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RATE OF CONVERGENCE OF ONE- AND TWO-STEP
M-ESTIMATORS WITH APPLICATIONS TO MAXIMUM
LIKELIHOOD AND PITMAN ESTIMATORS

By P. JANSSEN!, J. JURECKOVA? AND N. VERAVERBEKE!

Limburgs Universitair Centrum, Diepenbeek! and
Charles University, Prague®
A one-step version M and a two-step version M? of a general M-
estimator M, are suggested such that M, — M® = Op(n~!) and M, — M@ =
Op(n~2) for every n'/-consistent initial estimator and under some regularity
conditions. In the special case of maximum likelihood estimation, this among

other yields that the second-order efficiency properties of M® coincide with
those of M,,. An application to the Pitman estimator of location is considered.

1. Introduction. Let X;, X,, --- be independent identically distributed
(i.i.d.) random variables with common density f(x, §) (with respect to Lebesgue
measure), where § € @ C IR. Moreover, we assume that the parameter space 0 is
an open interval. The true value of 6 will be denoted by 6.

Let y: R X ® — R be a function such that Ey (X, 0) exists for all § € © and
has a unique zero at § = 6.

A consistent estimator M, of 6, which is a solution with respect to ¢ of the
equation

(1.1) = (X, 1) =0

will be called an M-estimator corresponding to y. Regularity conditions on y and
f under which M-estimators exist, can be found, e.g., in Serfling (1980), Chapter
7 and Huber (1981), Chapter 6.

It is often difficult to find a consistent solution of Equation (1.1) in an explicit
way. Therefore a standard technique is to look at an iterative solution of (1.1)
(see, e.g., Dzhaparidze (1983) for an excellent account). We shall consider the
iterative solution M of (1.1) in the form

Mslk—l) _ n‘;lk—l) -1 ;’L= Xiy Milk—l) if A;lk—l) # O
(1.2) M® = {M},’“_l) (ny )7 Xk ¥ ) ¢ z;k_l) Zo
kB =1, 2 ..., where M? is a consistent initial estimator of 6, and

y® (k=0,1, ---) is a consistent estimator of v(f,), with

(1.3) v(0) = f ¥(x, 0)f(x, 0) dx,

¥(x, 0) denoting the partial derivative with respect to .
Before we proceed, we introduce E(-) and P(-) as a shorthand notation for
Eoo(') and Poo(')-
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ONE- AND TWO-STEP M-ESTIMATORS 1223

Theorems showing that a one-step version (say T,) of M, is asymptotically
equivalent to M,,, i.e.,

Mn - Tn = OP(n_I/Z)r

can be established, assuming that the initial estimator M® is n!/2-consistent
(i.e., n2(MQ — 6) = Op(1)) and that ¥ and f satisfy some regularity conditions.
A discussion on this subject can be found in Bickel (1975), Huber (1981), Chapter
6 and in Lehmann (1983), Chapter 6 for the case that M,, is a maximum likelihood
estimator. (MLE).

Jureckova (1983) studied the regression case and showed that M, — M =
Op(n™Y); in (1985) she derived the second-order asymptotic distribution of M,, in
the location case and concluded that M, — MY = op(n™!), provided MY is
equally asymptotically efficient as M,,.

The aim of the present paper is to show that M and M?, with properly
defined 7 and 7", are not only asymptotically equivalent to M, for every
n'2-consistent initial estimator M, but even that

M, — MY = 0p(n™) and M, — M? = Op(n~?).

These asymptotic relations among others yield that the second-order efficiency
properties of MY (in the sense of Akahira and Takeuchi, 1981) coincide with
those of M,,. This is of special interest in the maximum likelihood case.

The basic technical tool is the second-order asymptotic linearity in ¢ and u of

(2)
n

WX, 0o + nTY% + nT'u), where 7 = .

This is established in Section 2. The main result is proved in Section 3. Section
4 specifies the main result for maximum likelihood estimation. In Section 5 we
consider the application concerning the Pitman estimator.

2. Second-order asymptotic linearity. Let X;, X;, - .- be 1.1.d. random
variables with common density f(x, 6,) and let ® be an open interval in R. Let ¢
be a function from R X 0 into R and denote the first and second derivative of ¢
with respect to the second argument as y and y. Further assume that y satisfies
the following conditions:

(A1) ¢ and ¢ are absolutely continuous in the second argument.
(A2) There exists a 6 > 0 and a positive constant K; such that

E[(¥(Xi1, 6 + 1))l = Ky for |t] <.

Moreover we will assume either condition (A3) or the somewhat stronger condi-
tion (A3)’:

(A3) There exists a 6 > 0 and a positive constant K, such that
E| (X1, 00+ t)| = K, for |t]|=<3a.

(A3)" There exists a 6 > 0 and a positive constant K; such that
E[(J(X;, 6o + t))*] = K3 for |t| <.
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The first theorem states, under the conditions given above, the asymptotic
linearity in ¢t and u of %, ¥(X;, 0o + n~Y%t + n7"w).

THEOREM 2.1. Let X;, Xy, - - - be i.i.d. random variables with common density
f(x, 6o) and let Y be a function from R X 0 into R satisfying (A1) and (A2). Then,
() ify satisfies (A3), we have for every C >0
(2.1) supj<c|n™'? T [W(XG, b0 + n7'21) — WX, B0)] — v(Bo)t | = Op(n™'7).
(i1) ify satisfies (A3)’, we have for every r =, C;, >0, C, >0
SUPy=c,,jul=c, | B Ty [W(X,, 8o + 072t + nu) — WX, 6o + n™'721))

(2.2)
— ¥()n'>u| = Op(n™).

Proor. We only give a proof of (ii) since the proof of (i) is completely
analogous and simpler. Note that y(6,) exists by condition (A2) and that 6, +
n~Y%t + n""u € O for n sufficiently large (say n > no). Denote

Za(t, u) = 72 3y (WX, 0o + 07V + nTu) — (X, B0 + nTV2t))
and
Z3Yt, w) = Zn(t, u) — EZ,(t,u), n=1,2, ---.

Then we have to show that

(2.3) SUD|¢=c,,lul=c, | Z2(t, u) | = Op(n™")
and
(2.4) SUP|¢<c,,lul=C, | EZn(t, u) — 7(00)n1/2_'u| = 0(n™).

We only deal with (2.3) and (2.4) in the case where the supremum is taken over
the region (¢, u) € [0, C;] X [0, C.]; the other quadrants are treated similarly. For
0sti=t;=Ciand 0 < u; < uy, < C,, we have

E[(Z(ts, u2) — Z5(t1, w1))?]
< E[(¢(X1, 00 + n_1/2t2 + n_’u2) - ¢/(X1, 00 + n_1/2t2)
—U(Xi, 0+ 07V 4+ nTTwy) + (X, 0 + n~2t))?

n""u,y
= El:(f VX1, 0o + n™%t, + v) dv

n~Tuy n~1/2¢, R 2
+f f , ¢(X1,00+w+v)dwdv>}
o =12,

= E[(An(X)) + Ana(X1))?].
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Now
E[AL(X))]

n"uy n""uy
= f . f . EI(Xa, 80+ n7V2y + 0)PIE[(U(X, 60 + n72t, + 07))*]} dv dv’

< Kin"%(u, — u,)?, using (A2),
and similarly, by using (A3)" we obtain that
E[A2(X))] = Ksn™Zuin™'(t, — t,)%
Hence, for n > n, there is a constant K such that
E[(Z%(ta, us) — Z%(t1, w1))?) = Kn™#[(t; — t1)® + (u2 — w1)?.

From this it follows by the multivariate version of Theorem 12.1 of Billingsley
(1968) (see Jureckova and Sen, 1984, Section 3) that, for every positive inte-
ger m

P(maXosk=m,o<k'<m | " Z2(kC1/m, k'Cy/m)| = M) <= K'M?,

where K’ is a positive constant, independent of m. Since Z(¢, u) is continuous,
we conclude by letting m — oo that suposi<c, 0<u=c, | Z?, )| = Op(n™"). For the
proof of (2.4), we have for0 < t<C,and0<u =< Cyand n> ny

| EZ,(t, u) — v(8)n'*"u|
=n"?| E[Y(Xy, 80 + n~ "%t + n"u) — Y(X, 6o + n~"%t) — 7 u( X, 6o)] |

E[f f Y(X1, 00 + n~ "%t + w) dw dv
0 0

nTu 12
—J; J(: ¢;(X1,00+w)dwdv]

< Kon'[n~2(u?/2) + n~ V> tu] = O(n™™).

Hence the proof is complete. 0

=pl2

Theorem 2.1 has an easy corollary, which will be useful in the sequel.

COROLLARY 2.1. Let T, be an n*/?-consistent estimator of 6,. Then,
(1) under the conditions of Theorem 2.1 (i), we have
(2.5) nTVEYR WX, Th) — W(Xi, 00)] — v(8)n* (T, — 6o) = Op(n™"?).

(ii) under the conditions of Theorem 2.1 (ii) and with U, a statistic satisfying
U, = Op(n™"), we have

(26) n™V2 YL WX, To + Us) — Y(Xi, To)] — v(lo)n?U, = Op(n7").
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3. Application to one- and two-step estimators. Assume that there
exists an n'/2-consistent solution M, of (1.1) and that

(A4) v(8o) # 0.
Then, it follows from (2.5) that
(3.1) n'2(M, — 6) = —n""*(y(,))~} Y1 Y(X;, 60) + Op(n™2).

Let M be an arbitrary n'/%-consistent initial estimator of 6,. Consider the
one-step version M’ and the two-step version M? of M, defined in (1.2) with
4% (k= 0, 1) defined as follows

(3.2) P =nT%(t, — &) T (WX, MP + n7V2t) — WX, MP + n2t)]

where t; and ¢, (t; < t) are arbitrary fixed real numbers. It easily follows from
Corollary 2.1 that ¥ is an n'/?-consistent estimator of y(f,). The following
theorem shows that, under the assumptions of Section 2,

M, - MY =0p(n') and M, — MP = Op(n~3?),
where we remark that the n'/?-consistency of 7 follows from M, — MY =
Op(n_l).
THEOREM 3.1. Let X, Xy, - - - be i.i.d. random variables with common density

f(x, 0o). Assume that

(1) M, is an n'2-consistent solution of the equation (1.1),
(i) MO is an n'2-consistent initial estimator of 6o,
(iii) y satisfies (A1), (A2), and (A4).

Let MY and M be the one- and two-step estimators defined in (1.2) with +®
given in (3.2) for k = 0, 1. Then, under condition (A3), we have

(3.3) M, — M = 0p(n™)
and under condition (A3)’, we have

(3.4) M, — M? = 0p(n~?

PrOOF. Since v(fy) # 0 and v — v(8,) = Op(n~"?), we have
(3.5) ¥(00)/7% — 1 = Op(n™"72).
Moreover, since P(| Y | < §) can be made arbitrarily small for § < | y(6,) | and
Pn|M, - MP|>C)

(3.6)
= P(n|M, - M| >C, 7D #0) + P(|]79] <),
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it suffices to find a bound for M, — MY in the case that 4 # 0. Then, using
(3.1), we have
n'A(M, - MY)

X Zfﬁ.‘? J|n‘”2 % o WX, M) = (X, 60)] = nAM ~ 00)}

v(6o)

The statement (3.3) then easily follows from (3.5)-(3.7). If we now assume (A3)’
and put Tn = Mn and U — M(l) _ M in (2 6), we get for ,%‘1) # 0,

n'A(M, — MP) = n'*(M, — M) + n2(1/71) Tt Y(Xi, M)
((v(60)/75) — DnAMY — M,,) + Op(n™")

¥ <77(23) - 1){n_1/2 S WX, ) + n M - 00)} + Op(n™"?).

and this implies (3.4).0

4. Application to maximum likelihood estimators. The maximum like-
lihood estimator is an M-estimator generated by the function

(4.1) ¥(x, t) = (3/dt)log f(x, t)

There exists a host of literature about the asymptotic efficiency of MLE of
the first and second orders. A good review of such results may be found in
Akahira and Takeuchi (1981).

One-step versions of the MLE 6, were discussed in Lehmann (1983), Chapter
6, where also other references can be found; however, only the relation b, — T
= 0p(n~"?) was proved for such one-step version T'{.

The results of Section 3 yield, under some regularity conditions, the existence
of one- and two-step versions T'" and T'? of 6,, such that

b, — T® = 0p(n™") and 6, — TY = 0p(n~2?).

Being combined with the results of Akahira and Takeuchi (1981), thls means
that the second-order efficiency properties of T coincide with those of 6.

The regularity conditions under which the likelihood equation provides us
with an n'/2-consistent estimator 6, of 6, are well known (see, e.g., Theorem 6.2.3
of Lehmann, 1983). One of these regularity conditions is typically that the Fisher
information I(0) satisfies

(4.2) 0 < I(0) = E,[((6/86)log f(X1, 0))°] = E,[—(3°/80%))og (X, )] < oo

for all § € ©. If we also assume that the function ¥ in (4.1) satisfies the conditions

(A1)-(A2) of Section 2, then v(8y) = —I(6), so that (A4) holds because of (4.2).
If there exists an n'/?-consistent initial estimator of §,, then Theorem 3.1

applies, so that we could summarize the results in the following theorem.
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THEOREM 4.1. Let X, X, - - - be i.i.d. random variables with common density
f(x, 6,) satisfying (4.2). Assume that

(i) 8, is an n'2-consistent solution of the maximum likelihood equation
Yie1 (9/dt)log f(X:, t) = 0,
(ii) T is an n'?-consistent initial estimator of 0,
(iii) ¢(x, t) = (9/dt)log f(x, t) satisfies (A1)-(A2).
Let
T — TED — (nyE) e WX, TEY) if 8P #0
" e i 30 =0
k=1, 2, be the one- and two-step MLE with v given in (3.2) for k=0, 1. Then,
under condition (A3) we have

o = T = Op(n™)
and under condition (A3)’ we have
b, — T? = Op(n=3?).

5. Application to Pitman’s estimator in the location case. Let us now
consider the location model in which f(x, §) = f(x — ) so that the function ¥ in
(4.1) now takes the form y/(x, t) = y(x — t), where

(5.1) Y(x) = =(f"(x)/f(x)).

It is then natural to restrict our considerations to the translation-equivariant
estimators, i.e., to estimators T, which satisfy T,(X; + a, ---, X, + a) =
T.(Xy, -+, X,) + a for all a € R. Since the maximum likelihood equation now
reduces to Y2, Y(X; — t) = 0, it is immediately clear that a MLE will be
translation-equivariant.

We shall consider the situation where the loss incurred by estimating 6, by ¢
is the square deviation (¢t — 6,)%. The minimum risk estimator is then the Pitman
estimator T'¥ which could be written in the form

where 6, is an arbitrary initial translation-equivariant estimator with finite risk
and

(5.3) Y=(Y, -, Y)=(X— Xy, ---, X — X0).

Let 6, be the n'/2-consistent solution of the likelihood equation. It follows
from Theorem 5.3.1 of Akahira and Takeuchi (1981) that if 0 < I(f) < « and
under the conditions (A1), (A2) and (A3)” with

(A3)” There exists a 6 > 0 and a positive constant K such that
E|y(Xy, 0, +t)|><K for |t| =<3,
the Pitman estimator satisfies
(5.4) T3 = 6, = Op(n™).
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Let us select an n'/2-consistent translation-equivariant initial estimator T'{
and put

(5.5) T = TO — 1/nI(f)) ¥k f/(Xi = TOV/f(Xi = TY).
Then T {is translation-equivariant and (5.4) combined with Theorem 4.1 implies
(5.6) Ty — TP = 0p(n™).

REMARK. The choice T = X, = (1/n) Y%, x; is of special interest; then we
should suppose that the underlying distribution has finite variance. Another
possibility is to use robust estimators of location which are n'%-consistent and
translation-equivariant under general conditions.
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