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VARIANCES OF THE KAPLAN-MEIER ESTIMATOR AND ITS
QUANTILES UNDER CERTAIN FIXED CENSORING MODELS

By ARTHUR J. ROTH
CIBA-GEIGY Corporation

For fixed censoring models that contain at most one intermediate cen-
soring point, we obtain exact algebraic expressions for the asymptotic vari-
ances of (i) the quantiles of the Kaplan-Meier (KM, 1958) survival estimator
and (ii) the KM estimator itself at fixed time points. The relationship between
(i) and (ii) is found to be the same as the one derived by Sander (1975) and
Reid (1981b) for the random censorship model. Confidence intervals for the
quantiles based on (i) are briefly discussed and compared to previously known
procedures. Although Greenwood’s Formula is recommended over (ii) in
practice because of its (desirable) conditioning on the observed censoring
pattern, (ii) is of theoretical interest as an asymptotic limit for Greenwood’s
Formula in closed form.

1. Introduction. Point estimates of survival quantiles can be obtained in
an obvious manner from the Kaplan-Meier (KM, 1958) estimate of the entire
survival function. In the random censorship model, in which censoring occurs
independently of death, several methods have been proposed for obtaining
confidence statements about these estimated quantiles. In particular, Efron
(1981) and Reid (1981a) have developed two different bootstrap methods; Thomas
and Grunkemeier (TG, 1975), Brookmeyer and Crowley (BC, 1982a), Emerson
(1982), and Anderson, Bernstein and Pike (ABP, 1982) invert various two-sided
tests on the survival probability at a fixed point; and Reid and Iyengar (RI, 1979)
have attempted to estimate the terms in an exact asymptotic variance formula,
which was derived using separate methods by Sander (1975) and Reid (1981b).

The present paper addresses the same question for experiments with fixed
censoring times. In particular, we allow only a termination date for censoring all
survivors and at most one intermediate censoring date for censoring all survivors
among some prespecified subset. Such a design is typical of animal safety studies
on experimental new drugs. In this setting, Theorem 1 displays a closed form
algebraic expression for the asymptotic variance of the estimated quantiles.
Theorem 2 demonstrates that the relationship between the asymptotic variance
of the estimated quantiles and that of the KM estimator at fixed time points is
the same as the one derived by Sander (1975) and Reid (1981b) in the random
censorship model. Combining Theorems 1 and 2 yields a closed form expression
for the asymptotic variance of the KM estimator at fixed time points. Hence,
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Greenwood’s Formula must converge to this expression by its well-known con-
sistency property, and we believe this to be the first known closed form limit for
Greenwood’s formula in any framework.

Finally, with the aid of some very limited simulations, we briefly discuss the
application of these results to confidence intervals and testing. Some comparisons
are made with existing procedures.

2. Notation. Let F(¢) be the c.d.f. of the distribution of deaths and P(¢) =
1 — F(t) be the corresponding survival function. We assume that F* exists and
is continuous on (0, 1), and that the p.d.f. f(t) = F’(t) exists. Let t, = F"'(p) be
the p-quantile of F(¢) and let t be the Kaplan-Meier estimate of i, ie.,
t, = Minf{t: P(t) < q}, where g = 1 — p and where P(t) =1—F(t) is the Kaplan-
Meler estimate of P(t). Clearly t does not exist if P(Ty) > g, where Tz is the
length of the experiment. Thus, it is valid to consider the properties of t as an
estimator only if T is assumed large enough that Pr{P(T,) > q] is mmlscule
enough to ignore this possibility. But then t is already determined before time
Tz ) and

() We can regard all final censoring as true deaths without
altering results about ¢,.

Finally, let S be the total number of items tested, and let X(1), X(z), * -+, Xs)
represent the ordered uncensored death times, some of which we cannot observe.
In our asymptotic analysis, we let S — oo,

3. No intermediate censoring. Let

{x} = if x is an integer
[x] + 1 otherwise,

ie., it is the smallest integer not less than x. Since censoring occurs only at the
end, (») implies that £, = = Xspn- Well-known asymptotic theory for random
samples now provides that t has the approximate distribution N (¢,, pq/Sf2(t,)).

4. One intermediate censoring time (at T,). Letr=F(T,)=1—7n*=
1 — P(T)). Let S; be the number of items to be censored at T} if they do not die
sooner, and let S, be the number of items to be tested until the experiment ends
(equivalently, using (#), until death). Let N, and N, be the number of deaths at
or before time T, in each of the above groups, so that N; ~ Bin(S;, w) are
independent for i =1, 2. Let N = l)/'l + N,and S = S; + S5, so that N ~ Bin(S,
w), and let W = N/S. Note that P(T;) = 1 — W. We assume that S,/S = g,
where \s — X for some 0 < A < 1 (so that S; — x); we do not require S; — .

4.1 The conc{itional mean and variance. We now analyze the conditional
distribution of ¢, given N; and N,, which we will use later to derive the desired
unconditional variance.
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41A IfN = Sp,ie., t, < T, then all censoring occurs after t, and £, = Xspp»
just as in Section 3. But the conditional distribution of &, | N, N2 X(,Sp,) | Ny,
N, is the same as the unconditional distribution of Y(s,, the {Spjth order
statistic from Y;, - - -, Yn, where the Y’s are i.i.d. with p.d.f. g(t) = f(t)/x over
the interval (0, T}). The corresponding c.d.f. is G(t) = F(t)/x for 0 < t < T,
which has inverse function G™!(u) = F~'(ur) for 0 < u < 1. Define

a={Sp}/(N +1) = (Sp + 0(1))(1/N — 1/N(N + 1))
, =p/W + O(1/N) = p/W + 0(1/S)
since 1/N < 1/Sp.

LEMMA 1. Suppose that for some ¢ >0, F~! has three derivatives in the interval
((p — ), w). Then for N = Sp,

(1)  E(t| Ny, Ny) = F(ap/W) + Vi, where Vy= 0(1/S), and
@) V(G| N1, No) = (1/N)w2a(1 — a)/f*[F(ra)] + O(1/5?).

PROOF. Since G™'(u) = F'(un), it follows that (G™!)*® (u) = x#*(F1)® (ux)
where the superscript k represents the kth derivative. Since F~! has three
derivatives at each point in ((p — &), 7), G~* has three derivatives at each point
in (p — ¢, 1). We now refer to section 4.5, page 65, of David (1970). In our case,
r={Sp},n= N, p, = a,and Q, = G"'(«). Since Sp < N < S, we have

p(1 —1/(S+ 1))
=8p/(S+1) = {Sp}/(S+1) = {Sp}/(N+ 1) =a={Sp}/(Sp+ 1) <1

Hence, for sufficiently large S, p — ¢ < a < 1, and G has three derivatives at .
We can therefore apply David’s equation (4.5.3) to obtain

E(t,| N1, Ny) = EYsp = G (a) + O(1/N)
(3) = F(ap/W + 0(1/S)) + 0(1/S) since 1/N < 1/Sp
= F'(xp/W) + 0(1/S),

establishing (1), and we note that only two derivatives of F~'! were needed to do
0. (The second derivative is needed for the O(1/N) term since the remainder in
the Taylor series involves the second derlvatlve at some unknown point between
a and G(Xusp))) )

To verify (2), we note that (G™)"(a) = 1/g[G™*(a)] = «/f[F*(ra)]. Since
1/(N + 2) = 1/N + O(1/N?) = 1/N + 0(1/8?), the desired result is a direct
application of David’s equation (4.5.4), with all three derivatives of F~! required.

4.1B If N < Sp, i.e., t > T, then let D, = Sz N represent the number of
items on test beglnnmg at time T. Let W1, ---, Wp, be the uncensored death
times of these items, with order statistics W(,), - -+, W(p,). Then given N,, we
have Wi, ---, Wp, i.i.d. with p.d.f. h(t) = f(¢t)/x* on the interval (T}, »). The
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corresponding c.d.f. is H(t) = (F(t) — w)/=* for Ty < t < o, which has inverse
HYu)=F'(r+r*u)forO<u<1.

LEMMA 2. IfN<Sp, then t, | N1, N2 = W), where y = [P(Ty) —q]/P(Ty)
=1—-gq/(1 = W), ie.,t| N, N2 is the sample vy-quantile of the W’s. (Note that 0
<7<pforall0<N<Sp)

ProoF. Foranyj=1,2, ---, Dy, P(W(J)) = P(T),)- (D, —] )/D, by defini-
tion of Kaplan-Meier estimators, so that t = W, where i = Min{j: P(Ty)
-(Dy— j)/D; < q}. Simple algebra shows that i = {Dyv}.

LEMMA 3. Suppose that for some ¢ <0, F~! has three derivatives at each point
in the interval (z, # + ©*(p + ¢€)). Let B = {Dyv}/(D2 + 1), where v was defined
in Lemma 2. Then for N < Sp,

(4) E(fp|N1,N2)=F‘1(1—1r*q/(1—W))+RN, where Ry=0(1/S), and
(5) V(| N1, No) = (1/Do)(x*)28(1 — B)/f 2[F~ (= + m*B8)] + O(1/S?).

PrROOF. Since D, ~ Bin(S,, ©*), we have Dy/S; —,, 7*, Dy — o with
probability 1, and O(1/D;) = O(1/S:) = O(1/S). The proof now proceeds along
the same lines as in Lemma 1 (with D, playing the role previously filled by S),
and we omit the details.

4.2 The unconditional variance. One of our main results is

THEOREM 1. Suppose the regularity conditions on F~' from both Lemma 1
and Lemma 3 hold, and fix ¢ small enough to satisfy both lemmas. Also suppose
that f[F*(u)]=K>0foru € (x(p —¢), # + #*(p + ¢)) and some constant K.
Then

. - [pa/f*s) if p=m
(6) llms_,mV(\/Etp) = {(q/}\f2(tp))[1 —q(l — Ar)/n*] if p>m.

The proof is given in the Appendix. Note the intuitively satisfying results given
by (6) for the special cases 7 =0, # =1, and A = 1.

5. Relationship to the variance of the Kaplan-Meier Estimator at a
fixed point and to Greenwood’s Formula. The following result is analogous
to a result for the random censorship model that was proved by Sander (1975)
and Reid (1981b) using separate methods:

THEOREM 2. Regardless of whether p < w or p > m,
(7) limg—... V(VSP(t,)) = f2(t,) - limg_m V(VSE,).

(Thus the right side of (6) without the f?(¢,) provides a closed form expression
for the asymptotic variance of the Kaplan-Meier estimator at the fixed point ¢,).
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We mention before the proof that we not not advocate using (7) in practice as
a substitute for Greenwood’s Formula. Once the data have been observed,
Greenwood’s Formula has the advantage over (7) of conditioning upon the
observed censoring pattern and should therefore be better in small samples. The
main practical application of (7) would be to gauge sample size by estimating the
precision of P(t ) before the data are observed. Nevertheless, Theorem 2 estab-
lishes a closed form expression to which Greenwood’s Formula converges (by its
known consistency), conferring theoretical interest upon the theorem.

PROOF OF THEOREM 2.

CaSe 1. If p < 7, then V(P(tp)) = V(F(tp)) = pq/S, and the result follows
from (6).

CasE 2. If p > =, then t, > T,. Since D, — o« with probability one,
lim V(VSP(t,)) = lim V(VSP P(t )| D > 0). (Strictly speaking, V(P(t,)) must
be defined conditionally since P(t ) is undefined whenever D, = 0, which has
positive probability for any finite S, so that no unconditional variance exists to
examine for a limiting value.) For the remainder of the proof, we therefore regard
all means, variances, and covariances to be conditional upon D, > 0 (equivalently,
N, < S;) even when not explicitly stated.

Let N* be the number of deaths in (T4, t,], so that N* ~ Bin(D,, (p — w)/7*),
and let W* = N*/D,. Then P(t ) = (1 — W)(1 — W*), and by the delta method

lim V[VSP(t,)] = lim{(1 — EW)2SV(W*) + (1 — EW*)2SV(W)
+ (1 — EW)(1 — EW*)S Cov(W, W*)}.

Using results on truncated binomial distributions given on pages 73-74 of
Johnson and Kotz (1969),

EW = (x/S)(S1+ Sa(1 — 7%71) /(1 — ©52)) >,
SV(W) =S8 71*/S + (So/[S(1 — 75)])
Arr* =S¥+ Sor?(1— (1— 7571)2/(1 — 7%2))} > wr ¥,
=(p—m)/x* V(W*|D;)=q(p—m)/[(x*)*Ds],
V(W*)=E[V(W*|D,)] + VIE(W* | D)] = E[V(W*| D,)], i.e.,

«y_S9(p—m)
o SV(W*) ) E(D2 Dz>0)
qg(p—m) S g(p—m)

TS (7*)? Szﬂ'*—‘ll'_) Aa*)3

Finally, Cov(W, W*) = E[Cov(W, W*)| D;] + Cov[E(W | D), E(W*|D;)]=0
because (i) W and W* are conditionally independent and (ii) E (W*|D,) is a
constant that does not depend on D,. Note that W and W* are uncorrelated but
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not independent, since their distributions both depend on D,. The theorem now
follows by substituting into (8) and comparing the result to (6).

6. Density estimation, simulations, and comparison with other pro-
cedures. Fryer (1977) surveys various density estimation techniques in the
uncensored case. The obvious generalization of these techniques to the censored
case is to substitute F(¢) for the empirical c.d.f.; thus, (1/N) ¥ h(X;) becomes
[ h(t) dF(t). Foldes, Rejto and Winter (1981) show that the generalized versions
of histogram estimators and kernel estimators are strongly consistent. For the
specific case S = 60, A = %, and p = .25, a simulation study was under-
taken to evaluate the performance of the generalization of a simple histogram
estimator. Spec1ﬁcally, for both 6 = .05 and 6 = .15, we looked at f (tes) =
26(t o545 — bos— 5); a wide variety of Weibull dlstrlbutlons (hazards increasing,
constant, and decreasing) was used for the death times, and a wide range of
censoring times was studied. The value § = .05 was unsatisfactory; the bias was
small, but the variability in (6) was far too great. The larger bias for 6§ = .15 was
still quite acceptable, and the estimates (6) were acceptably stable in all cases.
Thus, we have better results than Reid and Iyengar (1979), who agree that it is
more important to control variance than bias and whose conjecture that density
estimation would work better under fixed censoring appears to be correct. Finally,
the tails of the standardized statistic T = VS (t —tp)/ V(6) were fit very well by
a standard normal (not ¢!) distribution. This makes T easy to use in practice for
confidence intervals and for one- and two-sample tests.

REMARK. Based on the discussion between Theorem 2 and its proof, it
probably would be better in practice to use Greenwood’s Formula divided by
f (t,) than (6). Also, far more sophisticated density estimation techniques are
available. With neither of these, our simulations still gave satisfactory results,
and we do not conjecture that these improvements would have made a large
difference.

The only other two-sample (or k-sample) test based on the survival quantiles
of which we are aware is Brookmeyer and Crowley (1982b), and we have no basis
for comparing our procedure to theirs. Much more literature exists on confidence
intervals (and hence one-sample tests); seven references were given in the
introduction, and we believe that our procedure has advantages over most of
them. All of the procedures (T'G, BC, Emerson, and ABP) which invert tests of
the form Hy: P(t) = q for fixed ¢ cannot handle ¢’s such that P(¢) is undefined.
They also have difficulty when 13(t) = 0 or 1 (except for TG’s Z,-method); ABP
admit this is a problem and propose an admittedly unsatisfying solution. Thus,
these procedures can never include points beyond the termination time of the
study in their confidence sets. It is also mentioned by both BC and ABP that the
confidence sets determined by these procedures are not necessarily intervals. Our
procedure has neither of these drawbacks. Perhaps the bootstrap methods of
Efron or Reid outperform the others, but they require more computing capacity
than is routinely available to most of us. Finally, all of these procedures were
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derived (and simulated, if applicable) under the random censorship model, and
their properties under fixed censoring are not really known; in fact, our procedure
with the Greenwood modification in the above remark is essentially that of RI,
but ours proved more satisfactory because of this difference in the model.

7. Appendix: Proof of Theorem 1. We split the variance into its two
conditional components:
lims_.. V(VS£,) = limg o VIE(VS{, | Ny, Np)] + lims_. E[V(VSE, | N1, N,)]
' =lims_oSV[E(t, | Ny, No)] + lims_. E[V(VSE, | N1, Na)].

We will deal with the second term in (10) first. Combining (2) and (5), and
multiplying by VS, we obtain

V(VSt,| Ny, N,)

(11) _{(S/N)wza(l—a)/fz[F‘l(mx)]+O(1/S) if N=Sp
(S/S2) - (So/Da)(x*)?B(1—B)/f[FH(m+x*8)]+0(1/S) if N<Sp.

As S — o, we note that S/N —,, 1/7, a =, p/7, S/S; — 1/\, S3/Dy —,
1/7*,

(10)

ﬁ =7 + O(l/S) —as. 1- Q/”"*,

and
1 if p<nw
P(N = Sp) — 11/2 if p=m.
0 if p>n

Applying these results to (11), we see that

« p(1 — p/m)/f*(t,) if p=s=
(12) V(‘/Etp ' le Nz) —as. {(Q/A)(l _ Q/ﬂ'*;)’/fz(tp) lf D > 7.

If we examine the boundedness hypothesis on f[F(u)] together with (11) and
the lines that follow it, it becomes clear that V(v/S t;, | N1, N;) is bounded for
sufficiently large S. The Bounded Convergence Theorem may therefore be
applied, yielding

lims_E[V(VSt,| N1, N»)] = E[lims_... V(VSi, | N1, Ny)]
= E[(12)] = (12),

completing the evaluation of the second term in (10).
To obtain the first term in (10), we combine (1) and (4) to yield

Zn = E(t,| Ny, N»)
(14) {F‘l(wp/W) + Vy, where Vy=0(1/S) if N=Sp

(13)

~|F'(1 - #%¢/(1 — W)) + Ry, where Ry=0(1/S) if N<Sp.

Working only with the first line (N = Sp) of (14), we expand (14) in a Taylor
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series around W = 7, which yields (for some constant C)
Zn = t, — (p/7f (&) (W — 7) + C(W — =)
+OW-m)*+Vy if N=Sp.
Since E(W — 7)® = ax*(x* — 7)/S?2 = 0(1/S?%), we have
(16) EZy=t,+ C(xx*/S) + O(1/S?) + EVy if N=Sp,

(15)

a7 (EZn)? = t2+ 2Ct,(xn*/S) + 2t,EVN+ O(1/S?) if N=Sp,
since EVy = O(1/S). Squaring (15), we get

2

Z3=p2— Pl _ 7r)+|: 1 +2Ctp](W—7r)2+2tpVN

¢ 272 t,
(18) wf(tp) f2(ty)
- 2p VN(W=7)+O0(W—=7m)*+0(Vy(W—==)?) if N=Sp,
Wf(tp)
2
(19) EZ% [ ey p)+2Ct] 5 2L EVN+O<S3/2> if N=Sp,

where the O(1/S%?) term comes from E[Vy(W — 7)), since Vy is O(1/S), while
W — 7 is both (i) bounded and (ii) O,(1/ JvS). Finally,

(20) VZy = (19) — (17) = p?x*/S=f%(t,) + O(1/S*?) if N = Sp.
Repeating the steps leading to (15)-(20) on the second line of (14) yields

(21) VZy = ¢*x/St*f2(t,) + 0(1/S*?) if N < Sp,
and combining (20) and (21) yields

. _ Jp*z*/=f3(t,) if N=Sp
(22) lims .S - VZy = {qzw/w*fz(tp) if N <Sp,

completing the evaluation of the first term in (10). The theorem follows imme-
diately from (10), (13), (22), and a little algebra.
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