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SIMULATED POWER FUNCTIONS!

BY RupoLF BERAN

University of California, Berkeley

Tests for a null hypothesis whose specification involves an unknown
nuisance parameter may be obtained by inverting a bootstrap confidence
region for the parameter being tested or by constructing a simulated null
distribution for the test statistic. The power of either test against certain
alternatives involving the same unknown nuisance parameter can itself be
estimated by simulation.

1. Introduction. Bootstrap distribution estimates generate confidence re-
gions of approximate level 1 — « in a variety of statistical models, including some
models for which alternative constructions of confidence regions encounter sub-
stantial technical difficulties [cf. Efron (1979), Bickel and Freedman (1981, 1982),
Beran (1984), and Beran and Srivastava (1985)]. Underlying the bootstrap is the
concept of simulation: the fitting of a mathematical model to observations on a
system and the subsequent use of the fitted model to mimic, or simulate, the
system. Simulation is a well-established technique in disciplines as diverse as
numerical weather forecasting, the calculation of tide tables, and economic
forecasting.

Simulation ideas also have application in statistical hypothesis testing. Tests
for a null hypothesis whose specification involves an unknown nuisance parame-
ter may be obtained by inverting a bootstrap confidence region for the parameter
being tested or by constructing a simulated null distribution for the test statistic.
The power of either test against certain alternatives involving the same unknown
nuisance parameter can itself be estimated by simulation. The uniform con-
sistency of such simulated power functions is the main result of this paper.

Consider the following general situation. Suppose = and ©® are metric spaces
with metrics m,, m,, respectively. The observations X,, X,,..., X, are indepen-
dent identically distributed random vectors with joint distribution P’ 4 , which
belongs to a parametric family {F;,: (£, 6) € Q}. The parameter space { is a
subset of = X @. The subscript “A” in (§,, 6,) designates the “actual” parameter
values which are supposed to underlie the experiment. Both £, and 6, are
unknown. Let £, be a specified element of Z. We wish to test the null hypothesis
that ¢, = £, against alternative hypotheses in which £, differs from £, with 6,
being viewed as a fixed nuisance parameter.

More formally, the testing problem under consideration is

.o: the {X;;1 < i < n} have distribution P , ,(£,,0,) € @

,»
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152 R. BERAN

versus alternatives of the form

(1.2) H, ,:the {X;;1 < i< n} have distribution P, ,(£,0,) € Q, £+ ¢,

with 6, being the unknown actual value of 6 in the experiment. The alternatives
(1.2) are of particular interest because they include the actual distribution P o,

of the data when the null hypothesis H, , is false; and because the power
function of a test over the alternatives (1. 2) is typically estimable while power
against P , is not. Tacit is the requirement that the model {Plg: (§,0) € Q)
be general enough to contain, or reasonably approximate, the actual distribution
of the data.

The test statistic approach. Suppose T, = T,(X,, X,,..., X,) is a test statis-
tic for the null hypothesis H, ,. Let K, T(£, 0) denote Z[T,|P,], the distribu-
tion of T, under P,, and let

(1.3) K, r(x;€,0) = Py[T, > x]

be the corresponding survival function. For a € (0, 1), let

d, (a;§,0) =inf{x: K, 1(x;&,,0) < a},
d, (a;§,0) =sup{x: K, 1(x;£,,0) > a}.

Suppose 0 is a consistent estimate of 6, and d,(a; &, 0 ) is any random variable
lying between d, 1(a; §,0,)and d, (a; &, 8,). Define the test ¢, by

(15) (Pn(x) = {1 lf Tn > dn(a; 50: 971)1

(1.4)

0 otherwise.

The critical value d,(a; £,, 0n) is an upper a-point of K, T(go, ), the simulated
null distribution of T,. In practice, d,(a; &, 8,) can often be approximated by
performing a Monte Carlo simulation of the distribution K, (£, 6,). This
calculation is an extension of the more familiar Monte Carlo technlque for finding
a critical value when testing a simple hypothesis. Under conditions to be
described in Theorem 2.1, the test ¢, has asymptotic level a under H,,

The power of ¢, against the alternative H, ¢1s

(1.6) Bn, o(a; §,84) = PPy [T, > d,(a; &, 6,)].

To estimate B8, .(«; §, 6,), we might seek an analytical asymptotlc apprommatlon
to B,  (a; &, 0,); and then replace 6, by 8, wherever 0, appears in this approxi-
mation. Unfortunately, the avallable asymptotic approximations to 8, ola; & 0,)
are not always trustworthy for every value of £ Consider, for mstance local
asymptotic power approximations when £ is an infinite dimensional | parameter.

The simulation estimate of the power B8, .(a; ¢, 6,) is B, oa; §,0,). Evalua-
tlon of B, ,(a; é, ) typically requires Monte Carlo simulation of the distribution

—d (a, ¢,,0.), the s1mulat10n samples being drawn from P, . For each
sample X* = (X}, ..., X;¥) drawn from P, the critical value
d,(a; &, n(X*)) must 1tself be recalculated, usually by nested Monte Carlo
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simulation of the distribution K (&, én(X*)). If £ is a euclidean parameter and
other requirements to be specified in Theorem 2.2 are met, then

(1.7) lim sup|B,,,.,(a; £,0,) — B, o(a; £,0,)|=0

with Pf 6, -probability one. If £ is an infinite dimensional parameter, a uniform
convergence result slightly weaker than (1. 7) can still be proved (Theorem 2.3).

Another estimate of ,B qp(01, ¢, 0,), which rehes on asymptotlc constancy of the
critical value d,(a; §,, ,,), is K, rld(e; £0, ); §,0,]. This computationally
simpler estimate also converges to £, .(«; £, 6,), uniformly in £, under condltlons
to be described in Theorems 2.2 and’ 2 3. Evaluation of K, r[d,(a; §,, n) £ 0,
typically requires the initial calculation of the critical value d,(a; &y, 0, and
Monte Carlo simulation of the distribution K, (¢, b,).

Section 2 of this paper describes a numerical study wherein the actual power
function of the bootstrap ¢-test was compared with the two power function
estimates described above and with the power function of the classical #test.

While the function B, (a; *, 8,) is estimable, as indicated above, it does not
seem possible to estlmate B, o €4, 04) itself. Suppose £n, n) are consistent
estimates of (&4, 4,). In general B, o(a; én, 6 .) does not converge to
B, o(@; €4, 04). For example, consider the following case: P 8 is the N(¢,60)
distribution; (én, 8,) are the usual estimates of mean and variance; T, is the
t-statistic; H, , is the hypothesis that £, = 0. Small perturbations in £ 4 affect
the value of B, ,(a; €4, 6,) far more than do small perturbations in the nuisance
parameter 6,,.

Equation (1.7) immediately implies that 8, (a; £, 9n) is a consistent estimate
of the actual level of the test ¢,. Moreover, suppose we are interested in
the performance of ¢, against alternatives H, , indexed by £ € E,, where E, =
{£€ E: m(§, &) = ¢,} and {e,} is a sequence of positive constants tendlng to
zero in such a way that inf(8, (a; £, 6,); £ € =} has a limit in (0, 1). (Under the
assumptions for Theorem 22, e, = n"'? will do) Because of (1.7),
inf{B, (a; & 6,); &£ € E,} is estimated consistently by inf{B, (a;§, 0n) (e =)
Thus, asymptotlcally correct comparisons between tests based on test statistics
T, and T, , can be made by referring to the estimated level and the estimated
minimum power over =, of each test.

Implied by this result is a technique for constructing adaptive tests based
upon a finite collection of tests ¢, 1 Pr2s 05 Pn of asymptotic level a: use the
test @, ; for which inf{g, o £0,); ¢ n} is greatest. In view of the preced-
ing paragraph this procedure defines a test ¢} which has asymptotic level a and
the property that inf{B, ,.(a; £ 60,); £ € =,} converges to
max ;inf{f, ‘p(a, £0,); e 5,).

A related problem is the estimation of test power in future experiments on the
basis of current information. Suppose the {X; 1 < i < n) are observations to be
taken in a future experiment. Let §,, be a consistent estimate of 0, based on an
independent training sample of size m. Under conditions similar to those for
Theorems 2.2 and 2.3, B, .(a; ¢, 6,) is a uniformly consistent estimate of
B, (a; £ 0,) as min(m, n) tends to infinity. The performance of the test ¢, in
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the proposed experiment can therefore be assessed by examining the simulated
power function B,(«; &, 6,,), as in the previous paragraphs.

The confidence region approach. Suppose R (X, £) is a pivot for §, a random
function depending on X = (X, X,,..., X,,) and on the parameter £. Let
J, r(§,0) denote L[R (X, £)|P,] and let J, g(x; £, 0) be the corresponding
survival function, defined as in (1.3). For a € (0,1), let

cn’L(a; ¢,0) =inf{x: J, p(x;¢,0) <a},

(a5 §,0) = sup{x: J, g(x;¢,0) = a}.
Suppose (én, n) is a consistent estimate of (£,,0,) and c,(a; éﬂ ) is any
random variable lying between c, ,(a; £,0) and Cn, La; €,,0). The set
{(¢: R, (X,§) <c,(a; £.,0)isa bootstrap confidence region for ¢ 4 of ostensible

level 1 — a. Under circumstances to be described in Theorem 3.1, the correspond-
ing test

(1.9) \Pn(X) = {1 if R (X go) > Cn(d £n7 n)

0 otherwise

(1.8)

has asymptotic level a under H, ,. The tests ¢, and ¢, are related when
T.X) = R, (X, &), but even then will usually have different critical values and
therefore different power functions.

The power of the test Y, against the alternative H,, ,,

(1.10) B. (05 £,0,) = PPy, [RA(X, &) > cu(; €,,6,)],

can be estimated by 8, («; &, ﬂn) Let K, g(§,60) denote L[ R (X, §,)|F¢] and
let K, g(x;§,6)be the ass0c1§ted suArV1va1 function. An alternative estimate for
B, (a; &6,)is K, plc,(a;§,6,); & 6,]. Note that the critical value c,(«; §,0,)
appearing in this power estimate varies with £ Evaluation of
K, glec,(a; §, 9;; ); &, 9n] generally requires Monte Carlo simulation of J, (¢, 9,,),
to obtain c,(a; &, 9,,), and of K, p(¢, 9n). Evaluation of B, ,(a; &, én) typically
requires a nested two-stage Monte Carlo simulation. The convergence of
B, (£ 8,) and of K, plc.(a; €8, £,8,] to B, (a; £, 6,), uniformly in §, is
the subject of Theorems 3.2 and 3.3.

REMARK. The results in this paper do not contradict those of Bahadur and
Savage (1956) because level and power are defined over a smaller model here. The
level of ¢, is E; ,(9,) for us, but is supE; 4 ¢,) for Bahadur and Savage.
Similarly, the power of ¢, is E; , (¢,) for us rather than supy E; 4(¢,). Consider-
ing test performance only over the distributions in the family (P : § € £} is
reasonable because the actual distribution Pf g, of the sample falls within this
family.

2. The test statistic approach: asymptotics and examples. Do the tests
¢, and ¢, defined in Section 1 have approximate level a? Are the associated
power function estimates consistent, uniformly in £? This section addresses these
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questions for the test ¢,; Section 3 does the same for ¢ ,. The notation of Section
1 is retained throughout. All theorem proofs are deferred to Section 4.

The first theorem gives sufficient conditions under which the asymptotic level
of ¢, is a.

THEOREM 2.1. Suppose the following requirements are met:

Al lim,_ P? oA[mZ(én, 0,) > €] = 0 for every positive «.
A.2. If {6,) is any sequence such that {({,,0,) € @} and lim, _, 0, = 0,, then
K, 1(§0,0,) converges weakly to a unique limit distribution K (£, 0,).

Let K 1(x; £, 8,) be the survival function associated with K (%, 0,) and let
d(a; &,0,) = inf{x: K;(x;&,,0,) < a},

(2.1)
d(a; &,0,) = sup{x: Kp(x; &,,6,) > a}.
Then
KT[du(a; £0,04); &0, 0,) < linn_l,i;lfﬁn,(p(a; $0,04)
(2.2) < limsupB, ,(a; &, 0,)

n—oo
< KT[dL(a; £07 0A) -5 §0’ 0A] .
If K (x; &, 0,) is continuous in x, then

(2.3) nli—»n:oB""”(a; £0,0,) = a.

If the convergence in A.l is uniform over m,-compacts of ©, so is the
convergence (2.3) to asymptotic level a [cf. the derivation of (4.6) in the proof of
Theorem 2.2]. Each example in this section exhibits this type of uniform conver-
gence.

EXAMPLE 1: Minimum distance tests. Suppose {F;: 6 € ©) is a parametric
family of c.d.f.s on the real line, ® being an open subset of R* The null
hypothesis H, , asserts that the observed random vectors {X;1 < i < n} are
iid. with c.d.f. Fy , the value of 6, being unknown. Let F, be the empirical c.d.f.
and let || + || denote supremum norm. Consider the test which rejects H, , if the
statistic T, = n'/%inf, _ || F, — F,| is sufficiently large. Bootstrap critical values
for the test can be found as in (1.6), by identifying P 4, with the distribution
determined by Fy ; the definition of £, is arbitrary here. ,

Conditions A.1, A2 for Theorem 3.1 will be verified under the following
assumptions on the parametric model, which are made for every 6, € ©:

Identifiability. For every neighborhood Nof 6,, inf{||F, — F ll; 06 € N} > 0.

Continuous norm differentiability. There exists a k2 X 1 vector function Mo,
such that the components of Mg, are bounded, ||F, — F, — (6 — 0o)' Mg, |l =
o(16 ~ 8yl), and lim, _.,[In5 = 7g,)| = 0.

Nonsingularity. The components of ng, are linearly independent.
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Let G be a c.d.f. on the real line. By an argument similar to that in Pollard
(1980),

(2.4) IntIG — Fyll = inf G ~ Fy, — t'ng,|l + o(IIG ~ Fy)
(S

as ||G — Fy || tends to zero.

Al Let m, be euclidean metric on R* and let 6, be a minimum distance
estimate of 6, satisfying the requirement ||F F < inf, ol F, — Fyl| + n~ L.
It is well known that this choice of 8, is consistent under F,..

A2. Let {6, € ©) be any sequence which converges to 0A Let B, denote the
empirical Brownian bridge based on n i.i.d. random variables whlch are uni-
formly distributed on (0,1). Let B denote the Brownian bridge process. Since
ZL[n/YF, - F) )|PL , 1=2[B,- F, ], it follows from (2.4) and the assump-
tions on the parametric model that K, r(¢,6,) = L[n"%inf, ol F, —
Fy|| | P 4 ] converges weakly to K1(£,,0,) = .‘z?[lnft”B Fy, + t'ng, Il

Thus, the bootstrap test based on the minimum distance statistic T, has
approximate size a, in the sense of (2.2).

The next theorem establishes uniform consistency of the two power function
estimates for ¢,. A key assumption is finite-dimensionality of the parameter §.
Conditions B.2 and B.3 in the statement of Theorem 2.2 imply the weaker
conditions A.1 and A.2 used in Theorem 2.1.

THEOREM 2.2. Suppose Z is R* and the following requirements are met:

B.1. 1)5 O[hmn—boon aA]_l

B.2. hmn_,oosungg o9,lmx(0,, 0,) > €] = 0 for every positive e.

B3. If {(¢,,0,) € % n> 1} is any sequence such that lim,, _, _n'/?(¢, — &) =
for some h € R* and lim, ., 0, = 0,, then K, 1(,,6,) = K&, A),
limit distribution which is continuous and does not depend upon the
particular sequence {(£,,0,)} chosen. Moreover, K{®(¢,, 0,) has a strictly
monotone survival function.

BA4. If {(¢,,0,) € ©; n > 1} is any sequence such that lim ,_,  .n'/%|¢, — &| =
and lim,_ 0, =80, then lim, K, (x;¢,0,)=1 for every ﬁnzte
real x.

Then
(2.5) Pg,a,,[nlggo st;le,,,T[dn(a; £0,0,):£,6,] — B, (05 £,0,)|= 0] = 1.

Suppose B.2 is strengthened to

B.2". If {(§,,0,) € & n > 1} is any sequence such that lim,, _, .0, = 0,, then
lim,_, P4 [m2(0 8,) > €] = 0 for every positive .

Then also
(26) Pfo:,GAl:nli_I}:o s";p'Bn,(p(a; gy én) - Bn,lp(a; é’ oA)I= 0] =1.
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The suprema in (2.5) and (2.6) are taken over {§{ € Z: (£, 60,) € @ and (¢, 9n) S
Q}. Similarly, the supremum in B.2 is taken over {¢£ € =: (§,6,) € Q}.

ExXAMPLE 2: Testing a mean. Suppose the {X;;1 < i < n} are i.i.d. random
k X 1 vectors with c.d.f. G (x — £,), where G, has mean zero and nonsingular
covariance matrix 3(G,). Both £, and G, are unknown. Consider testing the
null hypothesis £, = £, versus the alternatives £, # £,, the c.d.f. G, being
regarded as a fixed unknown nuisance parameter. The test statistic to be used is
T, =|8;2n"/*(X, — §,)|, where |+ | is any norm on R* and X,, S, are the
sample mean and sample covariance matrix respectively. When the norm | ¢ | is
euclidean, T)? is a multiple of Hotelling’s T >-statistic.

Let 6, denote Levy metric and estimate G, by G the empirical c.d.f. of

the residuals {X;, — X,;1<i<n}. For any kX k£ matrix A, let |A|l=
sup{|Ax|: |x| = 1}. Deﬁne the metric m, by
(2.7) my(Gn, Ga) = 81(Gr, Ga) +12(G,) — 2(Ga) -

We will verify that conditions B.1, B.2’, B.3, and B.4 are satisfied in this example.
Consequently, the bootstrap test ¢, defined in (1.6) has asymptotic size a
(Theorem 2.1) and both bootstrap power function estimates are uniformly cou-
sistent (Theorem 2.2).

B.1. Without loss of generality, because of location invariance, take £, = 0.
Let F, be the empirical c.d.f. of the {X;;1 < i < n}. With F§7;, -probablhty one,
SL[G (x), G4(x + X,)] < ||F — G4ll = 0_by the vector version of the
Glivenko—Cantelli theorem; and 8,[G,(x + X ), G4(x)] = 0 and E(G ) = 2(Gy)
by the strong law of large numbers. Condition B.1 follows, in view of the
definition (2.7) for m,.

B.2". Let G, converge to G, in the metric m, and, without loss of generality,
take £, = 0. In P ; -probability, L[G (x),G(x + X,)] < ||F G, = 0 by
the Dvoretzky—Klefer Wolfowitz inequality; and 6,[G(x + X,,), G4(x)] = 0
and E(G ) = 2(G,) by a triangular array version of Khintchine’s weak law of
large numbers. i

B.3. Let {({,, G,)} be any sequence such that lim,_, n'/%(¢, — £,) = h and
lim, _, . my(G,, G,) = 0. The latter convergence is equivalent to saying G, = G4
and 2(G,) - E(GA) Then K, r(¢,, G,) = ZLI[|Z + Z7V3(G,)h|] =
K{M(¢,,G,), where Z is a kX 1 normal random vector with mean zero and
identity covariance matrix. Indeed, #[n'/%(X, — £0)IP! . 1= N(h, 2(G,)) by
the Lindeberg central limit theorem; and S, converges in P" G,-Probability to
2(G,), by Khintchine’s weak law of large numbers. The hmlt distribution

K{M(¢,,G,) does not depend on £, in this example because of location invari-
ance. The limit distribution is continuous because the set {z € R*: |z| = ¢} has
Lebesgue measure zero for every norm |+ | on R*. Thus B.3 holds.

B.4. Let {({,, G,)} be such that- lim,_ n'/?|¢(, — ¢| = oo and
lim, , my(G,, G4) = 0. The inequality |x| < |A| - |A~ x| implies

n = |Sn 1/2(£n - gO) + Sn 1/2 1/2(Xn - £n)|

(2'8) 1/2,-1,1/2 - Y
= |Sn/ | n'/ |£n - £0| - |Sn 1/2"'1/2()(n - gn) |'
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As in the previous paragraph, £[S; '?n*(X,, — £, )|P? 1= £(Z) and S, -
2(G,) in P g -probability. In view of (2.8), condition B.4 holds.

A numerical study of the univariate bootstrap ¢-test and of the two associated
power function estimates yielded some additional information. In this study, the
data was taken to be normally distributed with unit variance. The null hy-
pothesis value of £ was £, = 0; the nominal test level a = 0.05; and the sample
size n = 20. Table 1 compares the power function of the bootstrap ¢-test with the
power function of the classical ¢-test under standard normal shift alternatives.
The critical value of the bootstrap test was obtained from 200 bootstrap samples.
The power of the bootstrap t-test was approximated by Monte Carlo simulation,
using 1000 standard normal samples. Even at sample size 20, the power function
of the bootstrap test is almost indistinguishable from that of the classical ¢-test.

For a single standard normal sample of size 20, Table 2 records the two power
function estimates described earlier in this example and the normal approxima-
tion to the power function based on the sample standard deviation. The calcu-
lation of B, .(a; &, G’n) used 200 bootstrap samples for the critical value loop and
1000 bootstrap samples for the outer loop. The calculation of
K, rld.(a; &, G,); &, G,] used 1000 bootstrap samples for both the critical value
and for K, r(§, G,). Two points stand out:

(a) The three power function estimates in Table 2 are roughly similar, especially
when |£| is near zero or is large, even though the second estimate is more
asymmetric.

(b) Each of the estimated power functions usually underestimates the actual
power function reported in Table 1.

Point (a) is not surprising, since each of the power function estimates converges
uniformly in £ to the actual power function as n increases. Point (b) is attribut-
able to the particular N(0,1) sample of size 20 from which the power function
estimates were computed; the estimated standard deviation of this sample
happened to be 1.140, which is larger than the population standard deviation.

EXAMPLE 3: Testing correlation. Suppose the {X;;1 <i < n} areiid.2 X 1
random vectors with c.d.f. G,[ D&y, 0,4, 6,4)x], where

g, 0
(2.9) D(¢,0,,0,) = ( )

o, (1- 52)1/2"2

and G, has mean zero, identity covariance matrix, and finite fourth moments.
The covariance matrix of each X; is therefore

2
(2'10) 2(5A,°1Aa °2A) = ( o1 nglAOZA)-

; 2
£4014024 024

The values of the correlation £, € (—1,1), of the standard deviations ¢,, > 0,
0,4 > 0, and of the c.d.f. G, are unknown. Consider testing the null hypothesis
£, = £, versus alternatives £, + £, with 8, = (0,4, 0,4, G4) regarded as a fixed
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unknown nuisance parameter. The test statistic to be used is T, = n'/?|§, — £,
where £, is the sample correlation.
Let

(2.11) S, =

n

33,1 3n,12)

Sn,12 825

be the sample covariance matrix. Take G (%) = F "[DE,, Sp.1> Sn2)x] as the
estimate of G, and let 4, = (R n2,G) Suppose that By, n{Ga) =

x71x52 dG4(x,, x,) 1s finite whenever r,, r, are nonnegative integers 'such that
2 A\ 2 172
r; + ry < 4. Define the metric m, by

(212) m2(0n’ OA) = 8L(Gn’ GA) + Z

rntr<4
We will verify that conditions B.1, B.2’, B.3, and B.4 are satisfied in this example,
under the additional assumption that = = [— b, b] for some b in (0,1).

B.2". Let {£,} be any sequence in [— b, b] and let {§, = (0, ,, 0, ,, G )} be any
sequence which converges to 6,. Suppose B.2’ does not hold By going to a
subsequence, we can assume that, for some positive e the sequence
{F; 9,Lmy(8,,8,) > €]} remains bounded away from zero and lim , _, .§, = ¢* €
[-6, b]. From Khintchine’s weak law of large numbers, £ —>¢*and s, ;> o0,
in P 4 -probability. By the definition of G

L(Gn’GA)
(213) < 8L{F [D( Amsn 1S n, 2)x] G [D_l(gn’ on 17an 2)D( An?sn l’sn,2)x]}
+8,{G,[D7!(£,, 0,1, 0,,2)D(£n, 50,1, 80,2)%], Ga() ).

The first term on the right side of (2.13) is bounded above by ||ﬁ' (x) —
G,[D7'(¢,, 0, 0, 2)x]||, which converges to zero in P -probablhty The sec-
ond term on the nght side of (2.13) also tends to zero in P, -probability
because both D and D~ are continuous at (£*, 6, 4, 05 4). Moreover, B, ,(G )—
By, {Ga) in P 4 -probability because B, ,(F ) converges to the correspondlng
moment of Pe. s, by the weak law  of large numbers and because

D Y, 8,1 Spg) »D (¢, 0,4, 0,4). It follows that myd,,8,) - 0 in
P "-probablhty, contradlctmg the supposition to the contrary made at the start
of this argument.

B.1. The verification of B.1 is similar to that of B.2’. Note that, with
Pfoj, oA-probability one, limn—mo" (x) GA[D—I(gAy 014 02A)]” = Oy by the
Glivenko-Cantelli theorem for two-dimensional c.d.f.’s, and

p’rl,rz(én) - p’rl, rz(GA) |

ﬁmn—»oo( Am Sn,1s sn,2) = (£4,0145924),

by the strong law of large numbers.

B.3. Let {(£,,0,)} be any sequence such that lim,_, n'/%(¢, — ¢,) = h and
m, _, 0, = 0,. The latter convergence is equivalent to saying G, = G, and
p.,l ,2(G ) = &, ,(G,) whenever r; + r, < 4. In particular, lim,, , .0, ; = 0;, for
i =1,2. By the Lindeberg central limit theorem, £[n'/%*S, —

2(£,,0,,150,,2)}| P 4 ] converges weakly to a singular normal distribution with
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mean zero and covariance structure depending only on (£, 6,). Since
£ =s, 12/(8,,18,,2) is a continuously differentiable function of S,
&£ [n‘/ 2(£ -¢, )|P€ g ] converges to a normal distribution with mean zero and
variance o2%(¢,, A), say. The weak limit of {K, 5(§,,0,)} is therefore
Lllo(§y, 04)Z + R[], Z being a N(0,1) random variable. This limit distribution
fulfils the requirements of B.3.

B.4. Let {({,,0,) € Q} be any sequence such that lim,_, n'/2|§, — )| =
and lim,, _, 6, s =0,. Then lim,,_, K, 7(x; §,,0,) = 1 for every finite posmve x.
If not, by going to a subsequence, we can assume that, for some positive x,

K, r(x; §,,0,) does not converge to one while lim,, , .§, = §* € [ b, b]. From
the argument in the previous paragraph, Z[n'/2(§, — ¢ DIPE 5] =
N(O, 6%(¢*, 8,)). Since

(2.14) T, > 02, = &0l — %1, — &4,
it follows that lim, , K, r(x; §,,6,) = 1 for every positive x, contradicting the

initial assumption to the contrary and thereby establishing B.4.

The conditions for Theorem 2.2 are adapted to euclidean = and to local
asymptotic power calculations. The next theorem identifies more general cir-
cumstances under which the two bootstrap power function estimates approxi-
mate B, .(«; §,0,). Let §, denote the Prohorov metric on the extended real
line R.

THEOREM 2.3. Suppose the following requirement is met in addition to
conditions B.1 and B.2 of Theorem 2.2:

Cl. If {(¢,,0,)€9Q n=> 1} is any sequence such that lim@, = 8,, then
limn—*oo p[Kn T(gn’ n)’ n, T(gm aA)] =

Then the following assertion is true with I-’g: g,-Probability one: for every
sufficiently small positive e, there exists n(&) such that for every n > n(e),

K, rld, (a—et.,0,) +e&8,] e

< Brol@ §,04) < K, pld, (o +6:60,0,) — 5 €,6,] +e
simultaneously for every possible £. Suppose B.2 is strengthened to B.2’. Let
Br.o.i(@; £,0,€) = PLo[T, > d, a = &5 &,0,) + ] — e,
Bro.ul 05 §,0,€) = PLo[T, > d, (o +e560,8,) — ] +e.
Then (2.15) may be replaced by
(2.17) Br,o, (@ €,0,,8) < B o(@5§,00) < B, g ul@; £,0,, ¢).

(2.15)

(2.16)

This theorem asserts that certain small perturbations of either bootstrap
power function estimate will bracket B8, .(«; £, 6,), uniformly in £, provided the
sample size n is large enough. While the conclusions are weaker than those of
Theorem 2.2, Theorem 2.3 can be applied to examples where the parameter £ is
infinite dimensional. '
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EXAMPLE 4: Testing for symmetry. Suppose the {X;1 <i < n} are iid.
random variables with unknown c.d.f. F,. Set {,(x) = 1[Fy(x) + Fy(—x) — 1]
and 0,(x) = }[F4(x) — Fy,(—x) + 1]. Then ¢£,(x) = £,(—x),
04(x) + 04,(—x) =1, 8, is the c.df. of a random variable distributed symmetri-
cally about the origin, and F,(x) = £4(x) + 6,(x). Consider the problem of
testing the null hypothesis £, = 0 (that is, the null hypothesis that X, is
symmetrically distributed about the origin) versus the alternatives £, # 0. The
nuisance parameter 6, is unknown but fixed by the experiment.

The space © consists of all c.d.f.s associated with random variables symmetri-
cally distributed about the origin. The space = consists of all real-valued
functions £ on R such that {(x) = £(—x) and ||| < 27 1. Let

E.(x) =3[F(x) + B (-x) - 1],
Bu(x) = 4[F(x) - B (=x) +1].

The test statistic to be used is 7|, = n'/2||£ || We will show that the conditions
for Theorems 2.1 and 2.3 hold when the metric m, on © is defined by
(2.19) mz(A 0,) = b, - Bl

B.1. By Glivenko—Cantelli, hmn_,w||ﬁ FA|| = 0 with P? , -probability one.
This convergence and the definitions of 0 , 8, imply B.1.

B.2" and A.l. Let {(£,,6,) € £} be any sequence such that lim, , 6, = 0,.
Under P;” 4 , the empirical c.d.f. F may be represented as F;, , + n 2B . “F; g,
where FS 0(x) £(x) + 6(x) and B is the empirical Browman brldge process.
Thus, from (2.18),

(2'20) én(x) = 0n(x) + %n_l/z[Bn ' Fe,,,o,,(x) - Bn : I’},,,ﬂ,,(_x)]’

which implies B.2’ and therefore A.1.
C.1. Let {({£,,0,) € Q} be any sequence such that lim,, _, .6, = 6,. Let

(221)  S,(£,6) =[4[B, F, 4(x) + B, F; o(—x)] + n'/%(x)].

Since T, = ||n'/%(£, — ¢,) + £,||, it follows from (2.18) that K, r(¢,0,) =
ZL[S (£n, 0,)] and K, 1(£,,0,) = Z[S,(£,,0,)). By Skorokhod’s theorem, there
exist versions of { B, } and of the Brownian bridge B such that lim,_ ||B, — B|| =
0 w.p. 1 and B has uniformly continuous sample paths Since ||F; o — F; 4|l =
16, — 4ll > O, the corresponding versions of {S,(£,,0,)} and {S, (£n, 0A)} have
the property that lim,, _, . [S,({,,0,) — S.(£,, 04)] = 0 w.p. 1. This convergence
implies C.1.

A.2. Let {6, € ©} be any sequence such that lim, _, 6, = 6,. From the previ-
ous paragraph, K, (0,6,) = Z[}||B - 0,(x) + B - §,(—x)|]], a limit law satisfy-
ing the requirements of A.2.

(2.18)

ExAMPLE 5: Testing for multivariate normality. Suppose the {X;;1 < i < n}
are ii.d. p X 1 random vectors with c.d.f. G,[2;'/%(x — u4)], where p, is a
p X 1 vector, 2, is a p X p positive definite symmetric matrix, and G, is a
continuous c.d.f. on R? with mean zero, identity covariance matrix, and finite
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fourth moments. Identify £, with G, and 6, with (p,, £,). Consider the
problem of testing the null hypothesis G, = ®, where ® is the standard normal
c.d.f. on R? versus alternatives G, # ®. The nuisance parameters (p 4, = ,) are
unknown but fixed by the experiment.

Let X, S, be the sample mean vector and sample covariance matrix, respec-
tively. Set 8, = (X, S,) and G,(x) = F(S%x + X,), where F. is the empirical

c.d.f. The test statistic to be considered is

=n12Ax— —1/2x__
- T, = n/A A (x) - 0[5, x - K, |

=n'?|G, - @

The space © consists of all pairs (g, 2) such that p isa p X 1 vector and 2 is a
P X p positive definite symmetric matrix. Let m, be euclidean metric on ©. For
any cdf. G on R?, let u(r,r,,..., Iy G) = [x...xp dG(xy,.. ., x,). Define
the metric m, by

(2:23) my(G,,G,) =G, — G|l + E,|p(r1,..., r; G,) — u(ry,..., 1,5 Gy) |,
the sum being taken over all sets of {r;1 <J < p} such that every r; is a
nonnegative integer and L?_,r; = 4. Let = be any set of continuous c.d.f.s G on
R? such that the mean of G is zero, the covariance matrix of G is the identity
matrix, = contains ® and G4, and = is compact in the metric m,. Then, the
conditions for Theorems 2.1 and 2.3 hold. _

B.1. By the strong law of large numbers, 9,, = (X,, S,) converges with Pg 8,
probability one to , = (p4, 2,) in the metric m,.

B.2’ and A.l1. Let {(G,,6,) € @}, where 8, = (u,, =,), be any sequence such
that lim, , p,=p, and lim, , 3 = 3,. By Khintchine’s weak law of large
numbers, §, — 6, in P} , -probability. This implies both B.2’ and A.1.

C.1. Let {(G,,0,) € ﬁ} be any sequence such that lim, _, 8, = 6,. Since Z is
compact, we may assume without loss of generality that G, converges to some
cd.f. G* € = in the metric m,. Evidently

K, 1(G,,8,) = 2 [|n2[E (2% + 1) - G(=)]
(2.24) +n2[0(x) - ®{S; V(S + uy - X,))]
+12[Gy(x) - @(x)] || |P5 0, ]-

Standard weak convergence arguments based on the Lindeberg central limit
theorem establish the following fact: there exists a gaussian process W(G*, 0,)
such that

.?[nl/z[ﬁ'n(zyzx +p,) = G ()]
+n2[(x) - {8,422 + u, - X,)}]|P, 4]
converges weakly to Z[W(G*, 6,)] on C(RP?). Consequently,
(2.25)  lim 8{ K, 7(G,,8,), Z[|W(G*, 8,) + n/%(G, - ®)|]} =o0.
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Since (2.25) remains true if 6, is replaced by 6,, the fulfilment of condition C.1
follows.

3. The confidence region approach: asymptotics and examples. The
main difference between the tests ¢, and v, defined in (1.6) and (1. 12), respec-
tively, lies in their critical values. The critical value of ¢, depends on 0 and the
null hypothesis value £,, while the critical value of y,, depends on estimates £,
and 0 of both parameters. As a result, the asymptotic theory for ¢, described in
this section requires conditions on £, as well as b,.

THEOREM 3.1. Suppose the following requirements are met:

D.1. llmn_,mPgo ,,A[ml(ﬁn, §) > ¢] = lim,_, P! 0A[m2( y04) > €] =0 for
every positive .

D.2. If {(¢,,0, € Q} is any sequence such that hmn_,mg = ¢, and
lim 0, = 04, then J, p(£,,0,) converges weakly to a unique limit distri-

n—oo'n

bution Jg(&,, 0,).
Let Jg(x; &0, 0,) be the survival function associated with Ji(¢,, 0,,) and let
ci(a; &9, 0,) = inf{x: Jx(x; &, 64) < a},

3.1
(3-1) c(a; &, 0,) = sup{x: Jp(x; &, 0,) > a}.
Then

JR[cu(a; g()y 0A); gO’ 0A] hmlnfﬁ ¢(a 50’ 0A)
(3.2) < limsupB, ,(a; &,0,)

n—oo

= JR[CL("; £0,0,4) — ; o, 0A]~
If Jy(x; &4, 0,) is continuous in x, then
. (33) hm B, ‘p(a £0,0,) = a.

EXAMPLE 6: Testing mean orientation. Let ¢ = (£, &,, £;) be a unit vector
in R? other than the vector e = (1,0,0). Let | * |, denote euclidean metric. Define
the orthogonal matrix

¢, £ £
(3.4) O(¢) = 0 (1-8)"% -(1-8)"% |,
(1-8)" -(1-8&)""5s -(1-8)" e

noting that O(£)§ = e. Suppose the {X;;1 < i < n} are i.i.d. random unit vectors
with c.d.f. G,[O(£,)x], where G, is the c.d.f. of a singular distribution in R3
whose support is the unit sphere and whose normalized mean vector
Eg (X)/|Eg (X)|; = e. Then the mean orientation of X; is E(X;)/|E(X;)|, = £4-
Consider testmg the null hypothesis £, = £, # e, w1th G, being regarded as a
fixed unknown nuisance parameter. (A different choice of the orthogonal matrix

1/2
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O(¢) handles the case £, = e.) Let 5 = X,/|X,|,, the unit vector in the direction
of the sample resultant. The pivot to be used is R (X, §)=2" n|£ —¢i=
n( - £,%).

The space = = {x € R3: |x|, = 1} — e while ©® consists of all c.d.f.’s supported
on the unit sphere whose mean orientation vector is e. Take G (x) = F [O’(§ )x],
which is the empirical c.d.f. of the rotated sample {0(5 )X;1 <i<n} Let m,
and m, be, respectively, euclidean metric and Lévy metric. In this example, G
and G, play the roles of 0 and 6,, respectively.

D.1. The weak law of large numbers and continuity of O(§) at § = §, imply
that condition D.1 holds.

D.2. Let {({¢,,G,) € Q} be any sequence such that lim, , ., = §, and G, =
G,. Let F, 5(x) = G[O(§)x] and designate the mean vector and covariance
matrix of F, 5 by u(¢,G) and Z(§, G), respectively. Since F; ; = F; ¢, and
O(¢§) is continuous at ¢ = £,

2[n/H( X, = wlns GIPE.6,] = N0, 2(%0, G)).

Thus, J, x(£,,0,) =Z[n'/ 2, - ¢, )P ¢ ] converges weakly to a limit distri-
bution which is normal with mean zero and covariance matrix depending on £,
and G,. Consequently, D.2 holds.

Because P; ¢ is the emplrlcal distribution of the sample in this example, the
reparametnzatlon by ¢ and G is not necessary in constructing the bootstrap
confidence region which generates the test. (For instance, Theorem 1 in Beran
(1984) could be applied.) However, the (£, G)-parametrization is useful in estimat-
ing the power of the test, a question to which we return after the next theorem.

THEOREM 3.2. Suppose = is R* and the following requirements are met in
addition to conditions B.1 and B.2 of Theorem 2.2:

E.lL. lim, _, sup,z¢_¢, |<cP€ 9A|£ — &,| > € = 0 for every positive ¢ and c.

E2. If {(£,,06,) € Q) s any sequence such that lim,_, n'/*(¢, — &,) = h for
some h € R* and lim, 0, = 0,, then K, g(£,,0,) = K{{(¢y,0,) and
o, r(én, 6,) = Jp(£o, 04). Both limit dzstnbutwns are continuous and do not
depend upon the particular sequence {({,,0,)} chosen. Moreover, J(£,,0,)
has a strictly monotone survival function.

E3. If {(¢,,0,) € Q) is any sequence such that hmn_,c,o n'/2|¢, — &5| = o0 and
lim 0, =04, then lim, , K, (x;§,,0,) =1 for every finite real x and

n—oo’'n

the distributions {J, p(§,,0,); n > 1} are tight.
Then

(35) P, lim sl;le,,,R[cn(a; £6.);£8,] - B, (@ £,6,)|=0[=1.

Suppose B.2 and E.1 are strengthened respectively to condition B.2’ of Theorem
2.2 and to

EY. If {(¢,0,) €Q} is any sequence such that sup,n n2|§, — & < ¢ and
lim,_, 0, =0,, then lim,_, P, [|§ — §,| > €] = 0 for every positive ¢

and c.
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Then also

(36) Pff,0A[nl£n:° s‘;plﬂn,w(a; gy én) - Bn,\ll(a; gy 0A)| = O] =1

EXAMPLE 2 continued. Consider the pivot R (X, £) = |S;2n"/% X, — ¢)).
The test statistic T), discussed earlier in this example coincides with R (X, &,).
Because of location invariance,

I, 1(£,0) = 2[1S7 720V ?X, | |Po] = K., 1(%0,6)-

Thus, c,(a; &, 8) does not depend on ¢ and coincides with d,(a; £, 8). The tests
¢, and ¢, are identical. Slnce K, r(§ 0) =K, g, 0), the bootstrap power
estimates K, r[d (a; 50, .); £,0 1 and K, R[cn(a, £0); 5,0 ] coincide, as do
the estimates g, (a; §, 6 ) and B, (a; &, ) ). Theorem 3.2 is not needed for this
example.

EXAMPLE 3 continued. Consider the pivot R (X, ¢£) = n'/ 2|§n — §|, where én
is the sample correlation. Retaining definitions made in the earlier discussion of
this example, we will show that conditions D.2, E.1’, E.2 and E.3 of Theorems 3.1
and 3.2 hold. Condition D.1 for Theorem 3.1 follows from B.2 and E.1.

E.l. If {(£,,6,) € Q} is any sequence which converges to (¢, 6,), £ con-
verges in P/ , -probability to §,, by Khintchine’s weak law of large numbers
applied separately to the sample covariance and the two sample variances. In
particular, E.1’ holds.

E.2. Let {(£{,,0,) € )} be any sequence such that lim,_,  n'/%§, — £,) =
and lim, , 0, = 6,. Since R (X, £,) equals the test statistic T, discussed earller
in the example, B.3 implies the desired weak convergence for {K n, ’(£ns0,)}). The
argument for B.3 also shows that J, x(£,,0,) = L[|o({,, ,)Z|], where Z is a
N(0, 1) random variable.

D.2 is checked like the second part of E.2.

E3. Let {(£,, 0,) € Q} besuch that lim, _, ,n/?|¢, — ¢,| = c0 and lim @, = 6,.
Condition B.4 implies the first part of E.3 because R (X, ¢,) = T,,. Suppose the
distributions {J, g(§,,6,); n > 1} were not tight, hence not relatlvely compact.
By going to a subsequence, we can assume that the {J, x(£,,6,)} do not
converge to a limit distribution while lim,_,  §, = £* € [—b, b] exists. On the
other hand, {J, g(£,,0,)} converges weakly to #[|o(£*, 8,)Z|] by the Lindeberg
central limit theorem, as in B.3. The contradiction establishes E.3.

EXAMPLE 6 continued. Let E be any compact subset of {x € R%: |x|, = 1} — e.
Retain other definitions made in the earlier discussion of this example. An
argument similar to the one used in example 3 shows that the conditions for
Theorem 3.2 are satisfied in this case as well.
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'THEOREM 3.3. Suppose the following requirements are met in addition to
conditions B.1 and B.2 of Theorem 2.2:

F.1. lim,_,  sup. P, [ml(fn, £) > €] = 0 for every positive .
F2. If {(¢,80,) < Q} is any sequence such that lim,_ 0, = 0,, then

limn_,ws [K R(gn, n)’ K R(gn,’ 0A)] =
F3. If {(&,, 0,,) € Q} and i({n,ﬂ ) €Q} are any two sequences such that
lim 0, = lim 6, =0, and lim m(¢,, §,) = 0, then

n — oo n—-oo'n n—-oo

lim,, , 8,[J, &(¢,,0,), I, r(£,,0,)]=0.

Then the following assertion is true with Bg 4 -probability one: For every
sufficiently small positive ¢, there exists ne) such that for every n > n(¢),

n,R[cn,u(a - & g’ on) t € g’on] — €
(8.7) < Bn,y(a; €, 6,)
< Kn,R[cn,L(a + & g; én) - & gv é\n] + ¢

simultaneously for every possible ¢&. Suppose B2 and F.1 are strengthened
respectively to condition B.2’ of Theorem 2.2 and to

FY. If {(§,,0,) € Q) is any sequence such that lim,_ 0, = 04, then
lim, , P o [m(§,,§,) > €] =0 for every positive ¢ and c.

Let

( ) Bn,¢,L(a; g’ 0’ 8) = Ps’fa[Rn(x, go) > cn,u(a - & gn’ én) + 8] - &
3.8 A A

Bn,w,u(a; g’o’ 8) = PfrfO[Rn(x’ 50) > cn,L(a + € gn’ on) - e] + e.
Then (3.7) may be replaced by

(3'9) Bn,:p,L(a; g’ én’ 8) < Bn,‘p(a; g’ oA) < Bn,w, u(a; g; 9};’ 8)’

EXAMPLE 4 continued. Consider the pivot R, (X, ¢) = n'/?||£, — £|, where
£n, £ are defined by (2.18) and the surrounding discussion. Let both m, and m, be
supremum norm metric. The conditions for Theorem 3.1 and 3.3 hold for the
following reasons:

F.1’” and D.1. Let {(£,,6,) € @} be any sequence such that lim
Under P ,, £, has the representation

(810)  &,(x) =£.(x) + 40"V B,- B o(x) + B, F, ,(~)],

0_0A

n— oo

which implies F.1. Moreover, F.1’ and B.2’ (verified earlier) imply D.1.

F.2. Since K, p(¢,0) = K, (£, 0) in this example, condition F.2 coincides
with the previously verified condition C.1.

F3. Let {(£,,6,) € Q} and ((¢,,0) € 2} be any two sequences such that
hmn—-ooo = hmn—hooon - oA and hmn—»oollg gn" = 0. Let

(3'11) n(g’o) = _2L"Bn.F'€,0(x) +Bn.F:E,0(_x)"'
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In view of (3.10), J, (§,0) = L[V, (£, 0)). Let {B,} be versions of the empirical
Brownian bridge processes which converge almost surely to a Brownian bridge
process B. Since lim,_ ||F; 4 — F; || =0, the corresponding versions of
(Vi(§,,0,)) and (V,(£,,0,)} have the property that lim,_ [V,(£,,6,) —
V.(£,,6,)] = 0 with probability one. This implies F.3.

D.2. Let {({,,0,) € 2} be any sequence such that lim,_ £, = £, and
lim, _, 6, = 6,. By the argument for F.3, J, n(£,,0,) converges weakly to a limit
distribution

Tn(ko:8s) = 2[4 B F, 0 (x) + B F, 4(-2)

as required.
4. Theorem proofs.
PROOF OF THEOREM 2.1. Similar to Theorem 1 in Beran (1984).

ProOOF OF THEOREM 2.2. Let {6, € ©; n > 1} be any sequence which con-
verges to 0,. It follows from B.3, specialized to the sequence {(£,, §,)}, that

(4.1) lim d,(a; &,0,) = d(a; &, 0,),

the upper a-point of K{(£,, 8,).
Let {(£,,0,) € Q; n > 1} be any sequence such that lim, _, n'/%(¢, — §,) = h
for some h € R* and {6,} converges to 6,. From B.3 and (4.1),

(4'2) nli—I»I:Q Kn,T[dn(a; gO’ 0n); gn’ on] = K}h)[d(a; go’ oA); go’ oA] .

On the other hand, it follows from B.2 and (4.1) that {d (a; &, 9,,)} converges in
P , -probability to d(a; &, 6,). From this and B.3,

(4.3) nli_{I:an,q,(a; §,,04) = K}h)[d(a; £0,04); §0» 0A] .
" Combining (4.2) and (4.3) yields
(44) lim  sup |K, p[d.(a;,6,); £ 6,] — Ba (a5 £,04)| =0
n— oo nl/2|£_£0|50

for every positive ¢ and for every sequence {,} converging to 6,.

Let {(£,,0,) € Q; n > 1} be any sequence such that lim,, _, ,n'/?|¢, — £,| = 0
and {6,} converges to 8,. The critical values {d,(a; &, 0,)} still converge in
Py o -probability to d(a; £, 6,) because of B.2 and (4.1). In view of B.4, both
lim, , B, (@ §,,0,) and lim, , K, r[d(a; &,0,); §,, 0,] are equal to 1. This
fact, together with (4.4), implies that

(4°5) hm sup |Kn,T[dn(a; éO’ 0n);)£1 0n] - Bn,0(a; g’ oA)l =0
n—oo ¢

for every sequence {6,} converging to 6,. The theorem assertion (2.5) follows from
(4.5) and B.1.
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Let {(£,,0,) € Q; n =1} be any sequence such that {,} converges to HA
From B.2’ and (4.1), it follows that the critical values {d,(a; £y, ,)} converge in
P , -probability to d(a; £, 6,). Thus, by essentially the same arguments as
above,

(4.6) ’111_{130 B, o(a £, 6,) = K7 [d(a; £, 84); €0, 0a]
if
lim n'/%(¢, — ¢,) = h; and hm B, (@ &,,0,) = 1if lim n'/?|§, — &g| = oo

n-— oo

Consequently,
(4.7) lin:0 sup|Bn,q,(a; £,0,) — B, o(a; ¢, 0A)| =0
n— e

which implies (2.6), in view of B.1.

ProOOF OF THEOREM 2.3. Fix a € (0,1). Without loss of generality, assume
that the test statistic 7, takes its values in [0, 1]; if necessary, replace 7,, by a
strictly monotone function of T, to achieve this end. Let {6,},{6,} be any two

sequences in © such that lim,_ 0, = lim,_, 6, = 6,. First we show that, for

every sufficiently small positive ¢, there exists n(¢) such that
d,, (@ + & 80,6,) —e<d, (a5 4,0,)
(4.8) < d, (a; §o,0,)
<d, (a—¢&,0,) +e

for every n > ny(e). Indeed, from the definition (1.4) of the upper and lower
a-points,

Kn,T[dn,u(a; go’an) + 8/2; £0’ on] <a
< Kn,T[dn,L(a; ‘50’ 0n) - 8/2; gOy 0,;]

for all sufficiently large n. In view of C.1 and the compact support of T,
limé,[K, (£, 0,), K, 1(%y,0,)] = 0, where &, denotes Lévy metric. Hence,

K, rld, (4, 8,) +/2; §,0,]

> Kn,T[dn,u(a; £0,0,) + & £,0,] — ¢
for all sufficiently large n. Combining (4.9) with (4.10) yields
(4.11) K, r[d, (o 4,0,) + &&,0,] <ate,

which implies d, (a; §,,0,) +e>d, (a+ ¢ &, 6,) and therefore the right
half of (4.8). The left half of (4.8) is proved similarly.

Let {£,) be any sequence in = such that both {({,,6,)} € @ and {(£,,6,)} € Q.
We prove next that, for every sufficiently small positive ¢, there exists n((¢) such

(4.9)

(4.10)
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that for every n > n(¢)
K, rld, a—¢&,0,) +eé, 04 —¢
1) B (@5 60 80) < Kool o+ 65 £0,6,) = 5 60, 64] + .
Let
A(e) = {d, (a+e£,0,) ¢
(4.13) <d,, (a; §,0,) < d, a5 4,0,)
<d, (a—¢&,0,) + e}.

SinceA{én} converges to 0, in P; o -probability by B.2, there exist versions of
the {6,} such that lim 0, =6, wp. 1 [Wichura (1970)]. For these versions,

P[liminf, . _A(¢)] = 1 because of (4.8). Hence lim,__P[A(e)] = 1, which
implies

(4.14) lim P , [A.(e)] =1

n-— oo

for the original estimates {4,}. Consequently,
Bl o |T, > d,, (&0, 6,)]

> K, r[d, (a—¢&,0,) + &, 04 +0(1),
P o, [T, > d, (e §0,6,)]

< Kn,T[dn,L(a + & gO’ 0n) - & gn’ oA] + 0(1)
as n tends to infinity. The definition (1.6) of ¢, implies that 8, (a; §,, 0,) lies
between the two probabilities on the left side of (4.15). Hence (4.12) follows.
The third step is to show that 8, can be replaced by 6, in the two bounds in
(4.12). Since lim , , . 6,[K, (£,,6,), K, 1(£,,0,)] = 0, by C.1 and the compact
support of T,
Kn,T[dn,u(a - & go, 0)1) + & gm 0,4]
2 Kn,T[dn,u(a — & gO’ 0n) + 25’ gn’ on] - &
Kn,T[dn,L(a + g §0y on) — & gny 0A]
< K,,'T[dn'L(a +¢&0,0,) — 265 6,,0,] +e.

Combining (4.16) with (4.12) and using the monotonicity of d, ;(«;§,0),
d, (a;&0) in a yields the following conclusion: For every sufficiently small
positive ¢, there exists ny(¢) such that for every n > n(¢)

Kn,T[dn,u(a — & gO’ 0n) + & g’ 0r;] — &
< Bn,qu(a; ¢ 0A) =< Kn,T[dn,L(a + & go’an) -&é, 0n] + e

simultaneously for every possible {. The theorem assertion (2.15) follows from
(4.17) and condition B.1.

(4.15)

(4.16)

(4.17)
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" Finally, we show that for every sufficiently small positive ¢, there exists n(¢)
such that for every n > n(e),

(4.18) B, o (@5 é,,0,,8) < B, o(a; €55 04) < Br g, u(@; €5 0, ).

Let

B,(e) = {d, (a+26¢,0,) —e<d, (a+5&,0,)
<d, (a—¢&é,0,) <d, (a—2¢ £,0,) + e}.

Under condition B.2’, lim, _, ., B 4 [ B,(¢)] = 1, by an argument based on (4.8)
and similar to that for (4.14). Thus,

Kn,T[dn,L(a + & ‘EO: 0n) - & ‘En’ 0,,]

<P, [T,>d, (a+26&, 0, - 2¢;¢,,0,] +o(1),
Kn,T[dn,u(a — & §070 ) + & gn’ 0 ]

> Py [T, > d, (@ — 26 &0, 8,) + 26 £,,8,] +0(1)

as n tends to infinity. Combining (4.20) with (4.17) yields (4.18). The theorem
assertion (2.17) follows from (4.18) and condition B.1.

(4.19)

(4.20)

ProoF oF THEOREM 3.1. Essentially the same as Theorem 1 in Beran (1984).

Proor oF THEOREM 3.2. Let {({,,0,) € @} be any sequence such that
lim nV*(&, — ¢,) = h € R* and lim

" — o0 0,=0,. From E.2,
(421) nli—brlzo Cn((! én’ n) C(d; £01 0A)
the upper a-point of J(§,, 8,). Moreover, in view of E.1 and B.2, {c,(a; fn, 9,,)}

converges in Py’ , -probability to c(a; £, 0,). It follows from these two conver-
gences and E.2 that

(4.22) lim sup |K, plcu(a;¢,6,);£,6,] — B, J[(a;¢,6,)] =0

n—oo nl/2|£_£0|50

n-— oo

for every positive c; the argument parallels that for (4.4).

If {(£,,0,) € Q} is any sequence such that lim, _, 0, = 8,, conditions E.2 and
E.3 imply that the distributions {J, p(£,, 6,)} are tight; consequently
sup,|c,(a; £,, 6,)| is finite for every a € (0,1). Suppose lim , _, _ n'/2|¢, — &,| =
It follows from E.3 and the above that lim,_ K, plc (e §,,0,); §,,6,] =
Since R, — o and 0 -0, in P, -probablhty, there exists versions
of {(§n, , R,)} such that these convergences occur with probability one. For
these versions, supn|c,,(a, £,0) is finite with probability one. Hence
lim,, . B, (@ £, 0,) =

From (4.4) and the previous paragraph,

(423)  lim sup|K,, plen(a: € 6,); € ,)] =~ B, (o3 & 00)| =

for every sequence {f,} converging to 8,. Theorem assertion (3.5) follows from
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(4.23) and B.1. If conditions B.2 and E.1 are strengthened to B.2’ and E.1’, then
6, may be replaced by 8, in (4.23). Consequently,

(4.24) lim sgplli’,.,v,(a; €0, 0,) = Br o(a;§,01)| =0,
which implies (3.6), in view of B.1.

Proor oF THEOREM 3.3. The argument is a modification of the proof for
Theorem 2.3. Without loss of generality, assume that the pivot R (X, £) takes its
values in [0, 1] for every . Let {({,,6,)} and {(£,,8,)} be any two sequences in
such that lim 0, = lim 6,=6, and lim,_ m(£,,£,) =0. Then, for

n—-oo'n n—-oo’n

every sufficiently small positive ¢, there exists n(¢) such that
Co(a+et,,0,)—¢e<c, (a £,,0)
(4.25) < €, ula; g,,, 8.)
<c, (a—¢€¢,,0,)+e

for every n > n(¢e). This follows from F.3 by an argument similar to that for
(4.8).

Conditions B.2, F.1, and the reasoning for (4.12) now imply: for every suffi-
ciently small positive ¢, there exists n,(¢) such that

I(n,R[cn,u(a - n’ n) + & gn’ 0A] — €
=< n,\p(a; §n10A) < I(n,R[cn,L(a + € gn’on) - & gn’aA] +e

for every n > n¢).

A further argument, drawing on F.2 and similar to that for (4.17), shows that
0, can be replaced by 8, in the two bounds in (4.26). Hence, for every sufficiently
small positive &, there exists n(¢) such that for every n > n(e)

I(n,R[cn,u(a - & gy 0,.) + & g; 0n] — &
< n,\p(a; g’ 0A) < I(n,R[cn,L(a + € g» 0n) — & g; 0n] + e

The theorem assertion (3.7) follows from (4.27) and B.1.
Let

(4.26)

(4.27)

C.(e) = {c,, p(a + 2¢; £.,0)-¢< c, (a+eé,,0,)
(4.28) <cp a—eé,,0,)
<c, (a—2¢¢E,,0,) +¢).
Under conditions B.2’ and F.V, lim,, , P 4 [C,(¢)] =1 for every positive suffi-
ciently small ¢; the argument is based upon (4.25) and is similar to that for (4.14).

Continuing along the lines of the last paragraph in the proof of Theorem 2.3
yields (3.9).
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