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THE SHAPE OF BAYES TESTS OF POWER ONE!

By Hans RUDOLF LERCHE
University of Heidelberg

The problem of determining Bayes tests of power one (without an
indifference zone) is considered for Brownian motion with unknown drift.
When we let the unit sampling cost depend on the underlying parameter in a
natural way, it turns out that a simple Bayes rule is approximately optimal.
Such a rule stops sampling when the posterior probability of the hypothesis is
too small.

1. Introduction. Let W(t¢) denote Brownian motion with unknown drift
0 € R and P, the associated measure. We consider the following sequential
decision problem. Let F' be prior on R given by F = y8, + (1 — v)[/¢(/r8)Vr dé
with 0 <y < 1 and ¢(x) = (1/ V27 )e *'/2, consisting of a point mass at {§ = 0}
and a smooth normal part on {6 + 0}. Let the sampling cost be 62, with ¢ > 0
for the observation of W per unit time when the underlying measure is P;. We
assume also a loss function which is equal to 1 if § = 0 and we decide in favor of
“8 # 0” and which is identically 0 if # # 0. A statistical test consists of a
stopping time T of Brownian motion where stopping means a decision in favor of
“0 +0.”

The Bayes risk for this problem is then given by

(1.1) o(T) = yP(T < o) + (1 - y)c[_“’ 9°E,To(Vr0)Vr db.

In this paper we investigate the “optimal” stopping rule T,* which minimizes
p(T). .

For the cost c sufficiently small, T* is a test of power one for the decision
problem H,: § = 0 versus H;: § # 0. This is by definition a stopping time T
which satisfies the conditions

(1.2) P(T < ) <1,
(1.3) P(T<w)=1 ifd+0.

Here stopping also means a decision in favor of “# # 0.” For a discussion of tests
of power one see Robbins (1970). A similar problem has been studied by Pollak
(1978) who assumed an indifference zone in the parameter space. The type of
prior assumed here was once proposed by Jeffreys (1948).

A basic idea of this paper is to let the sampling cost depend on the underlying
parameter in a natural way. At the first view the cost term “c6?” has an unusual
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structure. The factor 62/2 is the Kullback-Leibler information number
Eylog(dF, ,/dPF, ;) which quantifies the separability of the measures F, and F,.
Its meaning becomes apparent by the following consideration. Let us consider
two testing problems with simple hypotheses:

(1) Hy: 6 =0 versus H;: 6 = 0,
(2) Hy: 0 =0 versus H;: 0 =0,

with 6, > 0, i = 1,2. Let ¢;, i = 1,2 denote the sampling lengths. Then the level-a
Neyman-Pearson tests for both problems have the same error probabilities if and
only if 82¢, = 62¢,. [This follows from the power function of a Neyman-Pearson
test of level a: ®(—c, + 6vt).] Thus the factor 2 standardizes the sampling
lengths in such a way that the embedded simple testing problems are of equal
difficulty. Beside this statistical aspect there is a basic mathematical reason
for this choice of the sampling costs. Since in our decision problem (1.1) an
indifference zone does not occur and since E, T = oo [as P(T < o) < 1] we
have lim,_, ,E,T = co. More information about the singularity is provided
by a lemma of Darling and Robbins (1967) [see also Robbins and Siegmund
(1973) and Wald (1947), page 197]. It states that for every stopping time 7' with
P(T< o<1

(1.4) E,T > 2b/6%, where b = —log Py(T < ).
Equality in (1.4) holds for the special stopping rule

.. >eb).

dpP, ,

Here dP, ,/dP, , denotes the likelihood ratio (Radon-Nikodym derivative) of P,
with respect to P, given the path W(u), 0 < u < t. It is given by

(1.5) T, = inf{t >0

Py,

= = OW(t) — 16%t).
dP, , exP( (¢) - 3 )

According to (1.4) the expected sample size E,T of a test of power one,
considered as a function of # has a pole at § = 0. The choice of “c” or “c|0|”
instead of “cf?” would imply that tests of power one have an infinite Bayes risk
since

f|0|iE0T¢(¢?0)JF df=co fori=0,1.

A precise description of the pole of E,T is given by Robbins and Siegmund (1973)
and Jennen and Lerche (1982). The sampling costs “c#?” remove the nonintegra-
bility of the singularity of E,T for a large class of tests of power one, although
lim,_, (#%E,T = o still holds [by the corollary on page 102 of Robbins and
Siegmund (1973)]. For instance for all tests of power one defined by

T = int{¢ > 0||W(¢2)| = ¥(¢)},

where the function y(¢) is concave and ¢(¢) = o(¢>/3~¢) when ¢ — oo (with e > 0
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arbitrary small), the Bayes risk (1.1) is finite. This follows from the inequality
|0|E,T < ¢(E,T), which is a consequence of Wald’s lemma and Jensen’s in-
equality. Therefore by the choice of the sampling costs as “c62” the concept of
Bayes tests of power one becomes an interesting topic to study.

The related problem for simple hypotheses can be solved easily. The Bayes
risk given by

(1.6) p(T) = yPy(T < ) + (1 — v)cb?E,T,
using statement (1.4), is minimized by the stopping rule
(1.7) T* = inf{¢ > 0|W(t) > log a/0 + }6t)

with @ = y(2(1 — y)c) ! provided a > 1. In this case the minimal Bayes risk is
given by

(1.8) p(T*) =2(1 - y)c[loga + 1].

When a < 1, T* = 0, and p(T*) = y. (For more details see the end of the proof
of Theorem 2.) Here the choice of the sampling costs leads to a solution not
depending on 6. This becomes obvious when one expresses 7,* in another way. It
can be rewritten as

2
T* =inf{t t
= int{ > O(W(t), 1) < T2 -
where
Y
y(x,t) = dp,
v+ (1 -y)—5=(x)
)dPo,z(

denotes the posterior mass of the parameter “0” at (x, ¢) with respect to the
prior F = y§, + (1 — v)8. Thus T* has the intuitive meaning “stop when the
posterior mass of the hypothesis “0” is too small”. This is a simple Bayes rule or
equivalently the one-sided sequential probability ratio test (1.5).

The following study shows that a simple Bayes rule which stops when the
posterior probability of the hypothesis “6 = 0” is too small, is approximately
optimal for the risk (1.1). For precise statements see the Theorems 2 and 3 and
the corollaries. This simple Bayes rule is of the type (1.5) with a boundary equal
to

t+r

r

Y

(0) = [ (24 ) o] T

For large ¢ this boundary asymptotically grows like (¢ log ¢)!/2, which is faster
than the limiting growth rate (2¢ loglog ¢)'/2 of the law of the iterated logarithm.
As a consequence of our results the minimal Bayes risk can be approximated by
that of simple Bayes rules within o(c) when ¢ — 0 (Theorem 4). Simple Bayes
rules for the same type of prior which we use (Jeffreys’ priors) were already
discussed by Cornfield (1966).

Similar results hold for exponential families with general priors, although one
has to make a careful analysis of the overshoot effect following the ideas of

1/2
)+2logb)) , where b =
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Lorden (1977) to derive an o(c)-approximation for the minimal Bayes risk. The
results will be published elsewhere. The proofs for the case of exponential families
are more technical, since special approximation arguments are needed. The nice
feature of the Brownian motion case is, that most expressions can be calculated
exactly. Thus no approximations are needed and the proofs become simple.

This paper is organized as follows: Theorem 1 states the existence of an
optimal (Bayes) stopping rule T.*. Theorem 2 gives upper and lower bounds for
T.*, which makes it possible to derive its asymptotic shape when ¢ — 0 or ¢ — oo.
Theorem 3 refines these bounds, which yields the above mentioned o(c)-
approximation of the minimal Bayes risk. Theorem 5 treats the one-sided case.

The results have some meaning for sequential clinical trials. These aspects are
discussed in more detail in a subsequent paper. Historical facts are mentioned in
Lerche (1985). A further result connected with the costs c8? is the exact Bayes
property of the repeated significance test. For that see Lerche (1985, 1986).

2. Preliminaries. We need the following notations. The Brownian motion
W with drift @ starting at time ¢ in point x is understood as a measure P{* % on
the space C[¢, o0) of continuous functions on [¢, o0). %! denotes the o-algebra on
C[t, o0) which is generated by W(u), ¢ < u < s. The restriction of the measure
P{>Y on Z! is denoted by P§*%;*. This notation is also used for stopping times S
1nstead of ﬁxed times s. When the process starts at 0 at time 0, then we very
often skip the superindex and write just %, F, , etc. The Borel g-algebra on the
parameter space R is denoted by £. For F ¥8, + (1 — y)[Vro(/ro) de, let
dP = dP,F(d6) and dP = d([P,F(d#)) be its projection. Let F, , denote the
posterior distribution given that the process W(¢) = x. This means that for
AXBEF &R [4\Fy, AB)P(dW) = P(A X B) holds. Thus the Bayes risk
(1.1) can be rewritten as

1) o) = [ (Furr(0) + T [ 0%Fyir, (a0) ) oP.

Let P** denote the conditional distribution of the process under P given
W(t) = x. It can be represented as P9 = [P(*“F, (d#).

We define the posterior risk at the space-time point (x, ¢) for a stopping rule
T=>tas

Pt T) = [ [Fwrr((0)) + (T~ )
(2.2)
X f_°° 02FW(T),T(d0)) dP:),

The minimal posterior risk at (x, t) is defined as

(2.3) p(x,t) = intp(x, ¢, T),

where the infimum is taken over all stopping times of the process (W(s), s)
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starting at (x, t), including 7, = t. For T, the risk is given by
(2.4) v(x,¢) = p(x, ¢, T,) = F, ({0})

and therefore the inequality p(x, t) < v(x, t) holds. The quantity p(x, ¢, T') +
ctf0 2}7;, [(d0) represents the loss when the process runs without stopping up to
(x, t) and is stopped at T > ¢.

The following theorem states that an optimal (Bayes) stopping rule exists
which minimizes (2.1) and characterizes it. Let €*(c) = {(¥, s)|o(y, s) < ¥(, 5)}
and

(2.5) T = inf{s|(W(s), s) & €*(c)}.

THEOREM 1. The stopping rule T*(= t) of the space-time process (W(t), t)
minimizes the risk (2.2) for all starting points (x, t).

This type of result is well known. Its statement is usually called the principle
of dynamic programming. The result follows from the theory of optimal stopping
for Markov processes [cf. Shiryayev (1978), page 127] applied to the space-
time process (W(t),t). We note that W(¢) under the measure P is a dif-
fusion process which satisfies the stochastic differential equation dW{(t) =
1 = y(W(t), t)W(t)/(t + r)dt + dX(t) where X(t) is a standard Brownian
motion [cf. Liptser and Shiryayev (1977), page 258].

The stopping risk can be calculated by (2.4) as

y
(2.6) y(x,t) = v C
with
g(x,t) = _0; Z:::z(xw(\/?o)\/i d6
(2.7) = [7 exp(6x - 36%)6(Vro)Vr db

B \/—;ijexp( 2(tx: r) )

We note that on {6 # 0}

(2.8) F, (df) = (1 - y(x,1))G, (d6),
where
X 1
oo
’ t+r t+r

holds.

Here N(p, 0?) denotes the normal distribution with mean p and variance o2.
The exact calculation of the minimal posterior risk p(x, ¢) seems to be impossible
for this problem. We can only derive upper and lower bounds for it. To get those
we will rewrite the posterior risk in an appropriate form.
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LEMMA 1.
p(x,t,T) =y(x, )Pt < T < o0)

(2.9) +(1 - y(x, t))cf02Eéx’ T - t)G,, (db).

The posterior risk has the same form as the Bayes risk (1.1), with the slight
difference that the process starts in the space-time point (x, ¢), stops at T > ¢,
and has as prior F, , = y(x, t)§, + (1 — v(x, t))G, ,;, the posterior at the point
(x,t).

The proof of the lemma is a direct consequence of the preceding definitions
and of the following basic fact about posterior distributions: the posterior of
Brownian motion starting at (x, ¢) with prior F, , at point (W(S), S) is given by
Fys),s-

3. Results for two-sided tests. The continuation region % *(c) of the opti-
mal stopping rule for the Bayes risk (1.1) is now approximated by upper and
lower bounding regions of the space-time plane. These bounds are refined
in Theorem 3. The bounding regions are given by sets of the type
€)= {(x, Olv(x, 8) > A).

THEOREM 2. There exists a constant M > 2 such that for every ¢ > 0

o ‘) < w0 o =)

holds.

REMARK 1. Let T, = inf{t > O(W(¢), t) € ¥(A)}. Then (3.1) translates to
Trcsa+me < T < Thopaizo).

REMARK 2. The theorem holds also for the more general prior
Vro(Vr(6 - p)) dé

by exactly the same arguments.

Proor. At first we prove the lower inclusion of (3.1), which is the more
difficult part. We show that for all points (x, t) € ¥(Mc/(1 + Mc)) (M will be
specified during the proof) there exist stopping times S, , of the process
(W(s), s) starting at (x, t), such that

(3:2) p(x, L, S(x,t)) <y(x,t)

holds.
Since by definition p(x, ¢) < p(x, ¢, S, ), it follows from (3.2) and Theorem 1
that (x, t) € ¥*(c). We choose the stopping times as

Stx, vy = inf{s > tly(W(s), s) < Qc},
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where the constant @ > 1 will be defined below in such a way that Qc < 1. [In
fact the stopping times S, ,, all arise from the same stopping time 7,. by
changing the starting point of the process.] We need several representations of
S, 1, during the proof.

S(x t) 1nf{s > tIFW(s) s({O}) < QC}

dpPf%»
= inf{s > ¢ dT;““Gx’t(da) > b(x, t)
(3.3) 0.5
- t+r 1 W(s)® x? b(x. ¢
= — - >
miys > s+roP\ ol s+r  t+r]]” (x,8),
where

v(x, £)(1 - Q)
(1 - v(x,£))Qc’

The first equality holds by definition. The second equality follows by the
calculation

b(x,t) =

v(x, t)
FW(s),s({O}) = Y(x’ t) + (]_ — y(x, t))h(x, t,w, 3)

with

_Po(ac‘S t)

h(x7 t7 w’ S) = dP(x t) x t(do)

The third equality follows by the following calculation [note here that G, , =
N(x/t + r), 1/(t+ r)],

(x t)

dP‘x 5 .

(af)

= fexp(G(W(S) - x) — 6%(s — 1)) t2+77r

(t+r) x \2
o -0 55 a
=J(t+r) exp(— Ezt—i_%)feXPWW(s) — 30%(s + r))%

t+r (I(W(s)2 x? ))
= exp| — - .

s+r 2\ s+r t+r

We start now to estimate the posterior risk for S, ,, which is given according to
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Lemma 1 by

p(x,2, S<xvl)) = y(x, t)P=9(t < 8., < )
(3.4)
+(1 = y(x, t))cfﬂz(S(x’t) —t) dQ™?

with the new notation Q*?(dW, df) = P{*"(dW)G, [(df). We will also use
Q™ N(dW) = f ePo"" YNdW)G,, (dB) and will from now on simply write S in-
stead of S, ;). Then we get for the first term

Q 1—vy(x,t)
- Qe y(x,t)

This follows from a well known martingale argument [see Robbins and Siegmund
(1970), Lemma 1] by using (3.3):

(3.5) Px9(t<S < 0) = 1 =b(x,t) "

(x,1)

dF5s
Po(x,t)(t <S< So) = v/;t<S<s }Z‘_é.(s—x’t—)
0

=b(x,t) 'QEI{t < S <s,).

Since @* "t <S8 <s,) > 1 as s, > o (3.5 follows. We note that for
(x,t) € ¢(Qc), b(x,t) > 1 holds and that thus the probability in (3.5) is less
than one.

To estimate the second term of (3.4) we rewrite the integral. Since on %¢ we
have

dQ'(x, t)

w(S) 1
S+r’S+r

Q™ (dW, df) = N( )(da)@‘x’”(dW),

we get for the integral
[0%(S - £)dQ=0 = [6%(S + r) Q=" — [6%(t + r) dQ®=:"

= /fo?(s + r)N(Sz(f—r), gi—;)(d())d@x’”
(3.6)

—f02(t+ r)G, (df)

S

Using now the third form in (3.3) of the stopping rule S yields

W(S)2 x2
S+r t+r

s

2

w(s)? «x
7) f(S+r Ct+r

+r

_ S _
dQ0 = 2log b(x, t) + [ log( ) dQ=",

t+r
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Let a > 3. We show now that there exists a constant 0 < C, < oo with

(3.8) flog( St r) dQ9 < Ca[fo‘é’(s — ) dQ(x,n]V“

t+r
Then (3.6), (3.7), and (3.8) yield

1/a
(3.9) fﬂZ(S —t)dQ™"? < 2log b(x, t) + Ca[f02(S —t) dQ(’"”]
from which one can derive (3.2), as will be explained below.

The proof of (3.8) runs as follows. By using the inequality log(1 + x) < K x/*
for x > 0 we get by Hélder’s inequality

flog S+r d@(x,t):_ flog 1+ ,‘E_:_t_ dé(x,t)
t+r t+r
S—t\Ve _
J— (x,8)
SK“f(t+r) Q

(3.10) = K, [(62(S = 0))/*(62(¢ + r)) /" dQ®

< Ka[feﬂ(s ~ 1) dQ(""’]l/a

X [f(02(t + r))—l/(a—nGx,t(da)](a—n/a

But since G, , = N(x/(t + r),1/(t + r)) we get for a > 3
~1/(a-1) ~1/(a=1) 1
S0+ )G, ) s [(0%e 1) VN 0, o)

= [y /="IN(0,1)(dy) < .
We now put
(a=1)/a
G = K| [y N0, 1))
and get finally (3.8) and (3.9).
Let b > 1 be given. Then by (3.9) there exists a constant B > 2 such that for
all b(x,¢) > b
(3.11) f 02(S — t) dQ™" < Blog b(x, t)

holds. Now we choose @ = B/(1+ Bc) and M = bB. Then for (x,t) e
€(Mc/(1 + Mc)) we have

1-Qc y(x,t) v(x, t) Me
b(x,t) = Q 1—v(x,t) Be(1 — y(x, t)) 3

=b,
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and by (3.4), (3.5), and (3.11) we get further
p(x,t,8) < v(x,t)b(x,t) ' + (1 — y(x, t))Belog b(x, t)
= y(x, t)b(x,t) (1 + log b(x, t))
< vy(x,t).
The last inequality follows from the inequality x(1 + logx ') < 1 for x < 1 since

b(x, t) > b > 1. This proves (3.2).
Now we prove the upper inclusion. We show

2c
1+ 2¢’

This implies the upper inclusion of statement (3.1). The method of proof consists
in comparing the Bayes rule 7,* with the best rule if § were known.
For the Bayes rule T,* we always have

v(x,t) = p(x,t) = p(x,t, T*
=v(x, )Pt < T* < o)

+(1 - y(x, t))cf02(Tc* —t)dQ=?

= 7 Intw )P < T2 < o0)
— 00

(3.12) p(x,t) =vy(x,t) if y(x,¢) <

+(1 = y(x, 8))e8?Ef=(T* ~ 1)]G, (dF).

Let the process W start in x and let W(u) = z. Under the transformation
y=0(z — x), s = 0%u — t) Brownian motion with drift @ (resp. 0) goes over into
Brownian motion with drift 1 (resp. 0). With S, = §%(T.* — ¢) we get

= [ [v(x, )PSO 5 8, < ) + (1~ (x, ) cELS,] G, (do)

vV

int [+(x, )P0 < 8 < 00) + (1= ¥(x, £))BLOS] = p(, ).

But p(x, t) is the minimal Bayes risk of (1.6) with y = y(«, t). We determine now
its Bayes stopping set. By (1.4)

p(x, t) min (yp + 2(1 — y)clog p~?!)
0<p<1

=Ypo+ 2(1 — v)clogpy!
with p, = (2(1 — v)¢)/y A 1( p, denotes the stopping probability). Thus
2(1 —y)e\ ! 2(1 —vy)e
p(x,t) =201 - y)c[l + log((—Y)) } if —~(—Y) <1
Y Y
and
2(1 —vy)e

p(x,t)=v
”
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The Bayes stopping region is therefore equal to
{(x, t)|y(x, 8) = B(x,8)} = {(x, t)|y(x, t) < v},
where v, = 2¢(1 + 2¢) ™'y, is determined by the equation

2(1 —vy)c
p0=u=l.u
Yo

We now derive a refinement of the statement of Theorem 2. For this we need a
somewhat more general notation. If h(t) is a positive function of time we shall
denote by €(h(-)) = {(x, t)|y(x, t) > h()}.

THEOREM 3. For every ¢ > 0 there exists a bounded function &(-) > ¢ with

(a) &(t)/c —> 1 whent —> oo for every fixed c, and
(b) sup, < ;< ,&(t)/c = 1 when ¢ — 0, such that

( 2¢(-)

1+ 28(-)

(3.13) ) c @*(c) qg(

1+ 20)
holds.

The theorem states that for ¢ small or ¢ large the optimal stopping region is
very near to its upper bound €(2¢/(1 + 2c¢)). The proof of Theorem 3, which is
deferred to the end of this section, will show that the upper bound of &é(-)/c is a
bit larger than M /2 where M is the constant appearing in Theorem 2.

Several conclusions can be drawn from the theorem. Let ¥(¢) =
inf{x > 0|p(x, t) = y(x, t)}. By Theorem 2 this definition makes sense. Thus by
the symmetry of the problem

T = inf{¢||W(¢)| > y*(t)}.
COROLLARY 1.

t+r Y 1/2
\P:‘(t) = [(t-l- r) log(——r—) + 210gm + 0(1))}

when t - 0.

COROLLARY 2.

91 LA W s
o1 —v)e Og(

r) ; 0(1))]1/2

COROLLARY 3. For every ¢ > 0 there exists a ¢, > 0 such that

pa(e) = [(t +7)

uniformly in t when ¢ - 0.

Trcasesaszeasey < T < Thepasney foralley>c>0.
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We can combine Corollary 3 with some recent results about boundary crossing
distributions to get the minimal Bayes risk for (1.1) up to an o(c)-term. A related
O(c)-result for the Bayes risk has been obtained by Pollak (1978), when there is
an indifference zone in the parameter space.

THEOREM 4.
(3.14) 0 < p(Tye/q+20y) — P(T*) = 0(c) whenc— 0.
The minimal Bayes risk for (1.1) is given by
(3.15) p(T*) =2(1 — y)c[log b + Lloglog b + 1 + 1log2 — A + o(1)]

when ¢ — 0. Here

Y

b= Ty

and A = 2/°ologx ¢o(x) dx.
0

REMARK. Comparing statement (3.15) with the related formula (1.8) for the
simple testing problem shows that the additional term 2(1 — y)c[;log(2log b) —
A + o(1)] appears in the minimal Bayes risk. This is caused by the ignorance
about the parameter 6 # 0.

Proor. From Corollary 3 it follows
p(T2c(1+e)/(l+20(l+e)))
(3.16) _Y[Po(Tzc(1+e)/(1+2c<1+e)) < ) - Po(Tzc/<1+2c) < °°)]
<o(Tr) < P(Tzc/(1+2c))~

We now show that the right- and left-hand sides of (3.16) differ from each other
only by a o(c¢)-term. Formula (3.5) yields

(3.17) PO(T2c(l+e)/(1+2c(1+e)) < °°) - PO(T2c/(1+2c) < °°) <eb™' = O(ec).

Now we compute p(T; / +2.))- We write from now on for simplicity T instead of
Ty /1420 By (3.5) and (3.7) forx =0, £ =0

1+ logh + — [logl ") a
+ log 2/og(r)Q.

The integral on the right-hand side can be calculated by using Theorem 5 of
Jennen and Lerche (1981). The following result is intuitively plausible by virtue
of the relation

(3.18) p(T) =2(1-7v)c

Py{T/logb— 2672} = 1.
We note

(3.19) / log(

T+r
" ) dQ = log(2log b) — 24 + o(1).
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Combining (3.19) with (3.18) yields
log(2log b)
(3.20) o(Th/1120) = 2(1 — y)c|log b + — 5  t1- A +o(1)|.

From (3.17) and (3.20) it follows also that

(3.21) p(T20(1+e)/(l+2c(1+e))) = p(T2c/(1+2c)) + O(ec).
Statement (3.21) together with (3.16) and (3.17) yields (3.14) and (3.14) together
with (3.20) yields (3.15). O

Proor oF THEOREM 3. The upper inclusion of (3.13) is already proved by
(3.12). Now we prove the lower one. For the stopping times

2¢c
(3.22) Sty = 1nf{s > tly(W(s),s) < T 20},

we show that

(3.23) o(x,t S,,5) <v(x,t) for(x,t) € (g( 1 -2+C2(cz) )Xg( 1 TLC)

where &(-) will be specified below. M is the constant of Theorem 2. Then (3.1)
together with (3.23) implies the lower inclusion of (3.13).

Now we define &(¢). We note that for the stopping times (3.22) by (3.9) with
a = 4 and

y(x,t)
bl 1) = 2(1 = v(x, t))c

the inequality

1/4
(3.24) f02(S - ¢)dQ™" < 2log b(x, t) + C(x, t)[fﬂQ(S — t) Q@™ t)]
holds. The constants C(x, t) are given by

3/4
Cla 1) = K [(6%(t+ 1) 76, (a0)]
(3.25)
) 3/4
= K(fy_2/3N(0\/t +r, 1)(dy))
with 6 = x/(t + r).
Let ¢ and y_ denote the positive and negative branches of the solution of

the implicit equation y(yZ(¢),t) = Mc/(1 + Mc). By symmetry ¢F = +y,
where ¢ is given by

v(t) = [(t+ r)

! t+r 01 Y 1/2
oo =) + 21os =

We choose

(3.26) e(t,c) = —log(1 — C(y(t), £)""") A log M/2
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and put &(¢) = cexp(e(t, c)). Let a> 1. Let d(a) = inf{y > 1|alog(ay) <
ay — 1}. d(a) is uniquely determined. We define &(¢) = d(¢c(t)/c)c(?).

Now we claim that &(-)/c has the demanded properties (a) and (b). By (3.25)
C(x, t) depends only on ]3\/t + r| = |x|/(Vt + r). Evaluating |9\/t + r| at the
graphs (1 (), t) yields
1/2

Py Y
VE+ r| = |log(t + 2log————
|6Vt + r| [og(t r)+ log(l—y)Mc

which tends to infinity, uniformly in ¢ when ¢ — 0, or when ¢ — co.
Consequently, C(£y (t), t) — 0 and therefore by (3.26) e(¢, ¢) — 0, uniformly
in ¢ when ¢ — 0, or when ¢ > o. Since d(a) — 1 as @ — 1 the properties (a) and
(b) follow.
Now we show (3.23). As a first step we prove

(3.27) c f 92(S — t) dQ* " < 2&(t)log b(x, t)

2¢(+) Mc
(x.0) (g(m)\(g(l i)

By (3.26) we can assume that &(¢) < Mc/2. Let H(x,t) = [0%S — t)dQ*?.
Then we have from (3.6), (3.7), and (3.24) (with the x and ¢ variables suppressed)

for

(3.28) 2logb < H < 2log b + CHYV*.

Let C\(t) = C(y[¢),t). Then 0 < C(x,t) < C(t) holds on ¥(Mc/(1 + Mc))°
and therefore

(3.29) (1- C,/H**)H < 2log b.
If

(3.30) b(x,t) = exp(1C,(t))
holds for

2¢(+) Mec
(x,2) € (g(—l—+—2—5(_~))\(g(1 +Mc)

then we get from the left-hand side of (3.28) C,(¢) < H(x, t) and therefore from
(3.29)

-1

H(x,t) < 2log(b(x, t))(l - Cl(t)1/4)

But this yields (3.27).
It is left to show that (3.30) holds. Let

c(t) = ﬁg}/@‘p(%cl(t))-
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An elementary calculation shows that ¢(¢) > ¢ for 0 < C,(¢) < 1. Then

Y(x’ t) - 'Y(x’ t)
2(1 - Y(x’ t))C B 2(1 - Y(x’ t))c(t)

_ 1(m e (36,(1))
21— 1(x, 0)e(t)

> exp(1C(t)).

The second equation holds since

b(x,t) =

&(t) = c(1 - ()" < My2,

and the last inequality follows from the definition of ¢(2¢(-)/(1 + 2¢(+)). This
proves (3.30) and completes the proof of (3.27).

Combining now (3.4) and (3.5) with (3.27) yields for the stopping times (3.22)
the estimate for the Bayes risks

(3.31)  p(x,t,8) < vy(x,t)b(x,t) "+ 2(1 — y(x, t))c(t)log b(x, t)

with
v(x,t) 2¢(+) Me
b t) = s T m )e %( 1+ 2¢0) )\%( g Mc)'
We assume now that

28(+) Mec
(x,8) (g( 1+ 25(-))\%( 1+ Mc)

and estimate the right-hand side of (3.31) further. It is equal to

y(x, t)b(x, t) '[1 + (&(t)/c)log b(x, t)]

(3.32)
= v(x, t)[h(x, t)e(t)/c] ' [1 + (c(t)/c)log(h(x, t)E(t)/c)]

with A(x, t) = y(x, t)/(2(1 — y(x, t)&(t)). Since (ay) (1 + alog(ay)) <1 for
y > d(a) and since on €(2&(-)/(1 + 28&(+)), h(x, t) > d(c(t)/c) by the definition
of ¢, it follows that expression (3.32) is strictly less than y(x, ¢). This yields (3.23)
and completes the proof of Theorem 3. O

4. Results for one-sided tests. In this section we consider the Bayes risk
given by

(4.1) o(T) = yB(T < ) + (1 - y)cj(;oo02E0T¢(\/;0)2\/? de.

For it we can characterize the minimizing stopping rule 7.* (it also exists) by
results similar to those for the two-sided case.
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If not mentioned otherwise we will use the same notation as in the preceding
sections for the corresponding objects here. For instance,

Y(x’ t) = F;c,t({o})
1—v ;o -1
= [1 + — exp(ﬂx - %6’%)(15(6?\/;)2\/7T dag| ,
0
and also p(x, ¢, T), p(x, T'), € *(c), €(Kc), etc. The prior on [0, c0) is given by
F =8+ (1 - ) [o(/ro)2/r dd.

The posterior at (x, t) can be represented as
Ex,t = Y(x’ t)80 + (1 - Y(x’ t))Hx,t’

where

H N( X 1 )(p X )
st S\ t+rt+r (¢t+r

on (0, o0). We only state the analogous result to Theorem 2. The counterpart to
Theorem 3 holds also and can be proved in exactly the same way as Theorem 3.

THEOREM 5. There exists a constant K > 2 such that for every ¢ > 0

(4.2) ‘5( ] f}c) c ¥*(c) C %( ] 3020).

Proor. The proof of the upper inclusion of (4.2) runs exactly along the same
lines as that of (3.1). For the lower inclusion we show that for all (x,?) €
%(Kc/(1 + Kc)) there exists a stopping time S, ,, of the processes (W(s), s)
starting at (x, t) such that

(43) p(x’ t’ S(x,t)) < Y(x’ t)
holds. Let @ denote a constant which satisfies @c < 1. We choose
S, = inf{s > tly(W(s), s) < Qc},

which can be rewritten as

. o dP§5"
Six, 1y =inf(s > ¢t A WHXJ(CM) > b(x, t)}
W(s)
(4.4
) ) t+r 1 W(s)? x? ® Vs + r
=inf{s > ¢ exp| — - > b(x,t)
s+r 20 s+r t+r (I>( x )
t+r
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with

Y(x, 01 - Q) o
1=z, 0)Qc and ®(y) = f_ooqb(x) dx.

The posterior risk at (x, ¢) can be represented as

p(x,t,8, ) =v(x, t)P=(t< S, , < ©)
(1= v(x, 0))e [ OB (S, — t)H,, (dB).
0

From here on we write S instead of S, ,. The same martingale argument as
for (3.5) yields

b(x,t) =

(4.5)

PEO(t<8S < o0) =b(x,t) "
The estimate of the other part of the Bayes risk (4.5) is a bit more complicated
than that of the corresponding part of (3.4). It can be expressed after some
calculations similar to those of (3.6) as follows:

p et w(s)" x| _

(16) Jomirts - on. ‘(da)"f(sw"tw)d@')
w(S) x —
*f(" o) Al ) @

with
h(y) = 38(2)/®(y) and Q== [“R=°H, (db).
Using the defining equation (4.4) of the stopping time S yields
f 0°E§~9(S ~ t)H, (d)

=2log b + f log( ) dQ@ 0

TR e

W(S)) g( x )]d@x,,)

VS+r t+r

o

with g(y) = log ®(y).
Now after some calculations we get

) ) el o) ol )
(4.8) f;j_’j“@*_’(h'(y) ~ 2¢/(y)) dy

= [rons Z,((y))[ ~ ()] dv.

But this integral is always negative. It is obvious that the integrand is negative
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for positive values of y. That it is also negative for negative y-values can be seen
as follows. We have to show that

(4.9) ~(1+5?) —y6(y)/2(y) <0 fory<o,
which is equivalent to
—(1+5*)1 - ®(y)) +y6(y) <0 fory>0
and to
(4.10) 1-0(y) = (y/(1 +y?)o(y) fory>o0.
Both sides of (4.10) vanish at y = oo and the derivative of the left-hand side is
always smaller than that of the right-hand side and both are negative, i.e.,
—o(y) < —qs(y)(l -2/(1+ y2)2) forall y > 0.

This yields (4.9) and therefore the integrand in (4.8) is always negative.

It is left to show that W(S)/vS + r>x/vVt+ r.Nowlet K/(1 + Kc) > Q.
Then (x, t) € ¥(Kc/(1 + Kc)) implies y(x, t) > Qc, which yields b(x, t) > 1.
This together with (4.4) implies for S > ¢ the inequality

exp( 2(tx: r) )(1)( \/tj—_r) = I ;:—-’;‘ exp( 2:‘.;(48—)r) \/‘;%S:’ )

Since the function A ~ eX/2®(\) is increasing this yields W(S)/ VS + r >
x/ Vt + r. Thus the expression in (4.8) is always negative, which by (4.7) yields

) dQge=o.

f°°02E<x)“(s — t)H, (db) < 2log b + flog Str
o o xt - t+r

The rest of the proof is similar to that of Theorem 2 from (3.7) on. O
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