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ORTHOGONALITY OF FACTORIAL EFFECTS

By CHAND K. CHAUHAN AND A. M. DEAN
Indiana-Purdue University and Ohio State University

A necessary and sufficient condition is given for a specified factorial effect
to be orthogonal to every other factorial effect, after adjustment is made for
blocks. The results are extended to the case of regular disconnected designs.
The structure of a generalized inverse of the intrablock matrix is investigated
when certain pairs of factorial spaces are orthogonal. A useful class of designs
exhibiting partial orthogonal factorial structure is identified and examples are
given.

1. Introduction. When a factorial experiment is arranged as an incomplete
block design, some degree of nonorthogonality is necessarily introduced into the
analysis. For ease of interpretation, therefore, it is frequently desirable to use a
design which admits an orthogonal analysis of the main effects and interactions
(after adjusting for block effects). Such designs are said to have “orthogonal
factorial structure.” A set of sufficient conditions for a design to have orthogonal
factorial structure was given by Cotter, John, and Smith (1973), but there exist
many designs which are orthogonal yet do not satisfy these conditions. Mukerjee
(1979) gave a set of necessary and sufficient conditions for orthogonal factorial
structure which are useful for constructing classes of such designs [see Mukerjee
(1981)]. As pointed out by John and Smith (1972) and Mukerjee (1979), several of
the well-known classes of designs (such as group divisible, generalized cyclic)
exhibit orthogonal factorial structure for particular sets of factor levels. It is
frequently the case, however, that in factorial experimentation high-order inter-
actions are assumed to be negligible and, in such cases, a design with complete
orthogonal factorial structure is unnecessary. All that is required is a design
which admits an orthogonal partition of contrasts belonging to the low-order
factorial effects. Mukerjee (1980) considered this problem and adapted his 1979
conditions to give a set of necessary and sufficient conditions for the orthogonal-
ity of all interaction effects of order less than or equal to a fixed number, ¢.

Unfortunately, the conditions of Mukerjee (1979, 1980) give no information on
the orthogonality of any specified pair of factorial spaces. Thus if the conditions
are violated, it is not known which of the factorial spaces are orthogonal and
which are nonorthogonal (see Example 1). The purpose of this paper is to show
that part of this information is, in fact, available in the course of checking
Mukerjee’s conditions (see Section 3), and to show that useful designs exhibiting
partial orthogonal factorial structure are readily available (see Section 4). The
results are extended to regular disconnected designs in Section 5. In addition, in
Section 3 the structure of a generalized inverse of the intrablock matrix is
investigated when certain pairs of factorial spaces are orthogonal.
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2. Notation and preliminaries. Consider a factorial experiment with p
factors F|, F,, ..., F,, where the jth factor has m; levels and v =I17_,m,;. The
v treatment comblnatlons are written as p-tuples, a = (a,, ay,...,a,) where
0<a;,<m;—1, j=1,..., p. We use the convention of writing the treatment
combinations in lexicographical order (i.e., ascending numerical order when
viewed as p-digit numbers). We represent a generalized interaction by a*, where
X = (X, Xy,.00y Xp) and x;=1 if factor F is present in the interaction, and
x,=0 otherw1se For brev1ty, we use the term ‘interaction” to mean “main
effect or interaction.” Let ®* be the lexicographically ordered set of all binary
vectors x = (x,,...,x,) and denote the ith element of ®* by ¢, i =1,...,27.
Then a*' denotes the general mean and is nonestimable in any incomplete block
design. Let @ = {¢,, ¢3,...,¢,} where n = 2”. For x # y € ®, o* and a” repre-
sent different generalized interactions and hence define different factorial spaces.
The factorial space corresponding to a*, can be represented by a vector space V.,
of dimension [17_,(m; — 1)™. A set of basls vectors for V, is given by a set of
orthogonal contrasts in the treatment parameters correspondmg to the interac-
tion «*. We shall be interested in the independence of the estimators of contrasts
in the treatment parameters, having adjusted for block effects, where the con-
trasts belong to different vector spaces V, and V, x # y € .

Let the factorial experiment be arranged in b blocks where the jth block is of
size k; < v, and the ith treatment combination is observed a total of r, times in
the design (i = 1,...,v; j=1,..., b).

The usual intrablock model will be assumed, namely

yi=pt+rn+B+e; (i=1,...,v;j=1,...,b),

where y,, is the yield of the plot in the jth block which received the ith
treatment combination, 7, is the effect of the ith treatment combination, B, is
the effect of the jth block, p is a constant, and e;, are independent normal
random variables with zero means and homogeneous varlances o?

The reduced normal equations for estimating the treatment effects having
adjusted for blocks are

A7 = Q,

where
(2.1) Q=T- Nk °B, A =r®— Nk N,
and where T and B are vectors of treatment totals and block totals respectively,
N is the incidence matrix for the design, r® and %°? are diagonal matrices of
treatment replications and block sizes respectively, 7 is the intrablock estimator

of = (1, 7,...,7,), and ’ denotes transpose.
A solution to the normal equations is given by
7 =00,

where 2 is any generalized inverse of A, that is AQA = A.

Apart from Section 5 where disconnected designs are considered, it will be
assumed that rank(A) = v — 1, so that all contrasts in the treatment parameters
are estimable. Let C* be a ¢ X v matrix where ¢ > II(m; — 1)*, such that the
rows of C* form a set of contrasts spanning the vector space V., x € .
Symbolically we may write a* = C*r. It was shown by Kurkjian and Zelen (1962)
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that one such set of contrasts is given by C* = v~ 'M*, where
(2.2) M*=M?® M5»® --- @M3»

and ® denotes the Kronecker product of matrices, and
(mL, —J,) ifx;=1,

A 1/2, : _
my%e,, ifx; =0,
where e is a column vector of m; elements each equal to m;'/%, J, =e,e,,
and [, is an m; X m; identity matrlx

Any “other set of contrasts spanning V, may be written as

(2.3) C*=C®C?® -+ ®Cjn,

where Ci» = RTM? with Ry = m; for x; = 0, and for x; = 1, R} is any s; X m;
matrix of rank (m;— 1) where s;>m;—1, j=1,..., p. Thus C* may be
expressed as C* = R*M* where R* = R71 ® R} ® - ®Rx

Without loss of generality, we select C* so that C"C" I Hence the rows of
C* form an orthonormal basis for V,, and s;=(m;— 1) when x;=1 for
Jj=1,..., p. Note that for x # y € &%, C"Cy —0

The covariance between the minimum variance unbiased estimators of the
parametric functions C*r and C’r, after adjusting for block effects, is given by
Cov(C*#,C?%) = C*QC”0?, for any generalized inverse, 2, of A. A design has
orthogonal factorial structure if and only if C*QC” = 0 for all x # y € O [see,
for example, Cotter, John, and Smith (1973)].

3. Orthogonality of factorial spaces. In Theorem 1 a necessary and suffi-
cient condition is given for a specified interaction, a*, to be orthogonal to all
other interactions, a”. Thus it follows that, in the course of checking the
conditions given by Mukerjee [(1979), Theorem 3.3 and (1980), Theorem 2.2] for
orthogonal factorial structure, information is in fact obtainable on the pairwise
orthogonality of factorial spaces.

Let C*, V, A, and ® = [¢y,...,9,], n = 27, be defined as in Section 2. The
proof of Theorem 1 requires the following lemma.

LEMMA 1. Let W and @ be two real symmetric v X v matrices, and let Q* be
the Moore—Penrose inverse of Q. If QW = WQ, then (i) QQ* W = WQQ™ and
(i) Q"W = wWQ".

Proor. Using the properties of the Moore-Penrose inverse, and the fact that
QW = WQ,

@) QRTW=Q QW=Q"WQ=Q"WRR"'Q = Q' QWeQ"
= QRTQWR"T = QWQ" = WQQ*
(i) WQ* = WQ*QQ" = Q*QWR", using (i)
=Q*"WQQ" = Q" QQ*W, using (i)
=Q*'W. =
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THEOREM 1. A necessary and sufficient condition for a*, x = ¢, € ®, to be
orthogonal to o, forally = ¢; € ®, j # i, is that C¥'C¥ commutes with A.

ProoF. (i) Necessity. Assume that a* 1s orthogonal to all a*, x = ¢,, ¥y = ¢,
¢, # ¢; € @, and let H* = [C%,...,C*-V, C*+1) ..., C*'T. Then following the
arguments in the proof of Theorem 3.1 of Mukerjee (1979),

(3.1) A = C¥C*AC*C* + H*HAH*H".

Since C*C* =1 and C*H* = 0, it follows from (3.1) that C*C* and A
commute.

(ii) Sufficiency. Assume that C*C* and A commute, then from Lemma 1,
C*C* and A™ commute, hence

C*A*HY = C*C¥C*A*HY = C*A" C*C*HY = 0.

Therefore, setting @ = A*, the orthogonality of a* and all oY, y# x € O,
follows. O

Note that for all contrast matrices C* as defined in (2.3), C*C* = bM*'M* for
some constant b, where M* is defined in (2.2) [see Dean (1978), Lemma 1].
Therefore C*C* commutes with A if and only if M~M~* commutes with A.
Hence if the condition of Theorem 1 is satisfied for all x € ® of order < ¢, then
Theorem 1 implies Theorem 2.2 of Mukerjee (1980), and if ¢ = p, then Theorem
3.3 of Mukerjee (1979) follows.

Note also that, since A is symmetric, the condition of Theroem 1 is equivalent
to the condition of symmetry of C¥'C*A, and hence that of M*M*A.

ExAMPLE 1. Consider a design for a 4 X 2 X 2 experiment in 16 blocks of size
6 obtained by adding in turn the treatment combinations (000, 100, 200, 300) to
the following four blocks

000 001 100 101 210 311
001 010 101 110 211 300
010 011 110 111 200 301
011 000 111 100 201 310

where addition of two treatment combinations a,a,a, and b,b,b, is defined by
€,C4Cy = Q@905 + b byb;, wherec,=a,+ bmodm,i=1,2,3.

The concurrence matrix NN’ is block circulant of the form {@,,@,,@., Q)
where each @; is a 4 X 4 circulant matrix; @, = {6,2,0,2}; @, = {2,4,2,1};
Q,=1{0,2,4 2} Q, = {2,1,2,4). It may be verified that MM~ NN’ (and hence
M~'M~*A, since the design is proper and equireplicate), is symmetric for all x
except for x = (110) and x = (111). Hence all pairs of interactions are orthogonal
with the possible exception of (a''?, a''").

The condition of Mukerjee [(1980), Theorem 2.2] does not hold for this
example, and therefore could not be used to deduce the orthogonality of all pairs
of effects of order less than or equal to 2.
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COROLLARY 1. If o* is orthogonal to all a”, y # x € ®, then the intrablock
matrix, A, can be expressed as A = A, + A, where the rows and columns of A,
belong to V,, and the rows and columns of A, are orthgonal to V..

Proor. Follows directly from (3.1). O

Corollary 1 relates the orthogonal factorial properties of the design directly to
the structure of the intrablock matrix. Theorem 2 shows that any generalized
inverse of the intrablock matrix exhibits a similar structure when two factorial
spaces are orthogonal even if the conditions of Theorem 1 are not satisfied.

LeEMMA 2. Let P, X, and @ be real nonzero matrices such that the product
PXQ exists, then PXQ = 0 if and only if X = X, + X where the columns of X,
are orthogonal to the rows of P, and the rows of X, are orthogonal to the
columns of Q.

ProoF. Follows from Rao and Mitra (1971), Theorem 2.3.2 and the proof of
Theorem 2.4.1b. O

THEOREM 2. Cov(C*7,C?7) = 0 for a specified pair of interactions o* and
a’, x, y € ®, x + y, if and only if any generalized inverse, Q, of the intrablock
matrix can be expressed as § = Qf + Q3, where the columns of Qf are or-
thogonal to V, and the rows of 13 are orthogonal to V..

Proor. Follows directly from Lemma 2. O

COROLLARY 2. If a” represents a main effect (of the first factor without loss
of generality), then Cov(C*7,C>7) = 0 for any specified o, x # y € ® if and
only if C*QP”" has constant rows, where P =1, ® e ands = v/m,.

Proor. (i) Sufficiency. C” = K*(I,, ® e.) = K?P?, for some (m, — 1) X m,
orthonormal contrast matrix K”. Hence if C*QP” has constant rows then
C¥'QCY = (C*QP?Y)K” = 0.

(ii) Necessity. If C*QC” = 0 then, from Theorem 2, C*Q = C*Q3, where the
rows of C*QJ are orthogonal to V,. Hence C*Q3 = e, ® B, where B is some
g X s matrix and g =[l(m; - 1)"/ Hence C*QP” is of the form e, ® Be, =
e, ® b, (where b, is a vector of length q) as required. O

ny

COROLLARY 3. (a) If a” represents a first-order interaction (between the first
two factors without loss of generality), then Cov(C*%, C’%) = 0 for any specified
af, x #y <€ ®, if and only if C*QP”" can be expressed as [D,, D,,..., D, ],
where D, is of dimension g X my, q = [(m; — 1), and D,— D, has constant
rows, £{=1,..., m,, and where P = I ® I ®e, t=v/mm,.

(b) If (a) holds and Dy =D, = - then a* is also orthogonal to the
main effect of the first factor. »

(c) If (a) holds and D, has constant rows, {=1,..., m,, then o« is also
orthogonal to the main effect of the second factor.
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PROOF. (a) (i) Sufficiency. C¥ = K”P”" where K” = K, ® K, and K; is an
(m, — 1) X m, orthonormal contrast matrix, i = 1,2. Also, by assumption,
C*QP” = (e, ® D,) + [0, D, - D,,..., D, — D]

m

= (e;nI ® D,) + (Q ® e;nz).

Hence C*QC? = (C*QPY')(K, ® K,) = 0.

(ii) Necessity. If C*QC?" = 0 then, from Theorem 2, C*Q = C*Q3 where the
rows of C*QJ are orthogonal to V,. Hence C*Q} = (e, ® B, ® B;) + (B, ®
e,, ® By) for some matrices B,, B,, B,, B, of dimensions g X m,,
g Xmy,qXtqgXt respectively, ¢q = I[1(m; — 1), ¢ = v/mm,. Hence
C*QPY = (e,, ® Bi® h)) + (B, ® e}, ® h,) where h, and h, are vectors of
length gq. Let B, = [bl,b .b, ] and let D,= (B; ®h)+(b ® e, ® h,),
£=1,...,m,, and the result follows

(b) Assume that (a) holds, and D,= D, for all /= 2,..., m, then from (3.2),
C*QPY = e, . ® D,. Let o* represent the main effect of the first factor, then
p¥=PY(I, ) e,,). Hence C*QP* = e, ® D, which has constant rows.
Hence from Corollary 2, o* and o are orthogonal

(c) Assume that (a) holds and D,= d,e;, for some constant d, (=1,...,m,.
Hence from (3.2)

C*QPY = d,(e, ® e, )+ [0,dy—d,,....d, —d]| ®e,.

m,

(3.2)

Let a° represent the main effect of the second factor then P*' = P”(e,, ® I, ).
Hence C*QP” = [d, + yle,,, where y = X(d,— d,), which has constant rows.
Hence from Corollary 2, replacmg the first main effect by the second, a* and o*
are orthogonal. O

ExaMpPLE 2. Consider the design of Example 1. We have already shown,
using Theorem 1, that all pairs of main effects are orthogonal for a 4 X 2 X 2
experiment. However, this is a convenient example to illustrate the use of
Corollaries 2 and 3. To check the orthogonality of a’'® and o''” using Corollary 2,
we calculate C*QP?" where x = 010 and y = 100. Without loss of generality,
choosing C* = R*M* gives

. 0 0 0 O
x y —
e ]
as required.
To check the orthogonality of a®'® and «''” using Corollary 3,

C*QP” = R*(e, ® (myI, — J,) ® e5)QUI, ® I, ® e,)

_ px 1 -1 1 -1 1 -1 1 -1
=R’ 1 -1 1 -1 1 -1 1]

= [Dly DZ’D31 D4]1
where D, is 2 X 2 and D,— D, has constant rows, /= 1,...,4 as required. Since

D, = D, = D, = D,, Corollary 3(ii) verifies the orthogonality of «”'* and «'™.
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Classes of designs exist in which certain pairs of factorial spaces are or-
thogonal. One such example is given in Section 4. More generally the characteri-
zation of designs with certain orthogonality properties can be based on Theorem
2 or Corollaries 2 and 3. However, this is a problem for further research and will
not be pursued in this paper.

4. Designs with partial orthogonal factorial structure. For a given de-
sign, if there exists an x € ® for which C*C* and A do not commute, then from
Theorem 1, there exists at least one y # x € ® such that a* and a” are
nonorthogonal. Such interactions, a”, can be identified by calculating the covari-
ances C*QC” for all y # x.

Designs which exhibit orthogonality between many, but not all, pairs of
factorial spaces will be said to have partial orthogonal factorial structure. In this
section a useful class of designs possessing such a structure is identified and an
example is given.

DEFINITION. Let D(m,, m,,..., m,) denote the class of designs such that if
d € D(m,, m,,..., m,) then the Moore-Penrose inverse, A, of the intrablock
matrix of d can be written in the form
w
(4.1) Aj =Y ¢(Rpe - @R ®Q;® Rl ® --- ®RTy),
j=1
where w is some integer, £,,...,&, some constants, R% is an m; X m;
permutation matrix, r <s — 1, and @; is some square matrix of dimension

m,. . Mm,,.o """ ms—l'

THEOREM 3. If d € D(m,, m,,..., m,) then the design d is guaranteed to
have partial orthogonal factorial structure for a p-factor experiment whose ith
factor has m; levels, i = 1,..., p.

Proor. If d € D(m,, m,,..., m,) then A; is given by (4.1). Let g = {r +
1,r+2,...,s — 1}. Consider the generalized interactions a* and «”, where
x=(xp,...,x,)and y = (y,..., ¥,) such that there exists at least one i & g for
which x; = 1 and y; = 0. Then with & = A;, using (4.1) and (2.3), C*R}+C;" =
C;e,, = 0. Hence, «* and o” are orthogonal. If x;, =y, forall i < r and i > s,
then the orthogonality of a* and «” depends upon the structure of @ i J =
1,...,w. Hence the design is guaranteed to have partial orthogonal factorial
structure. O

Examples of designs in the class D(m,, m,,..., m,) can be derived from
designs in the class Dy(n,, n,,..., n,) which have orthgonal factorial structure
for a g-factor experiment where the ith factor has n; levels, i =1,...,¢ and
where I'ln; = [Tm,, by factorizing and /or combining factor levels.

ExXAMPLE 3. The generalised cyclic design, d,, in 16 blocks of size 6 with
generating block (00,01,10,11,22,33) has orthogonal factorial structure for an
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experiment with two factors each at four levels. Hence d, € Dy(4,4). It can be
verified that the Moore—Penrose inverse of the intrablock matrix is of the form

Ad+0 = Z g?’(R‘}l ® Rj’2)>
/=1

where R%; is a 4 X 4 circulant permutation matrix, i = 1,2 [see John and Smith
(1972)].

Consider the design d € D(4, 2,2), formed from d,, by mapping the levels of
the second factor to the levels of two new factors each at two levels, respectively.
If the mapping gives a lexicographical ordering of the treatment combinations
then

u
Aj=A; = Y &(R: ® RY,)

w
= Y (R ® R, © Q%)

j=1
since any 4 X 4 circulant permutation matrix R% can be expressed as Y(R%; ®
Q%) where R2, is a 2 X 2 circulant permutation matrix, and Q% is a 2 X 2 matrix
of 0’s and 1’s. The design d is the design considered in Example 1. It follows from
Theorem 3 that for this design all the pairs of interactions (a**2*s a17%273) are
orthogonal for x,x, # y, 5. The orthogonality of the remaining pairs of interac-
tions (a'%, a'%); (a9, a''); (a''?, a''') may be checked using Theorem 1 or by
calculating the covariances directly. In Example 1, Theorem 1 was applied to
show orthogonality of the first two pairs. It is possible for this design to deduce
that (a''’, a''') cannot be orthogonal, since otherwise in Example 1, M*M* NN’
would have been symmetric for x = 110 and x = 111. If a!!'! can be assumed to
be negligible the orthogonality of this pair of interactions is of little importance.
Note that designs in the classes D(2,2,4), D(2,4,2), D(2,2,2,2), D(2,8), and
D(8,2) may be obtained by similar methods and Theorems 1 and 3 applied in

each case.

5. Disconnected designs. Let A, ®, C*, and V, be defined as in Section 2,
and let V' be the vector space spanned by the rows of A. If rank(A) < v — 1 then
the design is disconnected. Let V¥ = V. N V, then V} is the vector space of all
estimable contrasts corresponding to a”.

DEFINITION (Mukerjee, 1979). A disconnected incomplete block design is
regular if ® V} = V, where ® represents direct sum over all x € ®.

In irregular designs estimable contrasts belonging to factorial effects do not
span the space of all estimable treatment contrasts. For regular designs results
corresponding to Theorems 1, 2 and Corollaries 1, 2, and 3 hold.

Let B* be a matrix whose rows form an orthonormal basis for V;".

THEOREM 4. If A is the intrablock matrix of a regular disconnected incom-
plete block design, then the estimable contrasts corresponding to o*, x = ¢, € D,
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are orthogonal to all other estimable contrasts if and only if BXB* commutes
with A.

Proor. Follows exactly the lines of the proof of Theorem 1, using Mukerjee
(1979), Theorem 4.1. O

Theorem 2 can be extended to regular disconnected designs as follows. V;* and
V} are assumed to be nonnull, otherwise the theorem is trivially true.

THEOREM 5. Cov(B*7, B’7) = 0 for a specified pair of interactions a* and
a’, x,y€ ®, x #y, if and only if Q can be expressed as Qf + 23, where the
columns of Qf are orthogonal to V¥ and the rows of Q3 are orthogonal to V}
(where V¥ and V; are nonnull).

Proor. Follows directly from Lemma 2. O

Corollaries 1, 2, and 3 can be extended in the obvious way by replacing C*
with B*, V_ with V¥, and redefining H*.

ExaMPLE 4. The generalized cyclic design, d,, in 18 blocks of size 8, with
generating block (00 11 15 20 33 42 44 53) has orthogonal factorial structure
for an experiment with two factors each at 6 levels. Hence d, € D,(6,6). The
design d,, is disconnected, the confounded contrast belonging to a''. Consider the
design d € D(2, 3, 6) formed by a lexicographical mapping of the levels of the first
factor to the levels of two new factors.

u
Ag = A;o =2 5;(R§’1 ® R?’Q)
=1
w
= ¥ (Rh © @, @ RY).
j=1
From Theorem 3 all pairs of interactions are orthogonal with the possible
exception of (a%!, a®), (a!®, a!'?), and (a'®!, a''!). Checking Theorem 4 shows
that B*B*A is symmetric for x = 001 and 100, but not for x = 101 nor 111.
Hence the first two pairs of interactions are orthogonal but not the last pair.
Alternatively Corollaries 2 and 3 can be checked. The confounded contrast lies in
Vi @ Vi
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