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LOCAL CONVERGENCE OF EMPIRICAL MEASURES IN THE
RANDOM CENSORSHIP SITUATION WITH APPLICATION TO
DENSITY AND RATE ESTIMATORS

By HELMUT SCHAFER
University of Heidelberg

In this paper, we study the local deviations of the empirical measure
defined by the Kaplan—Meier (1958) estimator for the survival function. The
results are applied to derive best rates of convergence for kernel estimators for
the density and hazard rate function in the random censorship model.

1. Introduction. In the random censorship model, instead of the random
variables T, of interest, one observes variables X; = min(7}, C;) and indicators
8, = I(T; < C;), i € N. The T, are i.i.d. and nonnegative, and so are the censoring
variables C;. T; and C; are assumed to be independent for all i.

In this situation, the product-limit estimator F, introduced by Kaplan and
Meier (1958) is widely used to estimate the distribution (survival) function
F(x) = P(T > x) from the observations. Foldes and Rejto (1981) proved strong

uniform convergence of this estimator with rate of O(j/log(n)/n). In many
applications, however, the convergence of the empirical measure dF, is only
needed locally, i.e., on intervals I, C R with probability mass p, tending to 0 as
the sample size n increases. Exploiting the faster decrease of the variance of
J1, dF,, it is possible to derive smaller rates of convergence on such sets of
intervals. For the empirical probability measure defined by i.i.d. random varia-
bles, Stute (1982a) proves sup;, ;¢ < , | f; @F, — [; dF| = O(/p,log(n)/n) as. un-
der appropriate conditions on the sequence p, — 0, where the sup is taken over
all intervals I C R with probability mass < p,.

In the present paper, we show that this result remains true for the
Kaplan-Meier estimator F,, in the random censorship model. In other words, we
study the local oscillation behaviour of a certain empirical process F,(t) — F(t),
t € R, having dependent increments. The estimator H, for the cumulative
hazard function H(x) = [§(dF(¢))/(F(t)), introduced by Nelson (1969), may be
treated the same way. Indeed, the Kaplan-Meier estimator is even somewhat
clumsier.

In Section 3, these results are applied to kernel estimators for the density
function f and the hazard rate & of T. In a general form, these estimators may
be written as

ful%) = [RINOK((x = £)/R,(2)) dF,(1)
(for density estimation) with a kernel function K integrating to 1 and a random
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process R,. For deterministic fixed bandwidths R, (t) = d,, — 0, asymptotic
properties of hazard rate estimators were studied by Ramlau-Hansen (1983),
Tanner and Wong (1983), and Yandell (1983). Tanner (1983) showed pointwise
consistency for random bandwidths R, depending on the point of interest x.
Schafer (1985) proved strong uniform consistency for an estimator with band-
widths depending on the sample point

R,(t) = inf{r > O|F(¢t — r/2) — F(t + r/2) 2 p,}

(p, — 0 again a sequence of positive real numbers), modelled upon the variable
kernel estimator of Breiman, Meisel, and Purcell (1977) and Victor (1976).

It is well known that kernel estimators (with fixed bandwidths) converge
uniformly with a rate of O(ylog(n)/(np,) + p,) in the uncensored case (Silver-
man (1978); Stute (1982b)). We show that the same rate holds for randomly
censored data, taking the example of the aforementioned data-adaptive estima-
tor, which has found little attention in the literature. We remain in the context of
density estimation. For hazard rates, simply replace the Kaplan—-Meier estimator
F, by the Nelson estimator H, and apply the corresponding convergence result.

2. Notation and assumptions. We make the usual general assumptions:
The distribution (survival) functions F(x) = P(T > x) of T and G(x) = P(C > x)
of C and the subsurvival function F(x) = P(X > x and & = 1) are contin-
uous. The results are restricted to an interval [0, B] with B such that
0 < F(B)G(B) < 1. T is supposed to have a density function f which is positive
and bounded on [0, B] (ie., 0 < m < f < M) and satisfies a Lipschitz condition
|f(x) = f(¥)| < Lylx = y| for x, y € [0, B].

For density estimation, the kernel function K is assumed to have compact
support on [ — 1, 3], to integrate to 1, and to satisfy also a Lipschitz condition
with constant denoted by L. (This might be replaced by monotonicity condi-
tions, for example.) The sequence (p,) must be chosen such that p, —» 0 and
np,/log(n) — co.

In the absence of ties, the Kaplan—Meier estimator is well defined by

F(x) = IT (N(X)) - 1)/N(X))",
X =x

with N (x) = X7 ,I(X; > x) the number of individuals at risk at time x — 0. We
denote by G,, the corresponding estimator for the censoring curve G, obtained by
substituting 1 — 8, for 8;. F, denotes the canonical estimator for F defined by
F(x) =1/nX 8,I(X; 2 ).

Finally, by abuse of notation, we write F(A) = [, dF for the measure defined
by any distribution function F.

3. Local convergence of F,. Clearly, representing F, as a sum of random
variables suitable for approximation by i.i.d. ones is basic to the aim of investigat-
ing local properties of F,. An easy transformation of F(X;, — 0) — F,(X,)) for
an uncensored observation X, using the above definition of F, yields the
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representation
dF, = G;' dF,,

which is fundamental to our procedure. We will approximate dF,, by
dF* = G~ dF,

using the result by Foldes and Rejto (1981) cited in the introduction.

THEOREM 3.1. For0<p<land 0<e<]1,

P( sup |EX(I)— F(I)|> e) < Ce'zexp(—CneZ(p +e)7h),
F(h<p
with constants C only depending on F and G. The sup is taken over all intervals
I c [0, B] with mass less than or equal to p.

ProoF. For a fixed single I c [0, B], FX(I) — F(I) is the mean Y, of niid.
random variables distributed as Y= G YT)I(T < C)I(T € I) — F(I). The
calculation of the expectation and the variance is straightforward (use the
independence of T and C and .. ,G"(¢t) dG(c) = 1):

E(Y) =0,
o= var(Y) = [,G~(¢) dF(t) — F(I)* < bF(I),
Y| < b,

where b := G~ !(B). In this situation, it is standard to use the exponential bound
P(|Ex(I) — F(I)| > ¢) < 2exp(—ne?/2(o? + be))

derived from the inequality of Bernstein (1924) as cited by Bennett (1962).
Now consider the finite system of compact intervals

S = {[F ), F'(je)lli=0,...,e  +1; j=4i,...,i + pe* + 3}.

(Take the integer part of ¢!, pe~! and always F~(ie) < F~'(je) < B).

Since F(I) <p + 3¢ for every I €S, and so o2 < bp + 3be, and since
card (S) < const/e?, we obtain the desired exponential bound for
P(sup; o g|FX(I) — F(I)| > ¢). It remains to remark that the inverse of this last
inequality implies |F,*(I) — F(I)| < 3¢ for all intervals I with F(I) < p: Indeed,
for such I there exist I}, I, € S with [, cIc I, and F(I,) —2¢e < F(I) <
F(I) + 2¢.0

COROLLARY 3.2. Letp, — 0 with np,/log(n) - oo. Then

(1) sup |FX(I)— F(I)|= 0(log(n)1/2p,1,/2n"1/2) a.s.,
F(I)<p,

(2) sup |F,(I) - FX(I)| = O(log(n)'*p,n""2) a.s.
F(I)<p,

Again, the sup are taken over all intervals with mass < p,,.
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PrOOF. The condition on p, implies p, + log(n)"?pY?n~'% = O(p,). (1)
then follows from the theorem by Borel-Cantelli. For (2),

[FD) = EXI)| = [ 16;" - G| dF,

= [ 161 - G7GdF¥ < sup|G, — GIG; (B)FX(T).
1 I

By Theorem 3.2 of Foldes and Rejto (1981), sup,|G, — G| = O(log(n)/2n~1/2)
and G;}(B) = b + O(log(n)'/2n"1/2). By (1),

FX(I) = p, + O(log(n)"*p¥/*n"1/2) = O(p,).0
4. Convergence results for the variable kernel estimator. Let r(¢) =

inf{r > 0|F(t — r/2) — F(t + r/2) = p,} be the deterministic analogue of the
bandwidths R ,(t) defined in Section 1, and define

fix) = [ (6K ((x = )/r,(8)) dE(2)
and

12(x) = [ro (K ((x = 6)/r(t)) dE ().

THEOREM 4.1. Let 0 < a < b < B. Under the conditions assumed in Sec-
tion 2

(3) sup [f(x) = fX(x)] = O(log(n)*n"?p /%) a.s.,
(4) S[llp |£X(x) — £2(x)| = O(log(n)*n" V0, V?) a.s.,
(5) es[up [f2(x) = f(x)] = O(p,).

Proor. The following statements are valid uniformly in x € [a, b] (con-
stants depend on f and K only) for large n, and with probability 1 as far as
random variables are involved. The result of Corollary 3.2. is used for 2Mp,/m
(see Section 2 for notations) in the place of p,:

(*) sup  |F,[x, y] - F[x, y]| < Clog(n)"*pY/?n"1/2.
'x_y'§2Mpn/m

The sequence on the right-hand side will be denoted by ¢, in the following. Note
¢,/D, = 0 by hypothesis on p,. For x € [a, b], put a, (x)=x—2p,/m,
by(x) =x + 2p,/m, and I (x) = [a,(x), b,(x)]. Since, for example,
F([x, b,(x)] =z 2p, and, by (*), F,[x, b(x)] > p,, we get |x — t| > r,(t)/2 and
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|lx — ¢ > R,(t)/2 for t & I(x). Due to Supp(K) c [~ 1, 1], the 1ntegrals defin-
ing f(x), fX(x), and f2(x) may thus be restricted to integration over I (x).
(3) (*) implies
nf E [t = 5(r(8) + en/m),t + 5(r(6) + e/m)] > p,
€ ’
and the corresponding upper bound for the interval defined by subtracting ¢,/m.
Hence, by definition of R (), sup,c,, 5|R(¢) — ()| < &,/m. In combination
with boundedness of r,(¢)/p, and of K, and the Lipschitz condition for K, this
shows
sup IR, (K ((x = )/Ro(8)) = (DK ((x = 0)/r(0))] = Olenp, )
tel,(x
(insert the mixed term r, '(¢)K((x — t)/R,(t))). This difference has to be in-
tegrated over I,(x), so (3) follows by F,(I,(x)) = O(p,) (use (*) again).

(4) We abbreviate kX(¢) = r, (t)K((x — t)/r(t)) and aX(t) == F,[a,(x), t] —
Fla,x),t] for t € I (x). Obviously, |r(¢) — r(s)| < |t— s|/forall ¢, s € [a, bl
Combined with I,z P./M, this implies that the total variation V; (1, 1 of
1/r, over I (x) is bounded by 4M?/mp,. Repeated application of the for-
mulae V(uv) < sup|u|V(v) + sup|v|V(u) and V(K °u) < Ly - V(u) leads to
Vi (k5%) = O(p, !). Now, by the standard argument using signed measures and
integration by parts,

| fa(x) = £,2(x)| =

k(0) dazw[

‘/;(x)

n

l— J, a0 dk:(t){

sup |“fz(t) IVI,,(x)(kﬁ)-

tel,(x)
The above bound for V(k%) and (*) for the first factor complete the proof.
(5) The Lipschitz condition for f yields the further approximation

sup |p,/f(x) — r,(¢)| = O( p?)

tel(x)
for the bandwidths. Now write

f(x) = [ (1(2)/p)E((£(x)/p)(x = £))f(x) dt
I(x)

IIA

and
Bx) = [ OK(R X0 - 0)1(2) de
and use this approximation together with | f(¢) — f(x)| = O(p,) for t € I (x). O
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