf, ., m5(p) = P[x} > t], where x?
denotes a standard chi-squared random variable with one degree of freedom. A
similar result holds for E,.

For arbitrary % the infimum over each member of the partition of the
complement of H, is equal to lim, _, ,,(8p), where p is an element of the face of
H, corresponding to the set under consideration. Each of these limits is equal to
P[||X — E5(X|C)||2 > t], where C imposes the order restriction only between
adjacent pairs that are equal in the face of H,. For example, if £ = 4 and the face
is {x; x; <x,=2x3=2x,} then C = {x; x, < x5 < x,}. Each of these limits is a
weighted average of chi-squared variables from Corollary 2.6 in Robertson
and Wegman (1978). The smallest of these limits corresponds to a C that
imposes the fewest number of restrictions (i.e., only one). Thus, for any k,
inf, . ymy(p) = 3P[x] > t] where ¢ is the critical value of the test.

This infimum is not zero for any %, but does get small fairly rapidly as %
grows large. For various a, the critical values of the test are given in Table 2.1 of
Robertson and Wegman (1978). The values of inf, , ymy(p) for a = 0.05 are

TABLE 1
E Critical Value SPIx3 > t]
3 4578 0.01620
4 6.175 0.00648
5 7.665 0.00281
6 9.095 0.00128
7 10.485 0.00060
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given in Table 1 for 2 = 3,4,...,7. Thus, even though inf, ; ym(p) > 0, the
amount of bias in the test based upon T), is sizable even for moderate values
of k.
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