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BAYESIAN STATISTICAL INFERENCE FOR SAMPLING A
FINITE POPULATION!

By ALBERT Y. Lo?
SUNY at Buffalo

Bayesian statistical inference for sampling a finite population is studied
by using the Dirichlet-multinomial process as prior. It is shown that if the
finite population variables have a Dirichlet-multinomial prior, then the post-
erior distribution of the unobserved variables given a sample is also Dirichlet-
multinomial. If the population size tends to infinity (the sample size is fixed),
sampling without replacement from a Dirichlet multinomial process is equiv-
alent to the iid sampling from a Dirichlet process. If both the population size
and sample size tend to infinity, then given a sample, the posterior distribu-
tion of the population empirical distribution function converges in distribu-
tion to a Brownian bridge. The large-sample Bayes confidence band interval
are given and shown to be equivalent to the usual ones obtained from simple
random sampling.

1. Introduction. In an important article on sampling a finite population
from a Bayes viewpoint, Ericson (1969) showed that if the prior distribution of
the number of population variables belonging to the jth category, j = 1,..., &, is
Dirichlet-multinomial (Mosimann (1962)), the posterior distribution of the num-
ber of unobserved population variables (given the observed ones) belonging to
each category is also of the same type. The same result was also obtained by
Hoadley (1969). Scott (1971) proved that the centered and rescaled posterior
distribution converges to that of a normal random vector for arbitrary priors. In
this note, we extend these results to the case of arbitrary population variables.
This is accomplished by using the Dirichlet process introduced by Ferguson
(1973). In Section 2 we define the Dirichlet-multinomial process, extend the
Ericson-Hoadley theorem, and show that the Dirichlet process is the limit of the
Dirichlet-multinomial process. In Section 3, we prove that the large-sample
posterior distribution of the population empirical distribution, centered and
rescaled, is a Brownian bridge with a change of time scale. As corollaries, the
large-sample Bayes confidence band for the population empirical distribution
function and the large-sample Bayes confidence interval for the population mean
are obtained. Some difficulties in Binder (1982) are resolved.

2. The posterior distribution. Let F' be a Dirichlet process on a complete
and separable metric space R with index measure a (see Ferguson (1973)) denoted
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by F ~ D(a), and given F and any positive integer N, let X,,..., X, be an iid
sample from F. The marginal distribution of X,,..., X5 is symmetric and
depends upon N and «. We denote this by X,,..., Xy ~ DM (N; a). Let
{1,..., N} = 8 + S where S N S = ¢ and let the number of elements in S be n.
Denote N — n by m. Let

N
(2.1) N(')=E8x,(')=m(')+n(~),

where m(-) =X, cs0x(-), n(-) =X,cg0x(-) and §, is a point mass at x.
Let F( ) =n"1n(-) be the empirical distribution functlon of {X,,s € S]}. Let
Hy(-) = N7IN().

DEFINITION 2.1. Suppose Xi,..., Xy ~ DM (N; a). Denote the distribution
of N(-) by DM(N; a).

The conditional distribution of {X,, s € S} given {X,, s € S} is characterized
by the following theorem.

THEOREM 2.1. Suppose X,,..., Xy ~ DM (N; a). Then given {X,, s € S},
{X,,s € S} ~ DM (m; « + n(-)). Hence m()|{X,, s € S} ~ DM(m; a + n(-)).

PRrOOF. Since X,,..., Xy is exchangeable, {X,,i € S}|{X,,i € S} =, {X
n+1<i<N}|{X,1<i<n}. Hence, F|{X,,1<i<n}~D(a+ n(-) im-
plies {X,,i € S}|{X,,i € 8} ~ DM (m; a + n(-)). O

The following result gives the posterior distribution of m(-) restricted to a
subset of R and is equivalent to Theorem 5.3 of Hoadley (1969). The proof is
inserted for completeness. Let B be a measurable subset of R. For any measure p
on R, let ug be the restriction of u to R — B.

THEOREM 2.2. Suppose X,,..., Xy ~ DM (N; o). Then given {X,, s € S}
and m(B), mg(-) ~ DM(m — m(B); ag + ng(+)).

Proor. Suppose { X, s € S} is given. Then F ~ D(a + n(-)), Fz/F(R — B)
~ D(ag + ng*)), and {X,, s € S}|F are iid F. Hence, given F and m(B), the
X_’s with s € S which do not fallin B areiid Fz/F(R — B). Since Fy/F(R — B)
is independent of m(B), Fyz/F(R — B)|m(B) ~ D(ag + ng(-)). The last two
statements imply the result. O

Theorem 2.1 specializes to the Ericson-Hoadley theorem as can be seen as
follows: Let A,,..., A, be a partition of R, i.e., partition R into k categories.
Then N(4;), j=1,...,k is a Dirichlet-multinomial vector with parameters
N; a(A)), j=1,..., k in the sense of Ericson (1969) and a compound multi-
nomial vector according to Hoadley (1969). Since given {X,, s € S},
{X,,s € .§} ~ DM (m; a + n(-)) by Theorem 2.1, the posterior distribution of
m(A;), j=1,...,k, given {X,, s € S} is a Dirichlet-multinomial vector with
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parameters m; a(A)) +n(Ay), j=1, , k. The last statement with
a=73k 5-1a;8, where y,, j=1,..., k are the (dlstmct) categorical values of the
population varlables and ;> 0 1mp11es the result of Ericson and Hoadley.

The next result states that sampling without replacement from a finite
population with a Dirichlet-multinomial prior is equivalent to the iid sampling
from a Dirichlet process if the population size is large. Denote convergence in
distribution of random variables by —; .

PROPOSITION 2.1. Let M, ~ DM(n; a). Thenn™' M, -, F where F ~ D(a).

Proor. Let F ~ D(a) and given F, Y,,...,Y, are iid F. Then Y76y, ~
DM(n; a). Let H, = n™'L8 v, For each (measurable) subset A of R and each F
P{H (A) > F(A)[F} =1. By Fubini’s theorem H,(A) —» F(A) as. and simi-
larly, H (A Y, J= ,k—>F(A)), j=1,...,k as. for each collection
(A, = kY. It follows that H A, J=1.., k>  F(A), j=1,..., k.
Since R is a complete and separable metrlc space, Theorem 3.17 in Matthes,
Kerstan, and Mecke (1978) implies the distribution of H, converges to that of F.
O

The above proposition together with Theorem 2.1 can be used to obtain some
Bayes estimates of Ferguson (1973). For example, since m(:)|{X,,s € S} ~
DM(m; a + n(-)), by Proposition 2.1 and for a fixed sample size n,

(22) E[Hy(A)X,, s € S] > E[F(A)X,, s € S],
and if f|x|a(dx) < oo,

(2.3) E[foN(dx)|Xs,seS] —»E[fo(dxnxs,ses ,

where F given {X,, s € S} is a Dirichlet process with index measure a + n(-).
Hence,
a(A) n .

(2.4) E[F(A)X,,s€ 8] = «(R) ——+ (R) +nFn(A),

and if [|x|a(dx) < oo,

1 n
(2.5) E[fo(dx)|X2,s e s] T n/xa(dx) AT
where X is the sample average. If the X’s can only take values in a finite set,
Ericson (1969, pages 212 and 213) established the above results by computing the
posterior means of functionals of H), first and then letting N — oo for a fixed n.
His expressions for the posterior means are applicable in our case as well (with
obvious change of notation) and will not be reproduced.

3. The large-sample posterior distribution. Our next result deals with
the large-sample posterior distribution of Hy,. In the following, we assume that R
is a finite g-dimensional cube in a Euclidean space, say R = [0,1]9. For brevity
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we denote p((0, x]) by p(x) for any measure p on [0,1]7 and for each x € [0,1]9.
We first compute the posterior mean and variance of Hy(x) = N™'ZMI; X, <x]
where < is the coordinatewise inequality.

Since N(:) ~ DM(N; a) and Hy(:) = N7!N(-), from Mosimann (1962) or
Ericson (1969) we find

E[Hy(x)X,,s €8] = WT:‘)TT)
(3.1)
a(R) + N)sg 8x (x) + ma(x)
and
var[ Hy(x)|X,, s € S]
m\[a(x) + Z:ses‘sx‘g(?")
(3.2) N (z‘v—z)( «(R) + n )
a(R) —a(x) +n—X,cs0x(x) | N+ a(R)
X( a(R) +n 1+n+a(R))

Let us denote the centered (at ") and rescaled Hy by Y,,,,, i.e.,

(o) = {2 ) (Hy(x) - B(x))

(3 = (%) v imio) - By()
= F(2) + (),
where
Tol) = (5] () - Byto))
(3.40) ) = () B - ),
F(x) = ) " f(x).

“aR)+n «B) +n

The main result of this section is that Y, () coverges in distribution to
a Brownian bridge on [0,1]? This convergence can be established by showing
that ¥, (-) converges in distribution to the same limit since sup,|e,, ()| <
2a(R)n‘ 172, We first establish the tightness of ¥, (-). Denote weak convergence
of measure by = .

LEMMA 3.1. Given {X,, s € S}, the sequence {Y,,,} is tight in D[0,1]7 if F is
continuous and F, = F.
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ProOOF. Denote a(R) + N by ay and a(R) + n by a,. We use the fluctua-
tion inequality of Bickel and Wichura (1971) to show tightness. Let B, C be two
neighboring blocks; then

5) ETRBIEO) = (5| B{lm(B) - mE (BT

XE[(m(C) - mF,(C))’im(B)]},

where E denotes conditional expectation given {X,, s € S}. Let A = (B + C)“.
According to Theorem 2.2 (or Theorem 5.3 of Hoadley (1969)), given m(B), the
joint distribution of m(C) and m(A) is a Dirichlet-multinomial vector with
parameters m — m(B), n(C), and n(A). Therefore the moment expression in
Mosimann (1982, equation (15)) can be applied to obtain

E[(m(C) - mF,(C))im(B)]

m-m ()
- | [ mic) - "R inc)
F(c )
{[m m(B)]F(T(-I-_)E'_)_ an(C)}
(3.6) i , F(C) 1+ a,F(C)
= [mF,(B) — m(B)] F(A+C) [1 +a,F (A + C)]

E(C)E(A)
F(A+C)1+a,F(A+0))

+[mF(B) — m(B)](ay + m)

aNan(C)Fn(A)
1+a,F(A+C)’

Hence,

E{[m(B) — mF,(B)]*[m(C) — mF(C)]*)

E(C) 1+a,F,(C)
F(A+C)1+a,F(A+C)

(3.7) —E[m(B) — mF(B)]*(ay + m)F(A T CF;((IC-?-FL":(E)(A +C))
, aymE(C)F,(A)
1+ anFn(A +C)

= E[m(B) — mF,(B)]"*

+E[m(B) — mF,(B)]

=1+ 1II+ III.
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From Johnson and Kotz (1969, page 231), we find

e =

X {(ay+ m)(ay+2m)[1 — 3F(B)F,(A + C)]
+a,(m-1)[1+ 3ayF (B)F,(A + C)]},

E[m(B) — mF,(B)]® = mF,(B)F(A + C)( ay )

a,+1
(3.9) ay+m
( o )[F‘n(B) - F(a+0)],
and
(3.10) E[m(B) — mF,(B)]* = mF(B)F,(A + C)( ana-:’ ] )

Substitute (3.8) into I to obtain

I< 3( a”m)zﬁ,,(B)Fn(c) ifm>2andn> 2.
Similar substitutions for II and III yield
I < 4( a::n)zﬁ'n(B)F‘n(C)
and
I < (azm)2ﬁn(3)ﬁ,,(0).
Thus "

I+II+1III <13
a

2
| )R (0),

implying EY?2(B)Y2,(C) <13 (1 + a(R))?’F(B)E,(C), provided m > 2 and

n > 2. By the extended version of Theorem 3 in Bickel and Wichura (1971),

{Y,,.,.} is tight. O

Let B(x) be a Gaussian process with zero means and covariance cov (B(t),
B(s)) = F(min (¢, s)) — F(¢)F(s) where the minimum is computed coordinate-
wise.

THEOREM 3.1. Suppose F is continuous and ﬁ'n = F; then given {X,, s € S},
Y,..(-) =, B(:) in D[0,1]? as m — o0 and n — oo.

PrRoOF. According to Scott (1971), the finite dimensional conditional distri-
bution of Y,,,(-) converges to that of B(-). Hence, the finite dimensional
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conditional distribution of Y,,..(+) also converges to that of B(-). An application
of Lemma 3.1 entails Y,,,(-) =, B(:), implying Y,, () =, B(-). O

If ¢ = 1, Theorem 3.1 and the continuous mapping theorem can be applied to
give the following corollaries:

COROLLARY 3.1. Under the assumptions of Theorem 3.1,

(3.11)  lim P{ sup |Y,,.(¢) > N X,,s € S} =2Y (—1)/" e 2¥,

m,n—o 0<t<1 Jj=1

According to Corollary 3.1, a (1 — «) large-sample Bayes confidence band for
H, is given by

1 F o+
(3.12) - P

1-— f)1/2

where 1 — f =1 — n/N is the finite population correction factor (fpc) and A is
the (1 — a)-percentile point of sup,|B(s)| defined by 257 (—1)/*! exp"2/"") = a.
Deleting the fpc, the last band becomes the Kolmogorov—Smirnov band obtained
by Lo (1983) using a Dirichlet prior and iid sampling.

COROLLARY 3.2. Suppose lim,_, (n — 1)7'X, c (X, — X)? = o2 Under the
assumptions of Theorem 3.1,

Nn\1/2 _
lim P{(—;—) |szN(ds) - X| <\X,,s€ s}

m,n— o

= (2wo2)_1/2f_)\)\exp(— %(g)z) dx

Corollary 3.2 partly extends the corollary of Scott (1971), who established the
result for more general priors, but under the restriction that the X’s can only
take values in a finite set.

(3.13)

REMARK 3.1. The conclusion of Corollary 3.2 also appears in Binder (1982,
Section 2). However, Binder’s argument is based on a result of Scott (1971) and
does not work: The definition of A, there implies that & grows with the sample
size whereas Scott’s result is applicable for a fixed & only.

An immediate consequence of Corollary 3.2 is that a (1 — a) large-sample
confidence interval for the population mean [sHy(ds) is given by

1-— f)1/2

n

(3.14) X+ AS,,(

where S2=(n— 1), 4(X, — X)? is the sample variance and A is the
(1 — a/2)-percentile point of a standard normal random variable. This large-sam-
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ple Bayes confidence interval coincides with the well known large-sample con-
fidence interval for the population mean from simple random sampling (Cochran
(1977)). Deleting the fpc, the last interval coincides with the usual large-sample
sample theorist confidence interval for a population mean obtained from iid
sampling.

4. Concluding remarks. The results in the previous sections can be applied
to stratified population models. The idea is that each stratum can be treated as
an independent population model and a Dirichlet-multinomial prior can be
assigned to the population variables of the stratum in question. If the priors for
different strata are assumed to be independent, the results in the previous
sections hold for each stratum. These can be applied to justify the large-sample
result in Binder (1982, Section 2.3).
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