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A LARGE DEVIATION RESULT FOR SIGNED LINEAR RANK
STATISTICS UNDER THE SYMMETRY HYPOTHESIS

By TIEE-JiIAN WU

University of Houston

A Cramér type large deviation theorem for signed linear rank statistics
under the symmetry hypothesis is obtained. The theorem is proved for a wide
class of scores covering most of the commonly used ones (including the normal
scores). Furthermore, the optimal range 0 < x < o(n!/4) can be obtained for
bounded scores, whereas the range 0 < x < o(n?), § € (0, %) is obtainable for
many unbounded ones. This improves the earlier result under the symmetry
hypothesis in Seoh, Ralescu, and Puri (1985).

1. Introduction and statement of the main theorem. For n > 1 let X,,,
i =1,..., n, beindependent and identically distributed random variables distrib-
uted according to the cumulative distribution function F. We assume that

(1.1) F is continuous and symmetric about zero.

Let R,; be the rank of |X,;| among |X,,|,..., |X,,|- We shall consider the signed
linear rank statistics of the forms

(1.2) S,=Y c,a,(R,)sgn(X,,), n=12...,
i=1

where ¢, ..., c,, are known constants, a,(1),..., a,(n) are known real numbers
(called scores), and sgn(x) = 1 or —1 according as x > 0 or < 0. Under suitable
assumptions on the c,;’s and a,(i)’s, the asymptotic normality of S, has been
established [Huskova (1970) and Hajek and Sidak (1967)]. Recently, Seoh,
Ralescu, and Puri (1985) obtained a Cramér type large deviation theorem with
range 0 < x < o(n'/%) for the statistic S, with bounded scores (in fact, they have
considered the so-called generalized rank statistics which include S, as a special
case). The purpose of this paper is twofold. In the first place we extend their
assertion on the large deviation probabilities for S, under the symmetry hypothe-
sis to a wide class of scores covering unbounded ones (including the normal
scores). Secondly, we show that under the symmetry hypothesis the optimal
range 0 < x < o(n'/*) can be obtained for bounded scores. It should be remarked
that in case of symmetry the optimal range equals 0 < x < o(n'/*), while in
general the optimal range is 0 < x < o(n'/%) [cf. Feller (1971), page 553]. We also
note that Kallenberg (1982) studied the same problem in the case of (unsigned)
simple linear rank statistics with bounded scores.
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Throughout the paper we make the following assumptions (n is some positive
integer):

1.3 ¢, #0, max |c,;, — ¢,| < A,|¢,|n"%, n>n,,
( ni n 11*n 0

i 1<i<n
where A, > 0 is an absolute constant, §, > 0, and ¢, = n”'L"_,c,;,

n

-1/2
(14) max [a,())|>0, nzn, (max |a,,<i>|)( > azm) =0
<t<n <i<n

i=1

as n — oo.

REMARK 1.1. We give two examples of constants c,,; satisfying (1.3):

l.¢,#0andc,;=c, foralli=1,...,nand n=1,2,...;
2. €l = n"% @ >0, max, _;_,lc,; — ¢,/ = O(n"%"*).

REMARK 1.2. Note that (1.4) is the only assumption we are making on the
scores. However, they usually are generated by a real-valued Borel measurable
function ¢(u), 0 < u < 1, in either one of the following two ways:

(1.5) a(i)=¢(i/(n+1)), i=1,...,n,
(1.6) a(i) =E¢(UD), i=1,...,n,

where U/ denotes the ith order statistic in a random sample of size n from a
uniform distribution over (0,1). Now, suppose the score generating function ¢
satisfies:

the set {u: ¢(u) # 0} has positive Lebesgue measure and ¢ can be
expressed as a finite linear combination of monotone functions

(17) ($1r--r04) With |6,(w)] < M[u(l — u)]"/>*% for every j=
1,..., %k and u € (0,1), where M is a positive constant and 0 <
8 < 3.

By Theorem V.1.4a and Lemma V.1.6a of Hajek and Sidak (1967), we obtain

n
0< lim n~ 'Y a2(i)=|¢||% < oo,
noow g

(1.8)

max |a,(i)|=0(n'/?"%)

1<:

for both the cases (1.5) and (1.6). Since (1.8) clearly implies (1.4), thus any score
generating function satisfying (1.7) generates scores satisfying (1.4). It may be
noted that unlike in earlier papers referred to above where bounded derivatives of
different orders on ¢ are assumed, here (1.7) is the only assumption on ¢ we need.
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Let ® denote the standard normal distribution function. We denote for
n=12...

n -1/2
(19) n= (s o) L))
1<i<n i=1
(1.10) Te=2Cn 2 ax(i),
i=1
(1.11) o =varS, =n~' Y ci; 2 an(J),
=1 J=1
(1.12) b, = min(\; /2, n%/2).

.

Note that b, depends only on the scores and §,, the magnitude of the latter
depending on that of max, _;_,|c,;C,' — 1| [see (1.3)]. Obviously, (1.4) and (1.9)
imply A,'/* - oo and A,'/2 < n'/*. Thus

(1.13) bn — oo and bn < min(n1/4’ n8,/2).
The main result of the paper is the following:

THEOREM 1.1. Under assumptions (1.1) and (1.3)-(1.4), we have as n = oo
that

(1.14) sup |1 - F(x))(1 - @(x)) ' —1|-0,
(1.15) sup |1 - G, (x))(1 - @(x)) " - 1] >0,

where F, and G, are the cdf ’s of S,7, ' and S,0, ", respectively, I, denotes the
interval (0, p,b,], and p,, n =1, is an arbitrary sequence of positive real
numbers with lim, _ p, = 0.

REMARK 1.3. From (1.13), we get I, C (0, p,n'/*] N (0, p,n%/?]. Let us con-
sider the case that the scores are generated by ¢ according to either (1.5) or (1.6)
with ¢ satisfying (1.7). We obtain from (1.8)—(1.9) that A,n%/% < A, /2 for all
sufficiently large n, where A, > 0 is a constant (independent of n). Thus the
range I, covers the range 0 < x < o(n®), § = min(8,/2, §,/2). [Note that for
unbounded ¢ we have 8, < ; by (1.7), hence § < } in this case.] For example, the
range 0 < x < o(n'/%*?), 0 < & < 4, is obtained when 8, = 1 + 2§’ and §, >
1+ 28’ [in this case, max, _;_,|c,;¢,' — 1| = O(n""372%) and ¢ can be un-
bounded]. The widest range 0 < x < o(n'/*) is obtained if and only if §, = §, = 1
[in this case, max, _;_,|c,;C," — 1| = O(n~'/?) and ¢ is bounded]. For the one
sample normal scores test or van der Waerden’s test [with ¢(u) = @~ '((u + 1)/2)
in (1.6) or (1.5), respectively] it holds that (logn)/? < max,_;_,la.(i)| =
a,(n) < (2log n)'/? for all sufficiently large n, which can be seen from Lemma
VII.1.2 of Feller (1968) and from Section 4.4 of David (1981). It follows from (1.8),
(1.9), and (1.12) that for both tests the widest possible range is 0 < x <
o(n'*(log n)~'/*) (when §, = 3).
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To prove the theorem, we shall approximate S, by the statistic

(1.16) T,=3,Y a(R,)sen(X,.).

i=1
Let D=(D,,...,D,,) be the vector of antiranks associated with R =
(R,,,..., R,,) Then T, is equivalently expressible [in its dual form to (1.16)] as

(1.17) T,=c, i a,(i)sgn(X,p, ).
i=1

But sgn( X, ),-..,sgn(X,, ) are independent and identically distributed r.v.’s
under assumption (1.1) with common symmetric Bernoulli distribution [see
Theorem 19C of Hajek (1969)]. Therefore T, is actually expressible as a sum of
discrete independent r.v.’s. A Cramér type large deviation theorem is applied to
T , whereas a multinomial expansion is made use of to estimate the distance

n’

E|S, — T,)?? for any p € [1, n]. In the sequel we suppress the index n whenever
it is possible.

2. Some lemmas and the proof of the main theorem. The following
lemma deals with the large deviation probabilities of T,.

LEMMA 2.1. Under the assumption of Theorem 1.1, it holds true as n - o
that

sup |(1 = H,(x,)(1 - ®(x)) "'~ 1] >0,

xel,
where |x,, — x| = b, !, and H, denotes the cdf of T,r, .
PrROOF. From (1.1), (1.3), (1.9)—(1.10), and (1.17), we get Var T, = 72 and for
all n
(2.1) |E,,a,,(i)sgn(X,)l)Tn‘1|s)\n, i=1,...,n.

It then follows from (1.4), (1.9), (1.12), (2.1), and from Theorem 1 of Feller (1943)
that there exist n, > 0 such that for all n > n, and x € (b,, p,b,]

(22) 1- Hn(xn) = exp[_2_lxr2an(xn)] {1 - (I)(xn) + annexp(_271xr2l)}’
where
|0n| < 9’ Qn(‘xn) = Z qnixin

(2.3) i=1
g, =0, lg.<77'12X,),, i=2,3,....

Note that q,, = 0 because the third moment of ¢,a,(i)sgn(X),) vanishes for all
i =1,..., n under assumption (1.1). Clearly (2.3) implies for all sufficiently large
n that

(2.4) |22Q,(x,)| < 77 '(144)( X ,x2)*(1 — 12\ ,x,.) ",
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which converges to zero as n — oo uniformly in x € (b, !, p,b,]. Now, by Lemma
VIL.1.2 of Feller (1968), it can be readily seen that uniformly in x € (b,!, p,b,]

(2.5) Aexp(—27%2)(1 - ®(x)) ' >0
(2.6) (1-@(x,))(1 - @(x) ' -
as n — oco. Combining (2.2)-(2.6) yields

(2.7) lu—Hu%»u—éu»”—wao

uniformly in x € (b, Y, p,b,]. Next, by (1.1), (1.4), (1.17), and by Theorem V.1.2
of Hajek and Sidak (1967), we have ||H,, — ®||,, — 0, which implies uniformly in
x€(0,b, '] .

(2.8) (1 - Hy(x,))1 - @(x)) ' - 1|>0

as n — oo. The proof follows from (2.7) and (2.8) immediately. O
The following lemma gives us an upper bound for the distance E|S, — T,|?”.

LemMMA 2.2.  Under the assumptions of Theorem 1.1, for all n > n, and real
p €[1,n],

(2.9) E|(S, - T,)|”” < AppPn-2rdi72p,

where A, > 0 is an absolute constant.

Proor. By Holder’s inequality, it is sufficient to prove (2.9) only for p =
1,2,...,n. The dual form of S, is S, =X cpa,(i)sgn(xy). Thus, in view
of (1 17), we get S, — T, =X a AL)ep — ¢ )sgn(XD) Furthermore,
let {p,,...,p,} be an arbltrary collection of nonnegatlve 1ntegers containing
at least one odd number, then (1.1) implies E(1™ ,W?:) = 0, where
W, = (¢cp, — ¢,)sgn(X p,)- It follows, by using the multinomial expansion, that for

any p=1...,n

(2.10) E(S, - T,)* = Z Y ) Cf,ﬁ,ﬂ(an(ij))2p’E(ﬁwf”’)’

m=11i,€A(m) p,€B(m) J=1

where
L,=nein),  Pu= (P Da),
A(m)={i,:1<i < -+ <i,<n},
m
B(m) = {pm: lej=p;pj= 1,..., p for each j},
j=
and

1

Ci2 = (2p)((2p)! --- 2p,)!)
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Using the multinomial expansion again, we have

n p p m

. . \\2P,
e [La0 - 22 ql(a)”
i=1 m=1 i,,€A(m) p,, €B(m) Jj=1
where Cp = p!((p,!)...(p,!)~". Note also that
(2.12) Cxh <(@2p)’ck, p=1,...,n, p,<B(m).

The proof follows from (1.3), (1.10), and (2.10)—(2.12) quickly. O

Proor or THEOREM 1.1. We get by standard arguments that
(213) - Q,+ (1 - H,(x+8,") <1-F(x)<(1-H,(x-b") +Q,,

where @, = P[|S, — T,| > b, '7,]. Put p, = A;'e”'b% Then (1.13) implies that
P, €[1, n] for all sufficiently large n. It follows from Markov’s inequality,
Lemma 2.2, and (1.12) that

(2.14) Q, < (A3p,bin %)™ < e,
which, together with Lemma VII.1.2 of Feller (1968), imply uniformly in x € I,
(2.15) Q,(1 - @(x)) ' < e (1 - d(p,b,)) =0

as n — oo. (1.14) may be concluded from (2.13), (2.15), and Lemma 2.1 im-
mediately. Next, from (1.3)-(1.4) and (1.10)-(1.11) it follows for all sufficiently
large n that
(2.16) lo,7, ' — 1| < 7,202 — 72| < max |¢;c, ! — 1|2 < AZn =28,

1<i<n
By (1.12), (1.14), (2.16), and by Lemma VIIL.1.2 of Feller (1968), we obtain
uniformly in x € I,

(217)  1-G,(x) =1- F (0,7, %) = [1 — ®(o,7, )] (1 + 0(1)),
(2.18) 1 - ®(o,7, ) =[1— ®(x)](1 + 0(1))
as n — oo. Now (2.17)-(2.18) imply (1.15). This completes the proof. O
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