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ESTIMATION PROBLEMS FOR SAMPLES WITH
MEASUREMENT ERRORS

By WOLFGANG STADJE

University of Osnabriick

For x € R let N(x):= ma, iff x € (am — a/2, am + a/2]. For a sam-
ple Xi,..., X, we mainly study the asymptotic properties of the estimators
N, =1/nZ |N(X;) and S2:=1/(n— DL (NLX,) — N,)? for a = a,
— 0, as n — oo. For example, if E(X?) < o0, E(e%) = o(|t| %), (Jt| > )
for some k€N and a, = O(n /Zk*D) or X ~ N(,0%) and a, <
2na(log n)~ /2, we prove that yn( N,, - EX) is asymptotically normal.
Problems of truncation as well as general maximum likelihood estimation
from discrete scale measurements are also considered.

1. Introduction. In many practical estimation problems the statistician is
confronted with the following situation: There is given a random sample
X,,..., X,, but the variables X, cannot be observed exactly; they can only be
measured by means of some discrete scale. For example most physical data are of
this type, and this problem also quite often occurs, if one has to work with
secondary statistical material. If the scale has span a > 0, the measured variables
are N(X,),..., N(X,), where for a(m — }) < x < a(m + }) we set N (x) = ma
(if x lies in the middle between two scale values, we decide to take the smaller of
them).

The classical theory for this type of measurement errors is treated in Kendall
and Stuart (1969, pages 78-81) and in Cramér (1974, pages 437-439), essentially
leading to “Sheppard’s corrections”. If one has to estimate an unknown parame-
ter with the aid of the sample N (X,),..., N(X,), the method usually recom-
mended in the literature is to choose N € N, calculate

HZ = card{i € (1,...,n}IN(X;) =am},m= -N+1,-N+2,...,.N-1,
Hy = card{i € {1,..., n}|N,(X;) > aN},
H® = card{i € {1,...,n}|N(X;) < —aN},

and then determine the maximum likelihood estimator (mle) with respect to the
random quantity (H* 5, H* 5.4, -- ., HY). Kulldorf (1961) gives a complete the-
ory of mle estimation for this special case; see also McDonald and Ransom (1979)
for alternative procedures. This approach has two main difficulties:

First, a solution of the corresponding mle equation does not necessarily exist
with probability 1 [see Kulldorf (1961), page 17, for a set of sufficient conditions
for the existence and uniqueness of the mle].
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Secondly, a mle in this context is usually quite difficult to compute. For
instance, if one wants to obtain mles for the mean # and the variance o2 of a
normal distribution [ X; ~ N(8, 6?)], the log-likelihood function is given by

const. + (1 - (D(((Na - g - 0)/0)(H;:, + H )

* 5, 1[5 )fo) - o ma -5 - o} o]

where @ is the N(0,1) distribution function. Its maximization is only possible by
iterative numerical procedures [see Schader and Schmid (1983a, b) for details and
numerical applications for the x? test of fit].

The main part of this paper is devoted to a study of the asymptotic behavior
of the following two very simple estimators of the mean and the variance of the
sample:

(11) No=n 'L N(X), S2e=(n-1)"'Y (N(X)-N),

i=1 i=1

which seem to be near at hand. “Asymptotic” here means that we let the span a
tend to 0 or n tend to infinity or both simultaneously in a certain relation. After
deriving quite general moment formulas (exact and asymptotic) it is, e.g., shown
that if @ = a, = O(n"/?**?) and n - oo, ‘/E(ﬁan — E(X)) is asymptotically
normal under the assumption that the characteristic function f of X satisfies
f(2) = o(|t|*), as |t| > oo. A similar result holds for S? —(aZ/12) and for the
respective expected values and variances. In Section 3 the normal case is studied

in detail. For instance N, and S? —(ai/12) are asymptotically efficient, if
< 2mo(log n)~ 2 or

limsupa,(logn)"? < 270,

n—oo

respectively. In Section 4 the effect of truncation is considered: Let all measure-
ments of absolute value exceeding some K be neglected in (1.1). We show the
order of magnitude in which K = K, has to tend to infinity for this truncation
to be asymptotically unimportant. The final section takes up mle. We compare
the mle 67 X,,..., X,) of a parameter § with the mle 0” of 6§ based on
N(X),..., N(X, ) by means of their asymptotic variance, and we consider the
dlfference between 6; and the estimator obtained by computing 67(-) at
N(X)),..., N(X,) (N, and [(n — 1)/n]S? are of this type).

Before going into the details we proceed with an example of the type of results
obtained below, which possesses an elementary proof. (This derivation as sug-
gested by an Associate Editor.) We assume that E(X?) < oo and that the
density p of X is differentiable with a continuous and integrable derivative p’
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satisfying p(x) — 0, as |x] = co. Then if a, = O(n~'/*),
(1.2) n'/*(N, — E(X)) - ,N(0,var(X)),
(1.3) n'2(E(N, ) - E(X)) -0,

as n — oo. To see this, let U, = U(X) =X — N(X). Then

EW)= X [V wtaswdi= £ [ ulpCia) + up(a + M) da

e j=-
[e ¢}
a/2
= ) f/ u’p’(ja + Au) du,
j=-o —-a/2

where A = A(u, j,«) € [—1,1]. Thus

2 0 ¢X2 o
&n ., Mmin a, +u)<E(U, )< — a, max a, +u
12 =Z_:oo "|u|<a,,/2p ey + ) < E(U,,) <7 ,:Z,w "2y U )
If lim,, |, &, = 0, both sums in the above expression converge to (*_ p’(u) du = 0

by virtue of the assumptions. Hence

2
= —‘;—;-[fw p'(u)du+ 0(1)] =o(a%), asn - oo.

Let U, == n"'L7_ U(X,). Since var(U,) < a2, we get for all ¢ > 0
P(|n T, |> ¢ < P(Vn T, - E(U, )| > e - Vr |E(U, ) )

<an/[e—\/—|E ] — 0, asn — oo,

provided that vn E(U, )=o) If a, O(n“/ 4), this holds, because
Vn E(U, = o(Vna?) = 0(1) Hence in thls case \/—U = 0,(1). (1.2) and (1.3)

now follow from
Vn (N, — E(X))=Vn(X - E(X))—VnU, = Vn (X - E(X)) + 0p(1)
and
Vn(EN, - E(X)) = —VnE(U, ) = Vno(a2) = o(1), asn - co.

It will follow from Theorem 4 below that if E(X2)< c0, p € C*R) with
integrable p'*), we only need a, = O(n~Y?%*2) to ensure (1.2) and (1.3).
However, the above elementary proof does not work for %2 > 1, because in the
expansion of E(U, ) to higher powers of u, the o(a?) term originating from the
Riemann sum appf'oximation of [®_p’(u)du persists. So we have to undertake a
more complicated analysis.
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2. The estimators N, and S’ in the case of polynomially decreasing
densities. For a >0 let I, , == (ma — a/2, ma + a/2] and N, (x):= ma iff
x€l, ,, U(x)=x— Ny(x). In what follows we consider independent random
variables X, X,, X,, X;,... with the common distribution u. We shall first
derive completely general exact formulae for the moments of U,. For this the
following representation of the characteristic function f, of U (X)) is needed. Let

f be the characteristic function of X.

THEOREM 1. Forallt € R for which at/27 is not an integer we have

£.(6) = isin%tj=§_wP(X= (j+ %)a)

(2.1) ,
+ lim )

n— oo j__n

;[ 27)\ sin(at/2)
(=1) f(_) (at/2) —jn°

PrRoOOF. Let 0 < r < 1. It is easily seen that for £ = 0,1,2,...

£ opom{ 2 ] etz |

o dt* | (at/2) — nx
(2.2) = a“n:i:wr'”' a/Q[/ (iu) exp{ztu (277inx — u)},u(dx) du
= [T i o e O, )| ),

where we denote by m, , . for the probability measure on [x — /2, x + a/2]
with density function

0
r o x( ) =« -1 E r|n|e2winu/a
n=-o
1-r2 [ o a]
= , vE|jx— —,x+ —|.
a(1 + r? — 2rcos(27v/a)) 2 2

The first representation shows that [k, , (v)dv =1, while the second one
implies &, , . > 0.

Let ¢, be the unit mass in y. Let j € Z be arbitrary. If (j — Ha<x <
(J + 3)a, we have lim, A, . (v)=0forall v e [x — a/2,x + a/2]\ {ja} and
lim, A, , (ja)= co. Thus m, , . converges weakly to ¢;,, as r11. If x =
(J+ 9 Ry o =R, o jatasz 18 symmetric around ja + (a/2) and satisfies
lim, 1, A, o et as2(0) =0 for all v & (ja— a/2, ja + a/2). Thus m, , oias2
converges weakly to j(e, + &, 1),)- Hence for r 11 the double integral in (2.2)
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tends to

0
[f [i(x — jo)] "e™*~/u(dx)
= o LU= 1/Da, i+ 1720

e e a5 (]

> J L = ja) ")

Jj=—0o 1

iak”"/zPX— '+1\ Pl x - .+1 d* at
(2)e ( _(’ 2)"‘)_( ‘(’ 2)")dtkc°s(2)

=dtkf() dk(sm( ‘) P p( ( %)a)

Note that the coefficient of 7" at the left-hand side of (2.2) is of order O(n~%~1),
as n — oo, for £k =0,1,2,... By an application of Littlewood’s Tauberian theo-
rem [see, e.g., Wiener (1958), page 104] we can conclude that

0= gl ) £ efx= (i 5

. d* [ sin(at/2)
nh—r»lgo Z (=)’ f( a )dtk[(at/2) —jw]'

j_ —-n

(2.3)

(2.1) is the special case £k = 0. O

COROLLARY. For an arbitrary random variable X and any l € N the follow-
ing formulae hold:

E(U(X)*) = (3)21[211 - +(2)12 ¥ Ref(%j)

U

(2m + 1)!(jm)

E(UG(X)Z"1)=(§)21_I[1§ ( ( ) )+(2l—1)!2

(2'5) o _ l+j+m
E= (-1) )]

(2.4)

)

=1 o (2m + 1)1(jm)*

Proor. This follows from the relations

(d*/dt*)(£,)(0) = *E(U(X)")
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and
d_{_Lt/L)} -n(2) e -y o
dtk (at/2) _j7T _ ’ 2 m=0 2m+ 1)! jﬂ_)k—'zm’ y
t=0
k
d* (sin(at/2) (_l)ﬁ(ﬁ)k \ even
dt* | (at/2) [|,_, Ok +1 \2)”° o ’

by some elementary computations. O

REMARK 1. Equation (2.1) generalizes some so-called Poisson formulae from
harmonic analysis [see, e.g., Feller (1971), page 632, equation (5.9) and Schempp
and Dreseler (1980), pages 140-143].

REMARK 2. If X has a density p(u), then obviously p(u) = X%___ p(an +
u), u € (-a/2,a/2), is a density of U,.Let us additionally assume that f(¢)=
O(|t|™ "), as |t| = oo. This is, e.g., satisfied, if p has an integrable derivative. If p,
is continuous at some point u € (—a/2, a/2), we further have

n
(2.6) plu)=a'lim Y f(2mj/a)e 2miu/e
n-ow i,

For, by the above cited Tauberian theorem,
n
a 'lim Y f(2mj/a)e2miu/e

- .
now i,

b oo
=a 'lim Y, / rilg?mie=w/an () do
— 0

r—’lj=—oo

. ad ma+a/2 ad :
a 'lim ), Y rHle?miit/ep(v + u) do

T=l e tma—a/2 o
. ad +a/2
= lim Y / p(v+u+ ma)m, . ,(dv)
=l oY —a/2 o
. +a/2
= lim

pa(u + D)mr,a,O(dv) =pa(u)'
/2

ro1v_qo

The last equation follows, since m, , , = &, weakly, as r — 1.

The next theorem gives asymptotic formulae for the mixed moments of X and
N, (X) for small a. We need some conditions on the smoothness and the limiting
behavior of the density p of X. The proof is similar to the derivation of
Sheppard’s corrections in Cramér [(1974), chapter 27.9]. As for the assumptions
occurring from now on, it should be noted that p € C*™(R) means that p is
everywhere 2m times differentiable and p®™ is continuous everywhere. We
further remark that the condition p(x)= O(|x|""%), as |x| — oo, implies that
E(|X|"1) < oo,
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THEOREM 2. Let X have a density p € C*™(R) such that for some integers
k,j =0 and some e >0 we have p(x) = O(|x|"*7/='7%), as |x| > o0, for
1=0,1,...,2m. Then, as a = 0,

‘ k/2 1 a\ k-2i o
en) BN = 2 () (5) B o)
i=0
k even,
(k-=1y/2 4 a\ k-2i-1
. 1 i+ 20+ m
s BN - (5] B o,
i=0

kodd.

PrOOF. Let F(y):=y***/u/p(u)du, ye . R. Then Fe C?™"*(R) and
FeEmiD(yy = O(|y|‘1_€), as y = oo. Now Euler’s summation formula is needed
in the following form:

(29) % Flan)= [* Flau)du+ &t [ Hy (WO au) da,

n=-o
where

2sin(nwu)

Hypoi(w) = (~1)"*' ¥ ‘R

o (2n7f)2m+1 ’

[see Cramér (1974), chapter 12.2.]. Using (2.9) and the boundedness of H,,, ., we
can carry out the following computation:

E(XfNa(X)k)— E (an) fan+a/2up(u)du

n=—o0o an—a/

f (ax) (/ax+a/2ulp(u) du) dx
— o0 ax—a/2
+012”‘“f00 H,, . (2)F®*Y(au) du
— 00

akfoo u’p(l.t)(fmﬂﬂ kdx) du

u/a—1/2

(2.10) +a2m+10(/_°° 1+ |au|)““du)

- S ()5

k+1
1\ k+1-1 1\ k+1-1
x[(—) -(—~) ]du+0(a2m)
2 2 )
k+1 1 k+1—11+(_1)k—1 '
_ kE+1\_ k-1 J+y 4 2m
(M) e o,

(2.10) immediately yields (2.7) and (2.8). O
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We now turn to a discussion of the estimators N, and S? introduced in
Section 1.

THEOREM 3. (a) Let X have a density p € C*™(R) such that p'(x) =
O(|x|~37%), as |x| = o, fori=0,1,...,2m and some & > 0. Then the following -
relations hold for a — 0:

(2.11) E(N,)=E(X)+o(a®™""),
— 1 a?
(2.12) var(N,) = - var(X) + TR O(a“’)),
a2
(2.13) E(S?) = var(X) + I + O(a?™).
(b) If moreover p'(x) = O(|x| °~*), as |x| = o, fori=0,...,2m and some

e > 0, we further have

1 4 , o ot )
o \17:;(83) = ;[E((X - EX) ) —var(X)" + Evar(X) + 180 + O(a '")}

1 2 aZ (14 2m
+ m[var(X) + EV&I‘(X) + m + O(a )]

ProOOF. The existence and integrability of p™ implies that f(¢) = o(|t|”2™),
as |t| » oo [Feller (1971), page 514]. Thus, setting / = 1 in (2.5), we get E(U,) =
o(a?™*1), as a — 0. Hence,

E(N,) =E(N,) = E(X) - E(U,) = E(X) +o(a®""").
It follows from (2.4) for [ = 1 that E(U?) = a*/12 + o(«®*™*?) and from (2.8) for
j=k=1that E(XU) = E(X?)— E(XN,) = O(«®>™). Thus,

var(N,) = ~[E(N2) - (E(N)]
= [ E(X*) - 2B(XU,) + B(U2) - (E(X) + o(a>"))]

1 o?
= ;[var(X) + 1z + O(a '")]

Further we have
2
— o
E(Sf) = var(N,) = nvar(N,) = var(X) + - + 0(a2™).

Finally, to prove (2.14) observe that

By — B 2 9
n (n—1)n

(2.15) \ ’ var(S2?) =
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[Kendall and Stuart (1969), page 244, Example 10.13], where p? := (var(N,))?,
py=E(N, — E(N))") = E(X - E(X) - (U, - E(U))]").
Using Theorem 2 it is easily calculated that
2

E(XU?) = %E(X) +0(a®™),  E(X?U,) = 0(a’™),

2

E(XU2) = %E(XQ) + 0(a®™), E(X?U,) = 0(a®™),

E(XU?) = 0(a?™).
A lengthy computation using these results will then show (2.14). O

REMARK. It is clear from the above corollary that the tail properties of the
characteristic function f of X play an essential role for the asymptotic behavior
of N, and S2. The result quoted from Feller (1971) connects the dlfferentlablhty
of p w1th the tail behavior of f. However, differentiability of p is not necessary
for relations.of the form f(¢) = O(|t|'B), as the examples of the uniform, the
triangular, or the gamma distribution make obvious.

Theorem 3 shows that the variances of the estimators N, and S? are of order
O(n™"), but both estimators have a bias that does not converge to 0, as n — oo.
In order to achieve asymptotic unbiasedness of N, and S? we have to let a and n
simultaneously tend to 0 resp. infinity. The following two theorems give the right
order of magnitude for refining the measurement scale in dependence of n.

THEOREM 4. If E(X?) < oo and f(t) = o(|t| %), (|t| = ) for some k € N
[e.g., if p € CXR) and p'® is integrable] and a, = O(n~"/2**?) as n > o,
we have

(2.16) Vn (N, — E(X)) > pN(0,var(X)), n— oo,

(2.17) n(E(N,) - E(X)) >0, n- .

If k = 2m and the assumptions of Theorem 3(a) are in force, we further have
(2.18) nE(( —E(X)) )—>var(X), n— oo.

ProoF. Obviously,
19) (N, = B(X)) = (¥ - E(X) - - LU,

and, for £ > 0,

P\ £ ux)

> s) < (ne*)” E([i Ua”(Xi)] )

=(n82)*1[nE(Ua2)+n(n—1)(E(Ua"))2]
=0(a2) + o(na?*2) >0, asn - oo,
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where for the last equation the corollary of Theorem 1 has to be applied Thus
n~ 2L U, (X;) »p O (n > ). Further we conclude from E(X?*) < oo that
n'/A(X — E(X)) - N(0,var(X)). (2.16) now follows from (2.19). Further
E(N,)- E(X)=E(, ) =o(ak*") = o(n"'/?) yielding (2.17). (2.18) is an im-
mediate consequence of theorem 3. O

For S? — var(X) one gets analogous conclusions as for N, — E(X); however,
one has to choose a = a, = o(n~'/*) because of the term a?/12 in (2.12). It is
therefore preferable to apply Sheppard’s corrections.

THEOREM 5. Let E(X*) < o and f(t)=o(|t| *), as |t| > «, for some
EeN. If a, = O(n"V@**2) as n > w0, we have

(2.20) ‘/ﬁ(sfn - ‘;—2 - var(X)) (0 E((X - E(X))") - var(X)?),

12
If k = 2m and the assumptions of Theorem 3(b) hold, we also have

(2.21) : R(E(szn) & var(X)) - 0.

2

(2.22) nE((an - ‘1’—2 - var(X)) ) > E((X - E(X))") - var(X)".

The proof starts from the identity

n

1 v 77 \12
0= o7 L IX - X - (U(x) - 0L,

where U, = n™ 'L U/ X,). We omit it, because it is similar to that of Theorem
7, Section 3, which is carried out in detail.

Hence if the correction term —(a?/12) is introduced, the order of magnitude
in which the span has to tend to 0 can in most cases be considerably decreased.

3. The normal case. In Section 2 we have mainly considered random
variables with densities p with the property p‘“’(x)= O(|x|™#), (|x| = ),
i=0,1,...,2m, for some B. If p as well as its derivatives are of exponentially
small order for large |x|, the remainder terms of our approximations will also be
exponentially small. We shall not give the details, but restrict ourselves to the
important case of the normal distribution. So let X, X, X,,... be independent
N(8, 6?) variables for some (6, 32) € R X (0, 00). Then (2.4) and (2.5) take the
form

o -5

(32) E(UX ) = (

270)

(o]
Z Cj’ZICOS(

J=1

)exp(-—277202j2/a2)},

| R

20-1 »
) 2 ¢ o1 18in(270) /a)exp( —27%6 %% /a?),
=1
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where

[(k—1)/2] (_1)j+m+[(k+1)/2]
cj = k!2

k—2m*

meo (2m + 1)!(j7)
Here [(£ + 1)/2] denotes the integer part of (2 + 1) /2. Note that
—27% — 4722
(3.3) Z exp( 7 ) = exp( 5 1+ O(exp( 5 ))),
44 44
as a — 0. By (3.2) and (3.3) we obtain

(34) E(N,)=6-E(U) =20+ O(aexp(—27%?%/a%)), asa — 0.

— 27252

To compute var(N, ), we remark that
_ 1 ;
var(N,) = ;[E(Uf) ~ 02+ 2E(N, (X - 6)) - (E(N,))’ + 62 - 20E(U,)].

We have (E(N,) = 8% + O(a exp(—272%2/a?)), EUZ2) = o?/12 +
O(a%xp(—27%2%/a%)) and, if ¢ denotes the density of N(0,1),

E(N(X =)= L anf"" "~ 0)o-1¢(¥)dx
- niwan f( :"_:;; 2_0(::/6 ¢(y) dy
= aon=§;wn[q>((an - -g - 0)/0) - <p((an + g - 0)/0)]
(3.5)

(27) a0 Z exp{—a (n - % ~ f)2/20 }

n=-—oc

i (—1)"exp(—27inb/a)exp( —27%%n?/a?)

n=—oc

i 27nd
=02+ 202 ) (—1)"exp(—277202n2/a2)cos( )
«

n=1

For the fifth equation we have used the theta function identity

S exp(—B(n—v)) = (7/8)* L exp(~2riny — (n2/B)),

n= —oo n=—wx
where 8 > 0, y € R [see, e.g., Bellman (1961), page 10]. The asymptotic result for
var(N,) is thus given by

2

v 1 a
(3.6) var(N,) = —|o? + ot O(exp(—27%2/a?))|, asa — 0.
n
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Further,

2

(3.7) E(S%) =02+ (11—2 + O(exp(—27%2%/a%)), asa — 0.

Now we again turn to the case of a span a = «, converging to 0, as n — .
THEOREM 6. If a, < 27o(logn)~ /2,
(3.8) Vn(N, —0) - ,N(0,0%), n- .

The sequences of the expected values and of the variances converge to 0 and o2,
respectively.

PrROOF. One has to proceed as in the proof of Theorem 4 in Section 2, but
now using (3.1) and (3.2). The crucial steps are

( -1/2

< (nez)_l[nE Uf) +n(n— 1)(E(Ua,,))2]
= 0( ) + O(na exp( 477202/“2))

n

= O((log n)" '+ O((logn)fl), asn — oo
and
E(\/r—l(lvan - 0)) = O(\/Eanexp(—277202/ai))
=O(logn)—1/2), asn — . a

THEOREM 7. If limsup, , a,(logn)/? =y < 270,
2

a
(3.9) f(sf - 1—2’1 -0 ) - ,N(0,20%), n - .

The sequences of the expected values and of the variances converge to 0 and 20*,
respectively.

Proor. We have

i)

(3.10) +¢E[n !
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The first term at the right-hand side converges in distribution to N(0,26*), and
we shall now show that the other terms tend to O in probability. Let us first
consider the third sum. Using Chebychev’s and Hoélder’s inequality, for fixed
e > 0, we obtain

(2n
P
n
sp(
n-—

_ 0(%)E([ 3 Xann(Xi)]z) +0(n)E(X°T2)

i=1

i=1

o[ 2" xT (s
* n—lln “"|2_2_

i=1

- of > |[n(x202) + n(n - 1(B(x0,,))]

+0(i3)E( i XinUan(Xk)Ua,,(Xl))

n i, j k,1=1

= o()[E(x")E(UL)]"* + o(n(E(xU,))’)
+ 0(%)E(X2Ua2n) + O(%)[E(XzUan)E(Uan) + E(XUZ2)E(X)]
+ 0| E(x*)(E(U,,))" + E(XU, )E(X)E(U,,)
+(B(X)(E(U2)]
+0(n)(E(X)Y(E(U,))’

= O((log n)"l).
Here we have applied the relations
E(U, ) = O(a,exp(—27%2/a2)) = O((log n)~"/*n=1/278),
E(U?) = O(a2) = O((logn) "),
E(U!) = 0(a}) = O((logn) ),
E(XU, ) = O(exp(~27%7/a%) = O(n~1/2?)

where 8§ = (47%% — v2)/2y2 > 0.
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We now turn to the middle term at the right-hand side of (3.10). The following
computation will finish the proof of (3.9):

pln ] 3 U, (%) - a2 - 20

i=1

n! f (U.(x)" - E(U2 )).

2

> % _IE(Ufn) - % ) +P(U2 2 ¢e/2Vn)
6\/_ a2 -2 n 9 .
- [7 B - 5 ] of £ g0y - o)

- OWE(U}) + o(n)[nE(U2) + 0()(E(U,))]

= 0((logn) %) + O((log n) ') + O((log n) "'n=2%).

The assertions about the expected value and the variance are similarly proved. O

REMARK. If «, tends sufficiently fast to 0, as n — oo, Theorems 6 and 7
combined with the Cramér-Rao inequality tell us that N, and S2 - (a%/12)
are asymptotlcally normal estimators of § and o2 with asymptotlcally minimal
variance. If o is known, one can take a, = 27o(logn) '/? for this optimality
property to hold for N, . If ¢ is unknown, one may choose a, = o((logn) '/?)
for N, as well as for S . 5"

4. The effect of truncation. In most applications one does not divide the
whole real axis into intervals of equal length; often this partition is only carried
out for a “central region,” say the interval [ — K, K ], whereas the two unbounded
intervals (— o0, K) and (K, «) are not subdivided. If we neglect the observations
not falling into [ — K, K ] (for which it is not so clear then how to take them into
consideration for N, and S?), we arrive at the modified estimators

(41) N(K)=— T N(X),
it IN( X)) <K
(42 SHK)= T [N(X) - NE)]

1 i [N X)I<K

We shall show that N, and N(K) as well as S? and S?(K ) are asymptotically
equivalent, if n - o, K — o0, and (in the second case) a — 0 in a properly
connected manner. Thus neglecting the “outliers” asymptotically has no effect
for our estimation procedure.

Again we shall first consider the “smooth” situation of Section 2 and then the
normal case.
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Let the density p be in C?*(R) and p‘“)(u) = O(Ju| #) for some B > 2, where
i=0,1,...,2k, for some k£ € N. Suppose that K, > a, forall n € N.

THEOREM 8. Let
(a) lim, , ,n""2KE~% = oo, if a, remains bounded;
(b) if &, = o0, suppose lim,,_, ,a, % n " "2KF2 = .
Then ]Vﬂn and N, (K,) are asymptotically equivalent in the sense that

(4.3) yn(N, - N,(K,)) >p0, n- .
ProOF. Again let F(t) = t["" 2/Pp(u) du. By Euler’s summation formula,
f F(an) = [mNF(ax)dx + %(F(aN) — F(am))
(4.4) + Zk: (fiz)i' a? Y (FRD(aN) — F~Y(am))
i=1 :

+a2 1 [“Hyy () P24 0 (ax) dx.
m

First let N — oo and then let m = m, = [K,/a,] + 1. It is easily seen that the
last term is O(aZ*K2~F). The two middle terms at the right-hand side are of
order O(a,K !~ #). Further,

wa(ax) dx = afoo [fu/aﬂﬂxl(m’w)(x) dx]p(u) du

m —oo|Yu/a-1/2

« . 1
f up(u)du+afm +wl/z)p(u)—
ma+(a/2) ma—(a/2) 2

< foo up(u) du
ma—(a/2)

= O(KZ2#).
Next we observe that
(4.5) E(IN, - N(K)|) < E(NA(n,- k) + E(N1n < x,)-

Now the above calculations show that
n'?E(N, Ly, - x,)) = O(n'/%a2*K2 ) + O(n'/%a, K} ~#)
(46) co(nrK? #)
=o0(1), asn - o.
A similar result holds for E( N, 1, N, <- k,))- (4.3) now is an easy consequence of

the Markov inequality. O

Hence if a, remains bounded, it is sufficient for (4.3) that K, /n'/2#-2 — o,
If is even possible that N, and N, (K,) are asymptotically equivalent in the case
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that «, tends to infinity: For example, if a, = o(n'/%#-2), it suffices to choose
K, such that a2*/(B=2pl/2B-2 = o(K ).

REMARK. If p(u) and up(u) are monotone decreasing on (b, ) for some
b > 0, we have, for sufficiently large ma,

foo up(u)du_E(Nal{N‘,>K})
ma—(a/2)

ad a+(a/2 a 2
3 [fn e )up(u)du - nafn e/ )p(u) du]
na—(a/2) na—(a/2)

B Sl 53]
= az[n=§+1p(na - %) + mp(ma - %) —%ninp(na - %)]
ol =55, £ o)

and a lower estimate is similarly derived.
Especially let p(u) = @y (u) = (270%) "%exp{ —(u — 0)%/202}. Then it fol-
lows from our estimate that in this case

(4.7) E(Nly k)= 0((1 + aK)e‘K2/2°2).

Therefore in the normal case a sufficient condition for (4.3) is given by the
relation

2
(4.8) — — log(1 +anKn)—llogn—> 0, n— .

20 2
The right order of magnitude for K, can then be determined for the various
cases. For instance, if «,, is bounded and o? is known, K, can be chosen to be of
order (logn)'/% if o® is unknown, the order of 1/K, may be taken as
o((log n)~'/%).

For a comparison of S? and S?(K ) we suppose that a,, — 0.

THEOREM 9. Assume that p € C?*(R) and p'“(x) = O(|x|"*), as |x| = o,
for some B > 3, wherei = 0,1,...,2k. Let

(4.9) a,=0(n V@k+2) pn o0,
(4.10) nV2KB 3 5 o, n - .
Then

(4.11) V(8% - SX(K,)) »p0, n- .
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ProoF. Let I,(K) be the number of indices i € {1,..., n} for which |N,(X))|
< K. We subtract

n |1 2 = 2 1o 2
SHK) = = X NJ(X) -2N(K) +—-N(K)I(K)
R LI EATRY n

from

oo
“ n-1

S|~

¥ N(X)’ - N]

The result is

Si-SHK)=
(4.12)

n_Ji Y N(X) (N, + N(K))(N, - N(K))

Ny NGXD)> K

+ N(K)*((n - In(K))/n).}
Theorem 8 and Theorem 4 yield
n(N, - N,(K,)) =50,
N, + N,(K,) »p2E(X),
N,(K,)" =p (E(X))".

Note further that n — I(K,) has a binomial distribution with parameters n and
p,=P(X|> a,[K,/a,] + (a,/2)) = O(K]~P). Therefore we can conclude that

V(1 - (I(K,)/n)] =50,

because Vn K ! ~# — 0 by (4.10). Thus it remains to evaluate the remaining sum in
(4.12). As in Theorem 8, the proof can be finished by the Markov inequality, if we
can show that

(4.13) VRE(NZLy ) >0, n— oo
This can be done again using (4.4), but with F now defined by
F(t) = t2ft+(a/2)p(u) du.
t—(a/2)

It is not difficult to verify that the right-hand side of (4.4) is then of order
O(K2 By + O(a, K2 P) + O(aZ*K 3~#), which altogether is O(K 2~ #).

Thus if yn K27# - 0, (4.11) follows. This relation is however implied by (4.10).

||

We now turn to the normal case. Without restriction of generality let § = 0. A
close look at the proof of Theorem 9 will show that if a,(log n)/? < 27¢, in order
to establish (4.11) we have to choose K, such that (4.8) and the following
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relations hold:
(4.14) VaP(X>K,)~0, ViE(NZly .x,)=0.
Now, for some absolute constants M, M, ﬁ

x p a
E(Nazl(Nu> K)) < Z (an)zaq)o,a(an - E)
n=m

0

<Ma® Y, n%(2mn0?)”exp(—a’n?/20?)

(4.15) n=m-1
N 202\%2
< MMa3exp(—a2(m - 1)2/202) m3 + (——2—) )
[s4

< A:4K3exp( -K?%/20%).
Here we have used the upper bound
(4.16) i n’exp(—yn?) < Mexp(—ym?)(m? + y~2),
o meN,y>0.
Now choose K, such that
(4.17) K?—-60%logK, — o’logn > ©, n - oo.
In this case (4.8) is satisfied and
VnP(X > K,) = Jn(2m0?)” ‘/2/ exp(—x%/20?) dx
(4.18) Ky
= O(ﬁK;lexp(—K;f/2a2)) -0, n-— .

By (4.15), the second relation in (4.14) is also valid.
Thus in the normal case we have n'/*S? — SX(K,)) —p0, if a,<
20(log n)~"? and K, satisfies (4.17).

5. Maximum likelihood estimation. Let X,,..., X, be independent and
identically distributed with real density p,,(x) for some § € O, where ® C R is an
open interval. Let H,, , be the numberof i € {1,..., n} for whlch N(X,) = ma.

In this final chapter we conSIder the mle 47 of 8 based on (Hy m, n)mez: The usual
mle of 8, which is based on X,,..., X,, will be denoted by §”. Under suitable
regularity conditions we have n1/2(0” 6) > p,N(@©, I(6)" ') and n'/*(6" — 0)
- N, I(8)" "), where I(6) and I (0) are the respective Fisher information
numbers: 1(8) :== E,([(d/38)log pg(X )]?) and, setting gg(t) = [ /o) pe(u) du,
I(0) = Ey([(3/38)log g5(N(X1)]?).

It is therefore of interest to know in which manner I (6) differs from I(8).
Under quite general conditions the relation I (6) — I(6) (a — 0) holds [see
Bhattacharya (1976), page 1786, for a related result]. Here we shall prove an
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expansion
(5.1) I(0)-1(8)=a(8)a®+ O(a*), asa — 0,

which is valid for all 8§ € ©. a(6) is given in (5.2). A lot of technical assumptions
are needed to derive (5.1):

ASSUMPTIONS.

() py € CA(R), py(x)>0V x €R.

(ii) lim,,_ ,(d"/dx*)(gg(3%/86%)log g5)(x) = 0, i = 0,1,3,
(i) limsup, _,/*,|(d°®/dx")(g5(3*/36%)log g5)(x)| dx < oo.
(iv) The following functions exist and are integrable:

02 9? d 2 d d ., d 2 ,
302170, Wpé', (%Pé') Dy %Paﬁpé' Do Po(ggpo) Dy,

a 2
pé’( 551)&’) Pi-

3

26°

(v) Let

hy,(t) == sup

|t—v|<e

o

Then for some & > 0, (8, x) = hy (x) and (0, x) > hy 5(x) are bounded and the
following functions are integrable:

d d
ho,z’ h%,l/Po, h0,1(8_0p0)/p0’ ho,1(5apé')/l’o,

J 2 a 2
ho,o( 55]70) Pi ho,o( %Pé') Pi-

(vi) For some K > 0 we have [pj(x)]/ps(x) = —K > — oo and
(Ao o(x)]/Dy(x) = —K > — o for all x € R.

THEOREM 10. If Assumptions (i)—(vi) hold,

2

44 o0 8 (x)
100) = 10) = 5 [* | 2oapix) — 2

Po( )801’0

py(x)

80

(5.2)
pi(x)

g s + o,

as a = 0.
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Proor. By Taylor expansion of p, around ax we obtain

giox) = [ Lj;f)[po(ax)  pi(a) s — ax) + pia) ) "‘x)

3
u-—ox 1
(5.3) +p0m(ax)(_6)_ + ﬂfu(u —0)*'pf(v) dv | du

= apy(ax) + —p (ax) + R(ax),

where we have set
Ri0) = 57 [ [t - 0)'mi00) o .
(a/2)

By Euler’s summation formula and assumptions (ii) and (iii) we get

E,,( %:2 [log g5( N( Xl))])

2

d
Y gi(an) 5 llog g5(an)]

n=—oo

oo a?
| gitox) 55 llog gi(ax)] dx

— 00

o d’ 92
+ a5f‘oo.(ix_5_[ggwloggé’}(ax)HAx) dx

0 g |(ax i
=f_°; (a%gg)(ax)— [(a_”gj:li) )] dx + O(a*)

-/ gzpo(ax)dx I 243,,2p9(ax)dx

a
+f_°o ';;—2 5(ax) dx —L [( azlio()a(:;) dx

[ aoga (ax)H “(ax) apo(lax):dx+0(a“).

The first two integrals at the right-hand side of (5 4) are equal to

(5.4)

w 0°
| Sgapelx) dx+ o f 02p0<x>dx.
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Further we have, by Assumption (v),
2

w d .
f —R(ax) dx = O(a”), asa — 0.

— o 06?
Note that
3 L0 2oa® 9 N oetd 9
(a—ago) =« (%Pa) +§P(%Po) +EE§P0£P0

R\ ofalp s &0 aR"‘
(ao ") “567 " 54 397

/

the omitted arguments all being ax. By Assumptions (iv) and (v), the fourth
integral at the right-hand side of (5.4) can thus be written as

[ 0 2 ad

_foo _%Pa(x)] e a_2 o [%Po(x)Haepo(x)}
—oo  Pelx) 12/ Po(x)

Finally, the Assumptions (iv), (v), and (vi) yield, for the last integral in (5.4), the

relation
foo [ a 2, (ax)r[ 11 ]dx
96" apgax)  gg(ax)

o’ oo Py (x)
iz f—wpo(x)

Collecting terms we arrive at (5.2). O

and

24 pg  ap,

1+ — ,
24 pg  apg

o’ pj  Rj
+
ap, 8 Aapy

dx + O(a*).

[ po(x)] dx + O(a'), asa — 0.

Due to the computational complexity of the mle equation a procedure often
used in practice is to take the mle 6", but based on the measured values
N(X)),..., N(X,), instead of 6. For instance, if § is the mean (resp. variance)
of a normal population, this leads to the estimator N (resp. (n — 1)n"'S?),
whereas it takes considerable effort to calculate 0” approx1mat1vely

Forx € R" let {x}, = (Ny(x)), ..., N(x,)), P (%)= [1]_1 py(x,), &G, (%)=
[T ,86(x)).

Let 6/({x},) resp. 0"({x}a) be a mle of # from 8o, L{x},) resp. py ({x},), L€,

"({x}a) resp. 0"({x}a) is a value of § maximizing 6 — g, ,,({x} ) resp. § —
Py, n({x},)- First we shall give conditions under which ) ”({x}a) - 0"({x},) > 0, as
a — 0. Our final theorem will then sharpen this result to the form

Br({x).) = 0"({x}a) = o*h({x},) + o(a®), asa -0,

where A is given in (5.9).
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LEMMA. Let x € R" be fixed. Suppose that (8, y) = pe(y) is uniformly
continuous on © X U, where U is some neighbourhood of x, and that
limg_, , pg (x) =0, i=12 where ® = (a,, a,). Suppose that the mle 67(x) of
x from py (x) is uniquely determined. Then

(5.5) tim 87((x},) = lim 07({x},) = 0"(x).

Proor. If 9"({35}.1,,) — 0, € ® for some sequence a, — 0, we get for all
f € O by the uniform continuity assumption

po,n(x) (_pﬁ,n({x}ak) Sp@"((x)nk)» n( {x}ak) _)pﬁ,,n(x)’ a, = 0.

Since 67(x) is unique, it follows that 87(x) = 6,. If 9"({x}ak) - a,
Por((x,,), A{x)e,) = 0, but pge(yy n({x}a,) = Ponxy, nlx) > 0, which contradicts the

definition of 0”({x}a ) for large k. Thus the second equation in (5.5) is proved.
Further for all ¢ > 0 there is a «, > 0 such that for all « € (0, «,) and for all
06 '

(5.6) po({x}a) — & < a”'gf J({x}.) < pp a({x}a) + &
Suppose 91,’:({x}ak) — 6§, € O for some sequence a;, — 0. Then clearly
(6.7) ay 'gox 2 (% )a)r n( {x}a,,) - Poo,n(x)
so that by (5.6)

Po, (%) 2Py (x) —e, VOEB,Ve>0.

The uniqueness of 67(x) implies that 0, = 7(x). Further note that convergence
of 0"({x}a ) to a, or a, is impossible, because in this case

hm ay go" ({x)ap)s n( {x}"k) =0,
but

kh—>n:o (X,: lgs'f(x), n( {x}dk) = p@"(x), n(x) > 0
yielding a contradiction for large k. The lemma is proved. O

Now fix x € R". Assume that §7({x},) and 7({x},) are roots of the mle
equations

3 3
(5.8) 25108 Ponl{x}a) =0, —loggi ({x}. )=0

and that (9%/06%)log py, A({2}g=i7((x),) # O- Also (5.5) has to be satisfied.
Further we suppose that there is an open nelghbourhood U=U, X - xXU,ofx
such that p, ,(z) > 0 for all (0 2)e O X U, py ,€ CHU), and p“)(t) € C*(@)
forall te U U, and i = 0,...,4.

i=1
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THEOREM 11. Under the above conditions we have for o — 0

B({x} ) = 87((x})

ol | A 1 (8/96)py/(Ny(x,
69 - el ] £ N 2|

0=0"({x}.)
+o(a?).

PROOF. There are opensets V=V, X --- XV and Wc © such that x € V
C Uandforall teU” V,and 6 € W

a '3
logg3(1) = log(apa<t> b pi(e) + RS (t))

a® (3/96)py(t)

(5.10) TR

—-log py(2) + O(a*),

~ 98
2 2

gElogi(t) = (1+ 0(a) 505

[recall (5.4)], where the both O-terms hold uniformly with respect to (¢, 8). We
write 6, for 7({x},) and 6, for 87({x),)- Taylor expansion shows that for some §
between 6, and 6,

(5.11) log py(¢)

32

9 b _d
2 oz & =(6,-46 1
o 108 86..({x}2) ”i (0. = 0.) 5gzto8 83.((=).) o=,

( )

Here we have used (9/98)log g5 ,({x},)lg—5, = 0. Inserting (5.10) and (5.11) into
(5.12) and recalling (d/30)log p, ({x}.)l¢—4, = O yields
o’ 2 (9/38)py(N,(x;))

24 71 p(N(x))

(4,

(5.12)

3

oa) aoglOggo n({x} )

%»

+ O(a*)

0=4,

2

9
(1 + O(a?)) 297198 Po.n({x} )

Q:o»

(5.13) -4,

6=4,

(i, N

The expression in square brackets is clearly equal to (3%/36%)log Po, ({x})N64,
+ o(1), as a — 0. (5.9) is now easily derived. O

3

ad
= 8.) 55l g5 W((x}.)

%»
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