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OPTIMAL PROPERTIES OF THE BECHHOFER-KULKARNI
BERNOULLI SELECTION PROCEDURE!

BY RADHIKA V. KULKARNI AND CHRISTOPHER JENNISON
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In a recent article Bechhofer and Kulkarni proposed a class of closed
adaptive sequential procedures for selecting that one of k > 2 Bernoulli
populations with the largest single-trial success probability. These sequential
procedures which take no more than n observations from any one of the &
populations achieve the same probability of a correct selection as does a
single-stage procedure which takes exactly n observations from every one of
the k populations. In addition, they often require substantially less than a
total of kn observations to terminate sampling. Amongst other problems,
Bechhofer and Kulkarni considered the problem of devising a procedure
within this class which minimizes the expected total number of observations
to terminate sampling. For their proposed procedure they cited several
optimality properties for the case £ = 2 and conjectured additional optimal-
ity properties for the case & > 3.

In this article we use a new method of proof to establish stronger results
than those cited by Bechhofer and Kulkarni for the case k = 2, and prove
stronger results than those conjectured for k£ > 3. We also describe a new
procedure for £ > 3 and prove that it minimizes the expected total number of
observations to terminate sampling when all of the success probabilities are
small.

1. Introduction. Let II; (1 <i < k) denote £ > 2 Bernoulli populations
with corresponding single-trial “success” probabilities p,. We denote the ordered
values of the p, by py;< -+ <pp;- Let p=(py,...,p,) and p =
(P[> -+ +» Pray)- The pairing of the II; with the p;;; (1 < i, j < k) is assumed to
be completely unknown. Thus for given p, p has probability 1/k! of being any
particular permutation of p. The goal of the experimenter is to select as “best” a
population with success probability p;,;; when such a population is selected we
say that a correct selection (CS) has been made.

Define N,;, to be the number of observations taken from the population
associated with p,; at the termination of sampling and N = £*_|N,;, to be the
total number of observations taken. For a given value of p we denote the
expected value of N using procedure # by E,{N|p}.

We shall define a class € of procedures, all of which achieve the same P{CS},
uniformly in Pp, as does the single-stage procedure which takes n observations
from each population and selects the population with the largest number of
successes, breaking ties at random. The procedures in ¥ share a common
stopping rule and terminal decision rule but use different sampling rules; they
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take no more than n observations from any one population and curtail sampling
as soon as is possible without decreasing the P{CS}.

We are concerned with finding procedures in ¥ which minimize E{N|p}
and/or minimize E{T¥. \;N,; [P} where A\, > --- >\, > 0. (This latter goal
generalizes to k > 3 the goal of minimizing E{N,,|p}, the expected number of
observations from the “inferior” population, when & = 2.) This approach con-
trasts with that of comparing the performance of procedures which guarantee a
certain P{CS} requirement in, say, an indifference-zone formulation, in that by
restricting attention to procedures in ¢ we compare procedures which guarantee
exactly the same P{CS} uniformly in p.

If p is known or if a prior distribution for P is specified, an optimal procedure
within € for a particular goal exists and can be found by backwards induction.
However, calculation of such a procedure becomes prohibitively expensive as n or
k increases. We shall show that certain simply-described procedures are optimal
for particular regions of p space. This allows an experimenter to use the
procedure which is optimal for an initial estimate of p, with the option of
switching to a different procedure as further information on p is obtained.

Bechhofer and Kulkarni (1982a) state several theorems regarding the optimal-
ity of one procedure in ¢ for k& = 2. These theorems are proved in Kulkarni
(1981) and the performance characteristics of this procedure and of a generalized
procedure for k& > 3 are described in Bechhofer and Kulkarni (1982b), Bechhofer
and Frisardi (1983), Percus and Percus (1984), Jennison (1984) and Kulkarni and
Kulkarni (1985). In the present paper we use a new method of proof to strengthen
results for the case £ = 2 and obtain new results for £ > 3. The same method is
used in Jennison and Kulkarni (1984) to derive optimal procedures for the
problem of selecting the s “best” populations, where 1 < s < k — 1.

In Section 2 we define the class of procedures . Sections 3 and 4 are
concerned with the case & = 2. In Section 3 we define the procedure #* and
prove that it minimizes E{N|p} among proceduresin ¢ whenever p;; + ppy; = 1;
a conjugate procedure #* minimizes E{N|p} whenever Pt P < 1. In
Section 4 we show that #* also minimizes E{N;,|p} in a spec1ﬁc region of the
parameter space and give conditions for #* and 2* to minimize the expected
total number of failures.

Section 5 extends the above results to the case k& > 3. We prove that the
generalization of #* proposed by Bechhofer and Kulkarni (1982a) minimizes
E{N|p} in a specific region of p-space where all the p;;; (1 <i<k) are
sufficiently large. We define a generalization of #* and prove that it minimizes
E{N|p} in another specific region of p-space where the p,; (1 <i < k) are
sufficiently small. The goal of minimizing the expected number of observations
from an inferior population is generalized to the case 2 > 3 and we prove that
#* is optimal in this respect over a specific region of p-space; in particular, #*

minimizes E{X*_ \;N,;|p} forany A, > -~- > X, > 0 whenever pp;; + ppy; > 1.

2. A class of closed sequential selection procedures. A selection proce-
dure is characterized by a sampling rule, a stopping rule, and a terminal decision
rule. We shall use the following notation in specifying such rules: when a total of
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m observations have been taken the experiment is said to be at stage m, and the
state of the experiment at this point is the complete history of the first m
observations. This is denoted by y,, = {(i;, vy), (i, V3),- -+, (i V,,)}, Where i,
is the index of the population from which the rth observation is taken, and
v, is the outcome of the rth observation (either a success or a failure); the
notation y without a subscript will be used to denote a general state of an
experiment. The fgllowing variables are functions of y,,, although the dependence

on m is suppressed in the notation:
n; = number of observations taken from II; in the first m stages,
s, = number of “successes” yielded by II; in the first m stages,
f; = number of “failures” yielded by II, in the first m stages.

We restrict attention to procedures which take no more than n observations
from any one of the & populations where n > 1 is a prespecified integer; thus
0<m<knand n,<n (1 <i<k).Let the set of all possible states be

k
Q= {ym:OSmskn;niSn,lsisk; Y n,=mj.
i=1

A sampling rule, %, is a (possibly random) function from € tc {1,2,..., £} which
specifies the index of the population from which the next observation is to be
taken.

The stopping rule & *is: “Stop at the first stage m at which there exists at
least one population II; such that

(2.1) s;2s;+n—n; forall j#i”

The terminal decision rule 7 * is: “Select as best the population II, which
satisfies (2.1). If more than one population satisfies (2.1) then select one of these
populations at random.” Since we shall restrict attention to procedures using the
stopping rule & *, the notation y,, will be used to refer only to states which could
arise under the stopping rule & *.

We shall consider the class € of sequential procedures which use the stopping
rule % *, terminal decision rule 7 *, and arbitrary sampling rule %, which takes
no more than n observations from any one population; we write £ =
(2, £ *, T *) to denote the procedure in ¥ using the sampling rule £.

THEOREM 2.1. If #, and P, are in ¥ then P{CS|p} is equal for #, and
P,, uniformly in P.

This theorem is proved in Bechhofer and Kulkarni (1982a) and is a special case
of a more general theorem proved in Jennison (1983). A consequence of the
general theorem is that the P{CS} for the single-stage procedure of Sobel and
Huyett (1957) equals the P{CS} for any # € €, uniformly in p.

REMARK 2.1. The stopping rule #* terminates the experiment as soon as
one or more populations which will have the most successes in their first n
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observations can be identified. To stop sampling any earlier would decrease the
P{CS}. Hence, a procedure which is optimal within ¢ for some objective
function is also optimal within the class of all procedures taking at most n
observations from any one population, that achieve the same P{CS} as the
single-stage procedure, uniformly in p.

REMARK 2.2. For k=2, if # is play-the-winner sampling the procedure
(R, S*, T *) is the same as that proposed by Hoel (1972); however, this
procedure is not optimal for our problem.

3. Minimizing the expected total number of observations: k = 2. We
seek a procedure which is optimal within the class €, in the sense that it
minimizes E{N|(p(,}, P(z)}- We first consider the case in which p(;; < p[o; are
known but the pairing of II;, I, with p(;, p) is unknown. Let « € {1,2}
denote the state of nature, where w =1 if (py, py) = (Prg), Ppiy) 1€, I is
“best”, and w = 2if (py, Ps) = (Ppy> P2y 1-€- 1L, is “best”; the prior distribu-
tion for w is given by P{w =1} = P{w = 2} = 3.

For k = 2, the complete history, y,, at stage m can be summarized by
x(y,) = (81, f1» Ny; Sg, fys Ny). Here, s; + f;=n, (i = 1,2) and the stopping rule
& * given in (2.1) can be written as: “Stop as soon as

(3.1) s+ f,=n (selectII,)
or
(3.2) s, + fi=n (select II,).”

For given p = (P}, Pz Bayes optimal procedures which minimize E{N|p}
can be found by backwards induction; Kulkarni (1981) used dynamic program-
ming to construct such procedures. It can be seen from the backwards induc-
tion argument that there are Bayes optimal procedures with nonrandomized sam-
pling rules. In fact, there are Bayes optimal procedures whose sampling
rules depend on x(y,) only, but we shall make use of the more general form
of procedure in proving Theorem 3.1 below. For a nonrandomized procedure
P=(R,F* T*)E € we denote by d(y,,, #) € {1,2} the index of the popula-
tion to be sampled next when in state y,,, if the experiment has not yet stopped;
since a procedure in € is determined by its sampling rule we use the notation
d(y, #) and d(y, #) interchangeably.

The procedure #* = (2*, ¥ *, 7 *) defined in Kulkarni (1981) and Bechhofer
and Kulkarni (1982a) uses the following sampling rule which is also the Least
Failures Rule defined by Kelly (1981).

DEFINITION OF SAMPLING RULE #*. “Sample II, next when f, <f, or
(f, = f, and s, > s,). Sample II, next when f, <f, or (f, =f, and s, > sy).
Sample II, or IT, next with probability § each if s, = s, and f, = f,.”

We now define a subclass #* of the nonrandomized procedures in €. Let
Qp={y s, =5, f =f,) and let @, = @\ Qp. Procedure £ is in €* if it uses
the stopping rule #*, the terminal decision rule 7 * and a nonrandomized
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sampling rule # for which d(y; #) =1 when f, <f, or (f, =f, and s, > s,)
and d(y; #) = 2 when f, < f, or (f, = f, and s, > s,); there is no restriction on
d(y; #) when y € Qg. The notation d(y; ¢*) will be used to denote the above
function for y € 2,. Note that #* differs from the procedures in €* only in
that it randomizes between II, and II, for y € Q.

THEOREM 3.1. Amongst all procedures in €, those in €* are optimal, in the
sense that they minimize E{N|(py;, P[2))} Whenever p(; + ppg; = 1.

METHOD OF PROOF. For a particular pair p = (p(y), Ppz)) With ppyy+ pgy = 1
we take a nonrandomized Bayes optimal procedure # € ¢ and modify it by steps
to obtain a procedure in ¥*. We show that at each step, E{N|p} decreases or
remains equal (in fact, it must remain equal), and thus the resulting procedure is
optimal for P. It is easily seen that E{N|p} is the same for all procedures in € *
and hence, all procedures in ¥* are optimal for all p with p;; + pjy; > 1.

REMARK 3.1. It is easily seen that E,.{N|p} = EL{N|p} for all Z € ¢*;
thus #* = (#*, ¥*, 7 *) is also optimal among procedures in ¥, whenever

p[l] + p[2] > 1.

In order to prove Theorem 3.1 and for the proofs of later results, we require
the following lemmas:

LEMMA 3.1. For a given nonrandomized procedure # € C and a given state
Y=, suppose that after being in state y; it is impossible to stop, using P, without
eventually taking an observation from I1,. Then there is a nonrandomized
procedure $' € € such that

d(Yps P') = A(Yps #) form < m,
d( ¥ P) = d(¥m; P)  foryy # Y,
d(5¥m P') =i
and E,.{Ny,[p} < Eo(NoylB) and Ey(Ny)B} < Eo(NyB) for all B.

Proor. (i) If d(3,;; #) = i, take #’' = 2.

(i) If d(¥5; P) # i, define £’ as follows: “Take the first m observations
using the sampling rule of #, and if y, # 3, continue to use 2. If y_ = 3, take
an observation from II; and then continue to use the sampling rule 2, ignoring
the observation on II;, until £ calls for an observation from II; now use the
sampling rule £, behaving as if the earlier observation from II, had been taken
at this point. At all times use the stopping rule &*, based on all of the
observations that have been taken up to that stage.”

For a fixed pair of sequences of observations on II; and II,, £ must take at
least as many observations as 2’ on each of II, and II, and the result follows. O
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LEMMA 3.2. For a given nonrandomized procedure # € € and a given state
J- € Qp (i.e., §, = 5, and f, = f,) there are nonrandomized procedures #, and
P, € € such that

d(Yp; P1) = Ad( Vs Po) = (Vs P)  form < m,
d(.)'m? gpl) =d(ym; 902) =d(ym;g’) for ¥z # ¥z,
d(ymi gal)=1» d(ym;.¢2)=2

and Egl{lefJ} =_E92{N(1)|f’} = E@{N(l)rli} and E.?l{N(z)ﬁ’} = E%{N(z)ﬁ)} =
E(Nob) for all 5.

ProoF. We construct a procedure £, with the required properties. A proce-
dure #, can be constructed similarly. Let i denote the complement of i in
{1,2}.

() If d(¥z P) =1, take 2, = 2.

(i) If d(¥, P) =2, define 2, as follows: “Take the first m observations
using the sampling rule of 2, and if y; # 5 continue to use 2. If y; = ¥, take
d(y,; ) = {d(y,; P)) for m > m, where y,, is formed from y,, by changing i,
to i¢ for all » > m + 1.” Thus, when y; = ¥5, &, behaves like £ would behave
if the labels of the two populations had been interchanged after stage m. By
symmetry, E;{N;)|P} = Ep{N,)|p} and Ep{Ny)|p} = Ez{Ng)|p} for all p. O

Let Q.= {y € Q,: 8, +f,=n—1ors, + f, =n— 1}. Thus Q is the set of
states for which either s, # s, or f, # f,, and the next observation will be the last
one if it takes the appropriate value.

LEMMA 3.3. For a given nonrandomized procedure P € €, define #’ by
d(y; #) =d(y; #) fory & Qc,
d(y; #') =d(y; ¢*) fory€ Q.
Then E5{N|p} < Ex{N|p} whenever p;;; + pjg; = 1.

ProOF. Without loss of generality we consider a state y € Qc with x(y) =
(8,5 f1, iy; 895 far M2) and for which §, + f, = n — 1. If on any future observation
a success is obtained from II, or a failure from II,, then the experiment
terminates. Thus from this point, the application of a particular sampling rule is
determined by the fixed sequence, containing (n — ;) I’s and (n — 7,) 2’s which
give the order of the population indices for those of the remaining (2n — 72, — n,)
possible observations which need to be taken. Note that under the stopping rule
& * the 2nth observation is never taken, i.e., N < 2n — 1.

Suppose there are m, 1’s and m, 2’S in the first r terms of such a sequence
(m,+ my=r,A, + Ay +r<2n-2). Then for w =1, (p,, Py) = (P Pp1))
and, conditional on the occurrence of state y,

r—m,

P(N># +7,+r})=01-pg) " (pp) ™
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This expression decreases as m, increases if p(,; + p[y; > 1. Similarly, for w = 2,

rml

P(N>n, +n,+r}=(1 P[l]) '(Pra)

which also decreases as m, increases if p(;; + py; = 1. If the experiment has not
stopped by stage 2n — 2, it does not matter which population is sampled next
since the next observation will be the last. Thus, if Pyt P2 1, an optimal
sampling rule from state ¥ on is to take observations from IT, when possible; 2’
therefore samples optimally from state ¥ on and the result follows. O

LEmMMA 34. For a given nonrandomized procedure # € ¥ such that
d(y; P)=d(y; €*) for all y € Q,, suppose there is a state y; € Q, with
x(¥z) = (51, f1, Ry 83, fo, p) and d(¥gz; P) # d(¥z; €*). Then there is a non-
randomized procedure #’ € € such that

d(y; #') =d(y; ¢*) forally € Q,
(s ') = d(Yp; ) form <m,
d(Ym; ') = d(ym; L) for yg #* ¥,
d(¥m; ) = d(¥m; €*),
and E,{N|p} < Ex{N|p} whenpp; + prg = 1.

Proor. First, note that the procedures 2’ constructed in Lemma 3.1 can be
modified by application of Lemma 3.3 to give procedures #” for which
d(y; ") =d(y; €*) for all y € Q., with no increase in E{N|p}. Also, the
procedures %’ constructed in Lemma 3.2 preserve the property d(y; #) =
d(y; ¢*) for all y € Q. To prove the lemma we consider the following cases:

CASE la: 5, > 5, and f, > f,.

In this case d(¥;; €*) = 2. Neither (3.1) nor (3.2) can be satisfied without a
further observation from II, and the required procedure #’ can be constructed
by application of Lemmas 3.1 and 3.3.

CASE 2a: §, < 5, and f, > f,.

In this case d(¥ €*)=2. Since d(y; #)=d(y; ¢*) for y € Q, it is
impossible to terminate after being in state ¥, without an observation from II,.
The required procedure 2’ can therefore be constructed by application of
Lemmas 3.1 and 3.3.

CASE 3a: §, > §, and f, = f,.

In this case d(¥;; ¢€*) = 1. First deﬁne %, as in Lemma 3.2, so that if the
next (8§, — §,) observations are taken from II and they are all successes, then
the next observation is taken from II,. Since d( Y P)=d(y; €*)for y € Q, it
is impossible to terminate under #,, after being in state ¥, without an observa-



BERNOULLI SELECTION PROCEDURE 306

tion from II, and the required procedure #’ can be constructed from £, by
application of Lemmas 3.1 and 3.3.

The proofs for Case 1b: §, > 5, and f, > f,, Case 2b: 5, < 5, and f, > f,, and
Case 3b: 5, > 5, and f, = f, are as above with the indices 1 and 2 interchanged.
These six cases cover all ¥; € Q, and the lemma is proved. O

PRrROOF OF THEOREM 3.1. The proof uses Lemmas 3.3 and 3.4. Suppose £ € ¢
is a nonrandomized Bayes optimal procedure for a given p = (p(y, Pz)) With
Ppy + P2y = 1. Then by Lemma 3.3, 2 can be modified to give a procedure #’
for which d(y; #’) = d(y; €*) for all y € Q and, in turn, using Lemma 3.4, &’
can be modified gradually, starting with m =1 etc., to obtain a procedure
P € €* for which E,.{N|p} < Ez{N|p}. It follows that all procedures in ¢*
are Bayes optimal for this problem and since the procedures do not depend on p
they are optimal whenever p;; + p;z; > 1. O

The conjugate procedure P* = (Z*, ¥*, T *) uses the following sampling
rule.

DEFINITION OF SAMPLING RULE Z£*. “Sample I, next when s, <s, or
(s, = s, and f; > f,). Sample II, next when s, > s, or (s, = s, and f, <f,).
Sample I, or II, next with probability ; each if s, = s, and f, = f,.”

It is a consequence of Theorem 3.1 that Z* and all procedures 2, which agree
with #* when s, # s, or f, # f,, minimize E{N|p} whenever p,; + py < 1.
For k = 2, we denote by €* the class of nonrandomized procedures # € ¥,
which agree with #* when s, # s, or f, # f,.

REMARK 3.2. The sampling rules for procedures in ¥* and #* do not
depend on n.

4. Minimizing the expected number of observations from the inferior
population and the expected total number of failures: & = 2.

THEOREM 4.1. Amongst all procedures in ¥, those in €* minimize
E{N,)|(pPpy» Pr2y)}s the expected number of observations from the inferior popu-
lation, if and only if

1
(4.1) D2 max{(l +P[2]/P[1]) (1 +(1 _P[l])/(l P[z])) }
This condition reduces to ppyy = [3 — pri; — {3 — ppy)? — 4)'/%1/2; a sufficient
condition is py; =

METHOD OF PROOF. The proof is similar to that of Theorem 3.1. The
following lemma corresponds to Lemma 3.3.
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LEMMA 4.1. For a given nonrandomized procedure & € ¥, define #’ by
d(y; #') =d(y; #) fory & Qc,
d(y; #') = d(y; €*) fory€ Q.
Then Egz {N,)|Pp} < Ep{ NP} if (4.1) is true.

PrOOF. Without loss of generality we consider a state y € @, with x( y)
(8, f1» My; 83, f2, M) and for which 5, + f,=n—1 and #,<n (i=1,2); i
follows that 5, > 5, and f, < f, with at least one strict mequahty As before a
success from II, or a failure from II, leads to termination of the experiment, and
the application of a particular sampling rule from this point, is determined by the
fixed sequence, containing (n — 7,) 1’s and (n — n,) 2’s which gives the order of
the population indices for the remaining observations. Denote this sequence by
z = (iy, iy, I3,...). Under 2, the sequence consists of (n — n,) 1’s followed by
(n — n,) 2’s. The sequence z corresponding to & can be transformed into that
corresponding to &’ by successively interchanging pairs of elements in z. This
may be done in such a way that each transition is of the form z, to z, where the
sequences 2, and z, consist of

(i) a sequence containing a, 1’s and a, 2’s, for some a, and a,, which is the
same for both z, and z,, followed by
(ii)) (1,2) in 2z; and (2,1) in z,, and then
(iii) the same final terms in both 2z, and z,.

Let E{NJ)|p} denote the expected number of further observations on the
inferior population, starting from state ¥ with sampling according to the se-
quence z. We shall show that for 2, and z, as described above, E,{N})|p} <
E, {N7)|p} if (4.1) holds; hence E, { NJ)|p} < Ez{ (1)|p} and the lemma follows.

If the difference between the sequences z, and z, is in the last two elements,
then the only difference in sampling occurs at a state y € Q5 and hence
E {N({)|p} <E, {N({)|p} Suppose now that the difference in the two sequences
occurs earlier. Note that this implies ay < §, — 5, and a, < f, — f, with at least
one strict inequality. Under w = 1, II, is the inferior population and by consider-
ing the pairs of sequences of observations from II, and II,, which lead to
different values for N3, under z, and z,, we have

E, (N3, 0 =1} — E,{N}IB,0 =1} = (1 - py)“(Ppy) “ Ppay-
Similarly,

Zz{ N3)Ip, w = 2} { N, @ = 2} = —(1- P[u)a'(l’[z])az(l _P[z])-

The posterior distribution of w in state y is given by P{w =1} = a,
P{w = 2} = a, where a; + @, = 1 and

a;/ay = (P[2]/P[1])§l-§2((1 - P[l])/(l - P[2]))irfl .
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Hence
Ezz{ 1)|P} - Ez,{l\’(‘f>lf)} = "‘1(1 _P[z])al(l’[l])azp[z]

a2(1 - P[l])al(P[z])%(l - P[z])
and this is positive if

p {1 + a1 _19[2])“1(1’[1])‘12
2 a
o= a2(1 _P[l]) l(P[z])a2
(4.2)
§1—§,—ay 1-— fo-h—a)\ ~
={1+ BQ) ——Pm
P 1- Dy

But 5§, — 5, —a, >0 and f, — f, — @, > 0 with at least one strict inequality;
thus (4.2) holds for all the requlred y 1f it holds both when §, — §, — @, = 1 and
f, — fi — a, = 0 and when 5, — =0 and f, — f, — @, = 1. Substituting

these two cases into (4.2) gives condltlon 4.1). O

PrROOF OF THEOREM 4.1. The proof that procedures in ¥* minimize
E{N,,|p} if (4.1) holds uses Lemmas 3.1, 3.2, and 4.1 in the same way that
Lemmas 3.1 to 3.3 were used to prove Theorem 3.1.

The necessity of condition (4.1) is proved by showing that if it does not hold,
procedures in ¥* do not minimize E{Ny|p)} for certain states y. The superior
sampling rules are found by interchanging a pair of elements in the vector z
discussed in Lemma 4.1. O

Let N¥ = E{X% (1 - p;;;)N,|P}, the total number of failures from both
populations at termination.

THEOREM 4.2. Amongst all procedures in €, those in €* minimize
E{N*|(ppy, Prz))} ¥ and only if either pjyy + ppgy = 1 or ppyy + Py < 1 and

2 - 4ppy + phy — (1 - pw)y/(2 - 4Py + PRy)

(4.3 Do =
: “ 1=2py

PrROOF. The proof is similar to that of Theorem 4.1. With state y and
sequences 2, and z, as described in Lemma 4.1, let E { N2|p} denote the expected
number of further failures, starting from ¥, sampling according to the sequence z.
Then

EZZ{N,ZE)} - Ezl{Ni?ﬁ)} = “1(1 _P[z])a](P[l])%(l _P[l])(2p[2] - 1)
+ ay(1 _P[l])a'(P[z])az(l - Pr) 2Py — 1).

’_I‘hls expression is pos1t1ve if ppy;+ Py = 1. Consideration of the cases {5, —
S,—ay=1and f,—f, — a,=0}and {§, - 5,—a,=0and f,— f, — a, = 1}

(4.4)
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gives the necessary and sufficient condition for (4.4) always to be positive when
Ppy + Py < 1, which reduces to (4.3). O

THEOREM 4.3. Amongst all procedures in ¥, those in &* minimize
E{N,'Kp[l], P} i Py < 3

PROOF. The proof is similar to that of Theorem 4.2. Since procedures in % *
are associated with the sequence z,, they minimize E{N*|p} for values of p,
and pp, for which (4.4) is always negative. A sufficient condition for this is
P < 3 but the necessary condition, obtained by substituting extreme values of
a, and a, in (4.4) depends on n. O

5. Extensions to three or more populations. In this section we extend the
results of Sections 3 and 4 to the case k£ > 3. We continue to restrict attention to
the class ¥ of procedures using the stopping rule &#* defined by (2.1), the
terminal decision rule  *, and a sampling rule which takes at most n observa-
tions from any one of the & populations. We first generalize the classes ¥* and
€* for k > 3.

Let O, be the ordering in which II; precedes II; if f; < {; or if f;=f; and
s; > s, and II, is tied with II; if both f; = f; and s, = s;. Let A, denote the set
of populations tied in first place under O,. ¥* consists of those nonrandomized
procedures in ¥ which always take the next observation from a member of A;:
the procedure 2* = (#*, ¥*, 7 *) of Bechhofer and Kulkarni (1982a) chooses
one of these populations at random.

The ordering O, is defined as follows: first place is given to the population
with most . successes, with ties broken according to the smallest number of
failures; if there is still a tie, then all of these tied populations are tied for first
place. Let r be the number of populations tied for first place; then the remaining
(k — r) populations occupy places (r + 1) to k£ and are ordered asin O,. If r = 1,
let A, denote the population in second place under O,, or the set of such
populations if there is a tie; if » > 1 and the ( + 1)st population under O, has at
least as many failures as the populations tied for first place, let A, denote the set
of populations tied for first place under O,; if r > 1 and the (7 + 1)st population
under O, has less failures (and therefore less successes) than the populations tied
for first place, let A, denote the population in (r + 1)st place under O,, or the set
of such populations if there is a tie. €* consists of those nonrandomized
procedures in ¢ which always take the next observation from a member of A,. In
this context the natural generalization of Z* is the sampling rule which chooses
one of these populations at random. This should be distinguished from the
generalization #* given by Bechhofer and Kulkarni (1982a). Although, at first
sight, * and €* appear to have quite different forms they are in fact members
of a single family of procedures; see Jennison and Kulkarni (1984).

We note that both €* and €* as generalized above, agree with the previous
definitions for k£ = 2. We shall prove that procedures in #* and ¢* minimize
E{N|p} in two different regions of the parameter space {p = (pPpy,---» Pz1)}-
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When k& > 3 the concept of elimination is useful. Populations are eliminated
successively: if f;+s;>n and II; is not yet eliminated, then we say II,
eliminates I1; once a population has been eliminated it is unnecessary to take
any further observations from it since at best it can only tie with its eliminator
for the most successes.

THEOREM 5.1. Amongst all procedures in €, those in €* minimize
E{N|(P[1],---, P[k])} ifp[l] + (Ef=2p[i])/(k -1)=>1

REMARK 5.1. We note that this is a stronger result than the conjecture of
Bechhofer and Kulkarni (1982a, Conjecture 7.1), namely that #* minimizes

E{N|p} for pjj; + piz = 1.

METHOD OF PROOF. The proof is similar to that of Theorem 3.1. The major
difference occurs in the following generalization of Lemma 3.3.

LEMMA 5.1. Suppose that all but two populations have been eliminated, with
populations 11; and 11, remaining; suppose also thats; + f;=n —1,s,+ f;<n,
s;+fi<n, and etthers > s; or f; < f;. Then if py;; + ():, 2p[,])/(k -1)=>1,
an optzmal sampling rule from this point is to sample from population 11, until
the first success, switching to 11; only if n — (s; + f;) failures are obtained from
IT,.
Proor. Using the notation of Lemma 4.1, suppose that in the above situa-
tion, a procedure & which does not sample from eliminated populations gives rise
to, a sequence z of is and js which contains the pair (J, i) as two consecutive
elements and that these are not the last two elements in the sequence. Let y
denote the state of the experiment when the procedure # is about to take the
observation on II; corresponding to the “;” of the pair (Jj,i). Define the
procedure £’ which agrees with # except that the pair (J, i) is replaced by
(i, j). For fixed p; and p;, if N ¥ denotes the total number of further observations
starting from Yy, then Eg,,{N’|p} — E4(N’lp}=1—-p,— p;- Let a; ; be the
posterior probability, when in state y, that the two populations, H and II;
which have not been eliminated, have success probabilities py, ; and Pii,)
respectively. Then

(5.1) Ey'{Nyﬁ’} - EQ{N;W)} = Z Z ail,i2(1 — Prip _P[iz])- '

5 lg# )

For given p, the prior distribution for p assigns probability 1/k! to each
permutation of p. In state y, II, has at least as many successes and at most as
many failures as each other population, with at least one strict inequality in each
case: thus, i, is an increasing function of i, for fixed i,, and the right-hand
side of (5.1) is negatlve if ppjy + (}:,,,zp[,])/(k — 1) > 1. It is easily seen that
there is no advantage in sampling from eliminated populations and the result
follows. O
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ProoF oF THEOREM 5.1. Let £ be a Bayes optimal nonrandomized proce-
dure for a particular p with p;+ (Z{-“=2p[,~])/(k —1)> 1. Then £ can be
modified to agree with €* in the situations described in Lemma 5.1, with no
increase in E{N|p}; it can then be seen that in any state a future observation
from a population in the set A, is essentially inevitable (the possibility of a new
population tying with those in A, is handled using a generalization of Lemma
3.2) and hence # can be modified to give a procedure in €*, again with no
increase in E{N|p}. It follows that all procedures in ¥* minimize E{N|p} for
the specified p. O

THEOREM 5.2. Amongst all procedures in €, those in €* minimize
E{N‘(p[l]""’ p[k])} if

(5.2) P[k]{ g lj( P[j])} s ,:ljll(l - Pry);

values of p satisfying this condition include those for which either ):_1 P+
(k= Dppyslorpyy<1—@G)/* 0,

METHOD OF PROOF. Again, the proof is similar to that of Theorem 3.1. The
following lemma replaces Lemma 3.3.

LEMMA 5.2. Suppose that in state y there is a unique leader in the ordering
O,; without loss of generality let this be population I1,. Suppose also that
S ;+f,=zn—1 for i+ 1 so that a single success from II, terminates the
experiment with the selection of I1,. Then if (5.2) holds, there is an optimal
procedure for minimizing E{ N|p} which does not take the next observation from
I1,.

Proor. First consider a state y for which no populations have been eliminated
and for which f;- = f, forall j # 1. In this case f; = n — 5, — 1, (n — 1) observa-
tions have been taken from II, and n — (r; + 1) observations, say, have been
taken from II; (j # 1) where r; > 1. Without loss of generality suppose 1 < <
r;< - < rk Suppose further that £ is a Bayes optimal procedure for a given
P and that in state ¥, # takes the next observation from II,. If this observation
is a success the experiment stops; if not it can be seen by the “inevitable
observation” argument that # must sample from II,,...,II, in order, in each
case sampling from II; until it is eliminated by the occurrence of a failure or until
another (r; + 1) successes are obtained from II; and the experiment stops with
I1; selected as best. We define the procedure %’ as follows: sample as under 2
but omit the initial observation from IL;; if r; successes are obtained from II;
take an observation from II, and then proceed again as under £ behaving as if
the observation from IT, had been taken when in state y. Let N7 denote the total
number of further observations starting from y, and let X = E,{N’|p} —
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E,.{N?|p}. For fixed p = (p,,..., p,) it can be shown that
= (1 -pp)1-pp)...(1 - p})
b T+ (1= ) T
1-p, 1-p3
1-pg

(5.3)

+(1 - p3)(1 - p3) 7

1 - pg
+1 BN -5 1= P D T .
— P

As a function of r; with r; fixed (i # j), X is of the form
X_A(l_ j)_B_C(l_pj )/(I_Pj),
where B > 0. If X > 0 for r; = 1, then A(1 — p;) — C > B, hence
{a@-p)-C}(1-pp)/(1-p;) =B

and X >O0forall ;> 1. Thus X >0foralll<r,<ry< --- <r,if
k k-1 i

(5.4) I_[(l—pi)-pl{1+ )» H(l—pj)}ZO-
i=2 i=2 J=2

For given p = (ppy3,.-., Ppz)) the left-hand side of (5.4) is smallest when p, =
Ptk P2 =Ppy P3=P2---s Pr = P[r—1) and hence (5.4) is certainly satisfied if
(5.2) holds; this establishes a contradiction and we conclude that an optimal
policy does not sample from II, when in state y.

We now consider states ¥ in whlch no population has been eliminated and for
which f, <f (J# 1) and the values f; are equal for all j+ 1. We argue
inductively on the value of f fi Agaln suppose there is a Bayes optimal
procedure & which samples from I1, when in state ¥ and use the inductive
hypothesis to find the optimal sampling procedure when a single failure on
population IT, has been observed after being in state y. A procedure #’ can then
be constructed as before for which X = E4{N7|p} — E, {N’|p} is given by (5.3),
where now r,=n —n; > 1, and the result follows.

Finally, we consider states y in which one or more populations have been
eliminated. The proof follows the same lines using the fact that for given p the
expression for E,{N’|p} — E,{N’|p} is positive as long as X defined by (5.3)
with r, =r; = --- =r, = 1is positive. O

PROOF OF THEOREM 5.2. Let 2 be a Bayes optimal nonrandomized proce-
dure for a known p which satisfies (5.2). In a state where there is a unique leader
under O,, it is a consequence of Lemma 5.2 that 2 can be modified so that an
observation on a population in A, is essentially inevitable and hence £ can be
modified to give a procedure whxch agrees with #* in such situations, with no
increase in E{N|p}. Similarly, if populations II; and II;, say, are tied for first
place under O, and f;=f,<f, A <I<k) then an observation on one of the



312 R. V. KULKARNI AND C. JENNISON

leading populations is essentially inevitable and £ can be further modified to
agree with €* in these situations also, with no increase in E{N|p}. Finally, if
r > 1 populations, including II; and II;, are tied for first place under O, and
fi=1> fu for some u, then an observation on a population in (r + 1)th place
under O, is essentlally inevitable and £ can be modified once more, again with
no increase in E{N|p}, to agree with #* in these situations also. The resulting
procedure is in * and therefore the procedures in €* minimize E{N|p} for the
specified p p

If S¢priy+ (k= Dpppy < 1, then [T42M1 — pj) 2 (B — Dppy for 1 <i <
k — 1, and hence

{I:Ijll(l _P[i])}_ll’[k]{l + ,:gjt[l(l _p[j])>

k-1
=P X { IQ _P[n)} <1,
i=1 J=1

and thus (5.2) holds. By considering the case p;;; =Py = ** = Pz, it is seen
that (5.2) holds whenever p,; <1 — (H)Y*" 1. O

We note that the methods of proof in Theorems 5.1 and 5.2 show that
procedures in €* and ¢* sample optimally for the specified values of p, starting
from any state y regardless of whether it can be reached using a procedure in ¢*
or € *, respectively. _

The procedures in * and €* behave in two quite different ways. Those in
¢* are appropriate when the p;;s are large; they aim to reach a conclusion by
obtaining a large number of successes from the leading population. Procedures in
¢ * are appropriate when the p(;;s are small; they aim to reach a conclusion by
obtaining a large number of failures from every losing population. The sets of
values of p for which procedures in ¢* and ¥* minimize E{N|p} are larger
than those given in the statements of Theorems 5.1 and 5.2; further specification
of these two sets can be found from the details of the proofs of the theorems. We
showed in Section 3 that for £ = 2 the regions of optimality of ¥* and ¢*
together span the entire parameter space; this is not the case for £ > 3, and it
does not seem possible to characterize optimal procedures in this remaining
region using the techniques of Sections 3 and 4. The disadvantage of procedures
in €* is that a failure on each of (2 — 1) losing populations is needed to do the
work of a single success on the leading population, and this is a serious problem
for large k. The problem is less serious if several populations have been eliminated,
and this suggests that a combination of ¥* and #* may be optimal when
neither is optimal by itself. In practice p P usually is not known and we suggest
that either #* or #* be used as a sampling rule, according to the current
estimated success probabilities of the uneliminated populations.

An extension of Theorem 4.1 requires a generalization of the number of
observations from the inferior population to the case £ > 3. In a medical study,
for instance, one wishes to allocate patients to treatments with high success
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probabilities but at the same time an early result is desirable and the total
number of observations taken should also be small. A general objective might be
to minimize E{X*_ A;N,;|p} where A, > --- > A, >0and N =(A;,...,A,) is
possibly a function of p. Special cases of this goal are the minimization of
E(N,)p}, E{Z![N,p}, and E{Np}; if A, =1—pp,, E{Zf=1AiMi)|f)} is the
expected total number of failures, discussed in Section 4 for £ = 2. We say that a
procedure is fully optimal for a particular p if it minimizes E{Zf,,l)\iN(i)ﬁ)} for
all N\ satisfying A, > -+ > A, > 0. An equivalent requirement is that the
procedure minimize E{X]_,N,;)|p} for all r (1 < r < k). The following theorem
shows that #* = (#*, ¥*, 7 *) is fully optimal if p;; + pjy; = 1.

THEOREM 5.3. Amongst all procedures in ¥, those in ¥* minimize
E{X;_Ni|(Ppys---» Pray)} for all r (1 < r < k) whenever pj;; + pjg) > 1.

METHOD OF PROOF. Again, the proof is similar to that of Theorem 3.1. This
time the following lemma replaces Lemma 3.3.

LEMMA 5.3. Suppose y is a state in which all except two populations have
been eliminated and these have success probabilities p(;  and p(; ;; we condition
on knowing p; y and p; , but not their pairing with the two populations. Let N},
denote the number of further observations taken on the population associated
with p;), after being in state y.

() If r < min{i,, i,} then E{X]_ N2\ Py Ppi,y) = O for all procedures in
€.
(ii) If i, < r < i, then a sufficient condition for procedures in €* to minimize
E{X_\N3\|Ppiys Prig)} 8 Py 2 5
(iii) If max{i,, i,} < r then a sufficient condition for procedures in €* to
minimize E{Ef=,1\f({)[p[il], p['z]} isp[,l] + p[iZ] > 1.

ProoF. The proof follows directly from the 2-population results of Theorems
31and 4.1.O

ProoF oF THEOREM 5.3. It follows from Lemma 5.3 that p;; + pjy; > lisa
sufficient condition for procedures in #¥* to minimize E{¥]_,N]p} for
all states y in which all but two populations have been eliminated and
for all 1 < r < k. The results of Lemma 5.3 can be applied as in the proofs of
previous theorems to show that procedures in €* are fully optimal whenever
pPmytpe 21l 0

,
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