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ASYMPTOTIC THEORY FOR COMMON PRINCIPAL
COMPONENT ANALYSIS!

BY BERNARD N. FLURY

University of Berne

Under the common principal component model k covariance matrices
3,,..., 3, are simultaneously diagonalizable, i.e., there exists an orthogonal
matrix B such that B’=;8 = A, is diagonal for i = 1,..., k. In this article we
give the asymptotic distribution of the maximum likelihood estimates of B
and A;. Using these results, we derive tests for (a) equality of eigenvectors
with a given set of orthonormal vectors, and (b) redundancy of p — g (out of
p) principal components. The likelihood-ratio test for simultaneous sphericity
of p — g principal components in %k populations is derived, and some of the
results are illustrated by a biometrical example.

1. Introduction. Common principal component analysis (CPCA) is a gener-
alization of principal component analysis (PCA) to k& groups (Flury, 1984). The
key assumption is that the p X p covariance matrices 2,,..., 2, of £ popula-
tions can be diagonalized by the same orthogonal transformation, i.e., there exists
an orthogonal matrix B such that

(1.1) Hy: B'Z,B=A,; (diagonal) (i=1,...,k)

holds. H, is called the hypothesis of common principal components (CPC’s).
Flury (1984) derives the normal theory maximum likelihood estimates of B and
A ; and gives numerical examples.

In the one sample case £ = 1, CPC’s reduce to ordinary principal components
(PC’s). In this case the ML estimates of B and A = A, are the eigenvectors and
eigenvalues of a Wishart matrix S,. The asymptotic distribution theory for this
situation has been developed by Girshick (1939), Lawley (1953,1956) and
Anderson (1963). The present paper gives essentially generalizations of results
obtained by Anderson.

In one-group PCA, the eigenvectors B, forming the orthogonal matrix p =
(By,---,B,) are usually ordered according to the associated eigenvalues A, >
Ay > --- > A,. In CPCA no obvious fixed order of the columns of B need be
given, since the rank order of the diagonal elements of the A; is not necessarily
the same for all A;. However, we can use some convention, e.g., that the columns
of B be arranged according to the first group, i.e., such that g{=,8, > B;=,8, >
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- > B;Z,B, (assuming that the p characteristic roots of =, are all distinct).
This will enable us to speak about first, second, or last principal components also
in the k-group case.

Tests for various hypotheses about p and A in PCA have been proposed by
Anderson (1963). We are going to construct analogous tests for CPCA. More
specifically, we will treat the following problems:

1. Is the jth eigenvector B, identical with a given (normalized) vector BJQ? More
generally, for ¢ dlfferent eigenvectors B, B;,1,..., B;,,_1, are they identical
with g given (orthonormal) eigenvectors BO, 3,)+ 4-17 This problem will be
treated in Section 3.

2. As an associate editor handling the previous paper (Flury, 1984) has pointed
out, the most useful applications of CPCA would probably be those in which
some relatively small number ¢ of rotated axes are sufficient to recover most of
the variability in each of the k& groups. It is therefore useful to have a criterion
for neglecting CPC’s with small contributions. A solution to this problem is
given in Section 4.1.

3. When PC’s are interpreted, it is important to make sure that the roots A ; and
A, (say) are not identical, because otherwise the associated eigenvectors B; and
B, are not uniquely defined. Similarly in CPCA two eigenvectors f; and B, are
uniquely defined if in at least one population the two associated eigenvalues
are not identical. A likelihood ratio test dealing with this problem is given in
Section 4.2.

We will from now on always assume that the matrices Z,,..., 2, are positive
definite symmetric (p.d.s.). The diagonal elements of A; will be denoted by A,
ie, A, =diag(A;,...,A;,) (i =1,..., k). All results w1ll be based on % indepen-
dent sample covariance matrices S; with n; degrees of freedom, respectively, such
that n,S; has the Wishart dlstnbutlon W(n Z,;). The ML estimates of B =
By B ) and A, are denoted by B = (Bl, - B ) and A = dlag(All, A.p).

2. Asymptotic distribution of the maximum likelihood estimates. In
this section we are using general properties of ML-estimates under regularity
conditions; see, e.g., Silvey (1975, Chapters 4 and 7) and Wilks (1944, Chapter 6).
In particular we will use the fact that the joint asymptotic distribution of the
parameter estimates is multivariate normal, the covariance matrix being given by
the inverse of the Fisher information matrix. The log-likelihood function of the &
samples, up to an additive constant, is given by

k P
(21) g(Ay,. s Ay, BIS,,..,8,) = =3 Long| X (lOg}‘ij + Bj’SiBj/}\ij)
i=1  |j=1"

(Flury 1984, formula 2.5). Assume that the B; are well defined, i.e., for each pair
(J, 1) there is at least one i€ {1,.. k} such that A, + A,, Let N, =
(Nis---5N,), s=p(p—1)/2, and denote by B* a vector composed of s func-
tionally independent elements of B. Put n=n,+ --- +n, and r,=n,/n (i =
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1,..., k). Then the information matrix is
N(l) )‘Im N(k) i B>
)\(1) %nrlAI—2 0 AR 0 E
_ |
(2.2) N 0 s Agy? o
. . . . E G’ ’
: : : : !
e e e [N
B* G LA

where A and G are not yet determined. .

Since A, = l§j’Skl§j and ﬁj is a consistent estimate of B;, we can use the
asymptotic (n; — oo0) normality of n;S; (Muirhead, 1982, page 19) to get the
asymptotic univariate distribution of 5\,~ ; as

(2.3) Jn (A = A;) ~ N(0,22%).
From (2.2), the joint asymptotic distribution of (X’m, cees X’( ») has covariance
matrix
gr Ay P 0 !
| |
1 I :

(2.4) -V, = l | - GA'G

00— inr, A2 J

Since, by (2.3), the diagonal elements of V, are (2/r\},,2/rN,,...,2/7,N5,),
and A is p.d.s,, it follows that G = 0. Thus we get:

THEOREM 1. The statistics ‘/n—, (A, = A;;) are asymptotically (min, _;_,n;
— o0) distributed as N(0,2)\% ), independent of each other and independent of

The asymptotic distribution of ﬁ requires more work. First, from the log-likeli-
hood function (2.1) it is clear that the matrix A can be written as the sum of £
matrices A,,...,A,, where A, is associated with the ith sample. Let V, denote
the asymptotic covariance matrix of \fnT vecp = \/n_l (ﬁ{ yeens ﬁ,",)’ as obtained
from the ith sample alone. Following Anderson (1963, page 130), and writing

(2.5) & = l—)\”)\l—hg (h#J),
Ti (}\tj - Alh)
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we get
B B B,
P
Ql Z g%;l)BhB;l _gg)sz{ T -g{;}Bpr
W
14
(26)  By| —&uWBB; X gliBiBL o —&5BBL =V,
hel
])
B,| -&9BB,  —gyB.B - IZlg}:;iBth
-
h#p

LEMMA 1. The matrices V, (i = 1,..., k) as given by (2.6) are simultaneously
diagonalizable.

This lemma is easily proved by showing that V,V, = V,V; for all pairs (i, ),
using the equivalence of simultaneous diagonalizability and commutativity under

multiplication.
Thus there exists an orthogonal p? X p*matrix H = (H,,H,), where H, =
(h,,...,h,), s = p(p — 1)/2, such that

E 0
2.7 H'VH = L 1 =1,..., k),
27) : (0 0) (i )

where E, = diag(e,, ..., e;,), e;; > 0. (E; has rank s because there are s func-
tionally independent elements in B.) For the transformed variables u = H{vec
the information from the ith sample is therefore

(2.8) Ax = ndiag(ei‘,‘,ei;‘,...,ei‘s‘)
with
eljz h{[Vlhj'
The sum of these % information matrices is
k k
A* = Y A* = ndiag| Y ey's..r ey
(2.9) i=1 i=1 =1
= ndiag(e;’,...,e; "),

where e; is the harmonic mean of ey, ..., € The asymptotic covariance matrix
of u is therefore diag(e,,...,e,)/n. Transforming back to B, we get the
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asymptotic covariance matrix of vec B as

1

(2.10) ; ;

S

Y eh b
Jj=1
To establish the final result we need now the exp11c1t form of H,. The h; are
vectors of dimension p2 If n = (v),..., m,) is a p? vector partltloned 1nt0 D
vectors of dimension p, we will, for simplicity, refer to n; as the jth position of 4
(which corresponds to the scalar positions (j — 1)p + 1 through jp).

LEMMA 2. The s = (’2’ ) normalized characteristic vectors of V, associated
with positive roots are as follows: For each pair of indices (J,1), with1 <j <
l < p, there exists a characteristic vector having B,/ V2'in positionjand —B;/ V2 V2
in position l. All other positions are zero, and the associated eigenvalues are
2844,

The proof of Lemma 2 is straightforward and need not be given. The eigenvec-
tors defined in the lemma form the matrix H,. Assuming that all 2 matrices 2,
have p distinct eigenvalues and that r, > 0, the g\ are all positive. From (2.8) it
is now seen that e;,, g“) for some pair (j, 1). Thus putting

-1

=1

(2.11) 8= ( 2!

and writing h , for the eigenvector associated with the roots 2g'}, we get the
asymptotic covarlance matrix of Vn vec B as

(2.12) V= QZgﬂh,lhl
J< !
Writing this in terms of the B-vectors, using Lemma 2, we get therefore:

THEOREM 2. The asymptotic distribution of Vn vec(ﬁ — B) is normal with
mean 0 and covariance matrix V given by

B B; e B,
A P
B, > 8118187 —812B:B1 T —&1,8,B1
M
P
(2.13) Qz —8B.B; lZnghBhﬁ;’, T _gzpoBé =V,
h=2
»
B,) _gplBIB]; _g,,zﬁzB,: e ]Zl g/)lzB])B;l
=
h#p
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where the g, are defined in (2.5), and the Bj are the (common) eigenvectors of
the k matrices Z,.

The foregoing proof of Theorem 2 is based on the assumption that all &
matrices 3, have p distinct eigenvalues. However, since g‘;) Y=r(A,

N2 /N Ay, we can take g9~ = 0if \;; = A, In order for g, fo be deﬁned it
suffices to have at least one Z; with A, ij # Ny It is therefore assumed that
Theorem 2 holds whenever CPC’s are well defined.

3. An asymptotic test for q hypothetical eigenvectors. Using the
asymptotic distribution theory, Anderson (1963, Appendix B) constructs a test
for the hypothesis that the jth eigenvector of 2 is identical with a specified
vector B (B’B = 1), under the assumption that this eigenvector corresponds to
a root of multiplicity 1. In this section we are going to generalize Anderson’s
result in two ways by deriving an analogous test for ¢ specified vectors (1 < g < p)
and k& groups. Without loss of generality we can order the CPCs such that the ¢
vectors to be tested are labeled 1 thru g. The null hypothesis is

(3.1) H,: (By,...,B,) = (BL,-.., BY),

where the B are specified, mutually orthogonal and have unit length.

Tbe test of H, will be based on the asymptotic covariance matrix of
vec(B,,..., B,), that is, the upper left pg X pg portion of V. Call this submatrix
V(q). The eigenstructure of V(q) is given by the following theorem, which is
actually a generalization of Lemma 2. We are again using the convention that the
p scalar elements in positions (j — 1)p + 1 through jp of a vector are referred to
as the jth position.

THEOREM 3. The upper left pq X pq submatrix of V has the following
eigenvectors and eigenvalues:

1. (‘f ) eigenvectors (one for each pair j,l with 1 <j <1< q) have B,/ V2 in
position j and —B;/ V2 in position 1. All other positions are zerc, and the
associated roots are 2g;,.

2. (p — q)q eigenvectors (one for each combination of indices j, ! such that
1<j<q<1l<p) have B, in position j and 0 in all other positions; the
associated roots are g,

3. (j ) eigenvectors (one for each pair of indices j, l such that1 <j <1l < q) can
be chosen to have B,/ V2 in position j, B,/ V2 in position 1, and zeros in all
other positions. The associated roots are zero.

4. q eigenvectors (one for each j with 1 < j < q) can be chosen to have B, in
position j and zeros elsewhere. The associated roots are zero.

The proof of Theorem 3 is easy and is therefore omitted. We see that if g; > 0
for1 <j<gq,1 <1<p,then V(q) has rank ¢ = (‘_j) +q(p — q).
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Let now ® denote a t X t diagonal matrix with diagonal elements equal to the

nonzero roots of V(q), i.e., ¢ = diag(2g8,y,.--,28,_1, 4> &1, g+ 15---» 84p)> and let
the columns of the pg X ¢ matrix ' be given by the characteristic vectors
associated with the nonzero roots. Putting b, = vec(B,, .. B ) — vec(By, ..., B,),

the random vector z = Vn® '/?I'"b, has a limiting normal distribution with
mean zero and covariance matrix I,. Thus z’z = nb,T®"'T 'b, has a limiting chi
square distribution with ¢ degrees of freedom. Using Theorem 3, this expression
can be written as

(3.2) a1

In practical applications the asymptotic covariance matrix V(q) is not known,
but can be consistently estimated by substituting the A, and f, for the
respective parameters. This does not affect the validity of the asymptotic chi
square approximation. Using ﬁj instead of B, and &' = Z{;lr,(}\,j = Ni)/A Ay
in the expression I'®~'T of (3.2) we get therefore:

THEOREM 4. Under H, as defined in (3.1), the statistic

qg-—1 q )
X(H)=n|t ¥ X &' (BB~ BB)

J=11=5+1

q p

+) X &, (Bz 0)

Jj=11l=q+1

is asymptotically distributed as chi square with q(p — (q + 1)/2) degrees of
freedom.

It is worth noting that (3.3) has a geometrical interpretation. The first sum
ranges over all pairs of eigenvectors fixed under H,. If H, holds, we would expect
B, and B’ to be nearly orthogonal for [ # j, and the cosines B; /B would be
expected close to zero. Similarly, the second sum extends over the squared cosines
between the hypothetical vectors Bj" and the observed vectors B, for the p — ¢
eigenvectors not considered under H . The g;,‘ serve as weights—which seems
intuitively reasonable, regarding the fact that 2" is large if (at least in one
group) )\ , and A,, are far apart. It may also be noted that Theorem 4 does not
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require that the eigenvectors B, . ,,..., B, are well defined.
Two special cases deserve more attention.

CasE ¢ = 1. If only one hypothetical eigenvector B is specified, the first
sum in (3.3) is empty, and the test statistic becomes

P

X*(H)=nY &, (BB?)

=2
By [ k » ’}\” 5\11 )QQ ]B()
=nf” T, — + x
! =1 1=2 Ail All
k . . R A *
(3.4) = nBY| X rn(Aa(2," = X;'B.B))
J=1

where 2, = .;’=15\l jﬁjﬁj’ is the ML estimate of 2,. The number of degrees of
freedom associated with (3.4) is p — 1. If k=1, then (3.4) reduces to the
well-known result given by Anderson (1963, page 145). If we replace E by S, and
}\” by /,, (the first eigenvalue of S,), we get a test for the hypothesis H * that By
is the first principal component of Z,,..., =, without specifying the CPC model.
The test statistic

>~

(3.5) X*(Hr) = Z (LBYST'BY + 1 'B"S,B) - 2)

is merely the sum of k£ independent statistics of the form given by Anderson, and
its asymptotic null distribution is chi square with k( p — 1) degrees of freedom.

Cast ¢ = p. 1If all common eigenvectors B}, ..., B of the 2, are specified,
the second' sum in (3.3) is empty. Since B is completely determined by
Us.-., By, the hypotheses H, , and H, are equivalent. The two associated

statistics X*(H, ) and X*(H, ) are in general not identical (unless p = 2), but
the degrees of freedom are p(p — 1)/2 for both statistics.

4. Asymptotic inference for eigenvalues.

4.1. A criterion for neglecting common principal components with relatively
small variances. Anderson (1963, page 133ff.) has shown how asymptotic
confidence intervals for individual roots or sums of roots in one-sample PCA
can be constructed. Since the maximum likelihood estimates A, ; in CPCA are
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asymptotically independent (cf. Theorem 1), the generalization of Anderson’s
results to the k-sample case is straightforward and need not be given here.

If the main purpose of CPCA is data reduction, it is useful to have some
criterion for discarding CPC’s with relatively small variances. Let

q q
(4.1) ¢ = Z)\ij’ ¢ = Z)\ij,
j=1 j=1

and put d, = tr 2, — ¢;, d; = tr £, — &, Suppose that we wish to discard the last
p — q CPC’s in population i if their relative contribution to the trace of =, is not
larger than a given fraction f, (0 < f, < 1). Putting

(4.2) fi=d;/trZ;,

the asymptotic distribution of \/n_, [a- f,.)c?,- — f;¢,] is normal with mean zero
and variance 2[ f259_,N%; + (1 = f,)°L?_,, A%, (The use of this criterion has
been proposed by Anderson (1963, page 135).) Estimating this variance con-
sistently by putting in the corresponding ML estimates A;; yields

[ = fo)d; — fo:]

ol v awe ey N
(2[f0 j=1}\lj+(1 fO) ZJ=‘I+1)\U])

(4.3) =

approximately for large n; and under the hypothesis f. = fo- For testing the
hypothesis that all f; (i=1,..., k) are less than or equal to f,, a possible
procedure is to reject the hypothesis if

(4.4) max z;>2zz withf=1-(1- )%,

1<i<k
where 2, is the upper 8 quantile of the standard normal distribution. This test
has asymptotic level « if all f; equal f,.

4.2. A likelihood ratio test for sphericity of p — g common principal compo-
nents. In PCA, the main motivation for testing for equality of p — ¢ (out of p)
characteristic .roots stems from the model = = ¢ + 0°I,, where { is positive
semidefinite of rank ¢. In this model the last p — ¢ characteristic roots are all
o’. In CPCA, we can study the model =, = §; + 621, (i = 1,..., k), where the ¥,
are simultaneously diagonalizable and of rank g. Then the X, satisfy H_, and the
last p — g CPC’s are spherical, i.e.,

(4.5) HS: >‘i,q+1= M =Aip (i=1,...,k).

We will refer to Hg as “hypothesis of partial sphericity.”

It may be noted that the following derivation of the likelihood ratio test holds
as well for any subset of CPC’s, but for notational simplicity it is given in terms
of the hypothesis H as defined in (4.5).
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Putting A, ,,, = --+ =X, =M (i=1,..., k), we get from (2.1)
—28(A,,..., A, BIS,,-..,S,)
k q
(4.6) E' g (log A, + B/S;B;/A,;)

+(p — q)log A% +

£ o) ]

Using the same technique as Flury (1984) the likelihood equations are obtained as

A, —A
(an}\}\us)p 0 (lsl<‘qu),

Si)Bj=0 (1<l<qg<j<p),
(4.7)
}\ij: J{Si[}j (z=l,...,k;]=1,~--,Q)r

with the orthogonality restrictions B;B; = 0 (I # j), B/B; = 1. The equation sys-
tem (4.7) can be solved using an appropriate modlﬁcatlon of the FG algorithm
(Flury and Gautschi, 1986).

In contrast to the unrestricted CPC model the vectors B, ,,..., 3, are not
uniquely determined by the likelihood equations. In fact, only the subspace
spanned by B, ,,..., B, is determined. Let us denote by B,,.. Bq, Bq s B a
set of orthonormal vectors solving (4.7); then the same maximum of the 11ke11-
hood is obtained if we replace (Bq - B ) by (Bq 1 B )H, where H is an
arbitrary orthogonal matrix of dlmensmn ( p—q)X(p— q) With }\ and }\*
denoting the ML estimates of the eigenvalues, the log-likelihood ratio statlstlc for
Hg can be written as

k (AP A,
48 X2=Y nlog———Y
( ) ‘ S iglnz og nle}\ )

where the )\ are the ML estimates for the ordinary (unrestricted) CPC
model. Under Hg, the number of parameters determining X,...,Z%, is
q(2p — q — 1)/2 + k(q + 1), compared with p(p — 1)/2 + kp parameters for
the ordinary CPC model (see, e.g., Mardia, Kent, and Bibby (1979, page 235ff.)
for a discussion of this problem in the one-group situation). Thus the null
distribution of (4.8) is asymptotically chi square with (p — ¢ — 1)(p — q + 2k)/2
degrees of freedom.

It may be noted that, unless £ = 1, the ML estimates B and }\ for j < q are
not identical with B and }\ However, we can aPprommate X2 without
computing the restrlcted solutlon by replacing }\ sby A (J=1,..., q) and }\*
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by A% = (X, ;.1 + - +A,)/(p — q). This yields
(Ar)"
(4.9) Xa{appro) = 3 nlog o7 3
i=1 J= q+1}‘i1’

Since, under Hg, the likelihood is maximized for the A’s, we have always
XZ(approx) > XZ. Thus the approximate statistic can be used to accept Hg, but
not necessarily to reject it.

It should be noted that Hg does not necessarily imply a model of the form
3, =, + 671, and partial spher101ty may also occur for those CPC’s associated
w1th large roots. In practical applications of CPCA it is important to make sure
that those components that are to be interpreted are not spherical, since a
coefficient should be interpreted only if it is well-defined.

5. Applications. In this section some of the preceding theory is illustrated
by a numerical example. The data used have been published by Jolicoeur and
Mosimann (1960) and have served as an example of PCA in various textbooks
(e.g., Morrison, 1976; Mardia, Kent, and Bibby, 1979). The main appeal of this
example is its simplicity—the data are only three-dimensional, yet illustrate the
purpose of CPCA clearly, which outweighs the disadvantage of rather small
sample sizes.

Table 1(a) displays covariance matrices S; of samples of n, + 1 = 24 male and
ny, + 1 = 24 female individuals of the species Chrysemys picta marginata (painted
turtle). The variables are (1) log(carapace length); (2) log(carapace width); (3)
log(carapace height). The logarithms are used instead of the measured variables
because of their relationship to allometry; see Morrison (1976, page 295). Table
1(b) shows the eigenvalues of the S; and the ML estimates }\ . The value of the
chi square statistic for H, (Flury, 1984) is X% =17.93 w1th three degrees of
freedom, which is close to the 95% quantile of the asymptotic null distribution of
the criterion. Regarding the relatively small sample sizes it may be reasonable to
assume that H, holds.

Table 1(c) shows the estimated eigenvectors B and the estimated asymptotic
standard errors of their coefficients. The standard errors were obtained from the
main diagonal of the sample analog of (2.13). It is obvious that B1 has stable
coefficients, while 32 and B3 seem rather poorly defined.

The hypotheésis of allometric growth of an organism (Jolicoeur, 1963) implies
that the first principal component of the covariance matrix of the logarithms of
the measured dimensions is B] = , 1)/ ‘/_ Let us therefore test the hy-
pothesis H, (3.1) for B = (1,1, 1)'/ \/_ The statistic X2(H,) is obtained from
(3.3) or (3.4) as X?(H,) = 46.17 with two degrees of freedom. At any reasonable
level a we would therefore conclude that the allometric model does not hold in
this case.

Finally, let us see whether the second and third CPC’s are well defined, i.e., let
us test the hypothesis of simultaneous sphericity of the second and third CPC’s.
The null hypothesis is Hg: A;, = A;5 (i = 1,2). Without computing the ML
estimates under Hg, we can easily calculate the approximation (4.9) from the
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TABLE 1
Common principal component analysis of turtle carapace dimensions,
transformed logarithmically.

(a) Sample covariance matrices®

males (n, = 23) females (ny = 23)
1.1072 0.8019 0.8160 2.6391 2.0124 2.5443
S, =10.8019 0.6417 0.6005 S, =20124 1.6190 1.9782
0.8160 0.6005 0.6773 2.5443 19782 2.5899

(b) Variances of CPC’s and eigenvalues of S,

n

males Ayj 2.3148 0.0729 0.0385
eigenvalues 2.3303 0.0599 0.0360
females Ay, 6.7135 " 0.0807 0.0538
eigenvalues 6.7200 0.0751 0.0530

(c) Coefficients of CPC’s®

0.6406\ (0.013) -0.3839) (0.182) -0.6650\ (0.105)
B, = 0.4905 | (0.015) B, = [ —0.4617 | (0.201) B;=| 07391 (0.126)
0.5907 ] (0.016) -0.7997/ (0.032) 0.1075) (0.218)

“Multiplied by 102
*Standard errors, given in parentheses, are based on large sample theory.

values displayed in Table 1(b). The resulting statistic is XZ(approx) = 3.24. Since
this is far below the 95% quantile of the chi square distribution with three
degrees of freedom, we conclude that Hg is reasonable. Taking into consideration
the relative smallness of the second and third roots in both groups, we can thus
think of the three shell dimensions as distributed about a single principal axis
(“size”) and two minor axes containing merely measurement errors, the main axis
having the same orientation in space for both male and female turtles.

6. Conclusions. In this paper we have shown how asymptotic theory can be
used for inference on CPC models. The methods given in Sections 3 and 4 merely
reflect the author’s opinion about which hypotheses might be important in
practice. Other hypotheses and restrictions of the model can easily be for-
mulated; we might for instance be interested in a model where some of the
eigenvalues of two matrices 2, and 3, are identical. Tests for such hypotheses
could be constructed either by the likelihood ratio method or using the asymp-
totic results of Section 2.

One open problem deserves to be investigated: Suppose that we are interested
only in the first ¢ (out of p) CPC’s and wish to neglect the last p — ¢
components. Then we would actually not care whether the 2; have all eigenvec-
tors in common—it would be sufficient to know that B,,..., B, are common to
2,,...,2,. This could be called a partial CPC model.

Obviously a partial CPC model may hold even when the ordinary CPC model
is wrong, and the test for H, may in some situations reject the hypothesis
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although the first ¢ eigenvectors are common to all matrices Z,,..., Z,. This
problem is currently under investigation.

Acknowledgments. 1 wish to thank Professors Ingram Olkin and T. W.
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two referees helped considerably to improve the presentation of this article.

REFERENCES
ANDERSON, T. W. (1963). Asymptotic theory for principal component analysis. Ann. Math. Statist.
34 122-148.
FLURY, B. N. (1984). Common principal components in %k groups. /. Amer. Statist. Assoc. 79
892-898.

FLURY, B. N. and GaurtscHi, W. (1986). An algorithm for simultaneous orthogonal transformation
of several positive definite matrices to nearly diagonal form. SIAM J. Sci. Statist.
Comput. 6.

GIRSHICK, M. A. (1939). On the sampling theory of roots of determinantal equations. Ann. Math.
Statist. 10 203-224.

JOLICOEUR, P. (1963). The multivariate generalization of the allometry equation. Biometrics 19
497-499.

JOLICOEUR, P. and MosiMaNN, J. E. (1960). Size and shape variation in the painted turtle: A
principal component analysis. Growth 24 339-354.

LAWLEY, ). N. (1953). A modified method of estimation in factor analysis and some large sample
results. Uppsala Symposium on Psychological Factor Analysis, 35-42. Almqvist and
Wicksell, Uppsala.

LLAWLEY, D). N. (1956). Tests of significance for the latent roots of covariance and correlation
matrices. Biometrika 43 128-136.

MaRDIA, K. V., KENT, J. T. and BiBBY, J. M. (1979). Multivariate Analysis. Academic, New York.

MORRISON, D. F. (1976). Multivariate Statistical Methods. McGraw-Hill, New York.

MUIRHEAD, R. J. (1982). Aspects of Multivariate Statistical Theory. Wiley, New York.

SILVEY, S. ). (1975). Statistical Inference. Chapman and Hall, London.

WILKS, S. S. (1944). Mathematical Statistics. Princeton Univ. Press.

DEPARTMENT OF STATISTICS
UNIVERSITY OF BERNE
SIDLERSTRASSE 5

CH 3012 BERNE
SWITZERLAND



