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A sample X, ---, X, of i.i.d. R%valued random vectors with common
density f is used to construct the density estimate

fa(x) = (1/n) T HafK((x — X))/Hn),

where K is a given density on R and the H,/s are positive functions of n, i
and X;, - - -, X, (but not of x). The H,’s can be thought of as locally adapted
smoothing parameters. We give sufficient conditons for the weak convergence
to 0 of [ | fa — f| for all f. This is illustrated for the estimate of Breiman,
Meisel and Purcell (1977).

1. Introduction. Most consistent nonparametric density estimates have a
built-in smoothing parameter. Numerous schemes have been proposed (see, e.g.,
references found in Rudemo, 1982; or Devroye and Penrod, 1984) for selecting
the smoothing parameter as a function of the data only (a process called
automatization), and for introducing locally adaptable smoothing parameters. In
this note, we give conditions which insure that estimators of the form

(1) fa(x) = (1/n) ¥ Kg,(x — X))

are weakly convergent in L;(R% to the common density f of X;, - - -, X,,, a sample
of independent random vectors. In (1), K is a given density on R? (kernel), K.(x)
= uK(x/u), u > 0, and H,; = Hi(Xy, ---, X,), 1 <i < n, is a positive-valued
function of i, n and X, ---, X,,. The H,’s can be thought of as locally adapted
smoothing parameters, and (1) generalizes the kernel estimate (Rosenblatt, 1956;
Parzen, 1962; Cacoullos, 1966). Note that the H,,’s do not depend upon x, so that
f» is a density in x. Among estimators of the form (1), we cite the Breiman-
Meisel-Purcell estimate (Breiman et al., 1977), or variable kernel estimate, where

H,; = « times the distance between X; and its kth nearest neighbor among
Xl’ Sty Xi—l’ Xi+l’ ] Xn’

a > 0 is a constant, and k, is a sequence of positive integers.

The purpose of this note is (i) to obtain the L; convergence of (1) for all f
under fairly weak conditions on the H,’s, and (ii) to prove that the variable
kernel estimate converges in L, for all f under suitable conditions on the sequence
k.. We do not make any claims about rates of convergence; to obtain some sort
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1042 L. DEVROYE

of insurance against nonconsistency is all we want here. But this is precisely
where the technical difficulties arise. For sufficiently smooth f, it is relatively
straightforward to prove that (1) is convergent in L,. To extend this result
towards all f, it is not enough to invoke the theorem about the denseness of
uniformly continuous functions in L;(R?. Here, we propose a simple embedding
argument that can be useful in other applications too.

THEOREM 1. Let F be the collection of all densities on R, and let % be a
collection of densities that is dense in F in the L, sense. Assume that there exists
a sequence of functions h,: R% — [0, ) such that
(2) lim, ,oh,(x) =0, foralmostall x(f), all f€E F;

3) lim,_.n infhl(x) = o, forall € F;
" lim,jolim SUDP,wSUPyesy. | (n(y) — hn(x))/ha(x) | = 0,
for almost all x(f), all f€ F,

where S,, is the closed sphere in R® centered at x with radius ¢. Assume furthermore
that K decreases along rays (i.e., K(ux) < K(x), u = 1, x € R%), that

for all i,
(5) Hni(Xy, -+, X5) = Hu(Xi, Xy, -+, Xie1, Xivr, -+ -, X0),

and Hpi(x1, x2, - -+, x,) 1S tnvariant under permutations of xz, - - -, Xp,
and that

H,(x, Xz, - -+, Xn)/ho(x) = 1 in probability,
for almost all x(f), all fEF

(6)
Then, for estimate (1),
7 lim,,_,wE(f 1 fn—f |> =0, foradl fe

REMARK. The condition that K be a density which is decreasing along rays
is not very restrictive. It is satisfied for the optimal kernels in R? and for all
kernels K that are nonincreasing functions of || x ||.

ExXAMPLE 1. When H,; = H, for all i, where H, is a function of n and the
data, invariant under permutations of the data, (7) follows if for some sequence
of positive numbers h,,, we have H,/h, — 1 in probability, and

(8) lim,wh, = 0; lim, .nhe = o,

This result is strictly contained in a more general result of Devroye and Penrod
(1984), but the proof is quite a bit shorter.
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EXAMPLE 2. (The kernel estimate). When H,; = h,, where h, is a sequence
of positive numbers, then the conditions of Theorem 1 are satisfied when h,, is
as in (8), and K decreases along rays. It is known that (8) is necessary and
sufficient for weak convergence in the sense of (7) (Devroye, 1983; see also Abou-
Jaoude, 1977; and Devroye and Wagner, 1979). Furthermore, the condition that
K be decreasing along rays can be dropped altogether (Devroye, 1983).

EXAMPLE 3 (The variable kernel estimate). For the variable kernel esti-
mate, the permutation invariance condition (5) is satisfied. In Theorem 1, take
% = {all continuous densities with compact support} (which is dense in & in the
L, sense), and

ha(x) = a(k./nCqaf(x))"2,

where C; is the volume of the unit sphere in R% (The definition of h,(x) when
f(x) = 0 is irrelevant, so we can set h,(x) = 1 as well when f(x) = 0.) Clearly, (2)
and (3) are equivalent to

(©)) lim,w(kn/n) = 0, limp_ky, = co.

Condition (4) holds for all x with f(x) > 0, by the continuity of f. Thus, we need
only verify condition (6). We observe now that if f} denotes the nearest neighbor
density estimate based on X,, -- -, X,, (Fix and Hodges, 1951; Loftsgaarden and
Quesenberry, 1965), then we can write

(10) f;'z:(x) = kn/nCd(Hnl(x, X2’ Tty Xn)/a)d»

and thus, H,(x, X,, -- -, X,)/ha(x) = (f(x)/f%(x))?. Thus, (6) is equivalent to
the almost everywhere convergence of the nearest neighbor estimate. In the
literature, only convergence at continuity points of f is given (Wagner, 1973;
Moore and Yackel, 1977; Devroye and Wagner, 1976; Mack and Rosenblatt,
1979). Thus, we include a short proof of this result here (see Theorem 2 below,
and its proof in Section 3). The full statement about the L, consistency of the
variable kernel estimate is given in Theorem 3.

THEOREM 2. Let f¥(x) be k,/(nCyD%(x)) where D,(x) is the distance between
x and its k,th nearest neighbor among X,, - - -, X, and k, is a sequence of integers
satisfying (9). Then f¥(x) — f(x) in probability for almost all x.

THEOREM 3. Let f, be the variable kernel estimate with arbitrary constant
a > 0, with kernel K decreasing along rays, and with k, as in (9). Then, for all f,

limn—on(f | fn —f|> = 0.

2. Proof of Theorem 1. Throughout this section, the conditions of Theo-
rem 1 are assumed to hold. We will need Scheffé’s theorem (Scheffé, 1947), which
states that if g, is a sequence of densities converging at almost all x to f, then
.,' Ign_fl —0asn— .
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LEMMA 1. It suffices to prove (7) for all kernels K that decrease along rays, are
continuous and vanish outside a compact set.

PrOOF OF LEMMA 1. Consider f, as in (1) with kernel K, and f}, as in (1)
with kernel K'. Then

flfn fn|<_ fIKH (x—Xi)—KL,,i(x—Xi)Idx=fIK—K*I.

Thus, it suffices to show that the kernels of Lemma 1 are dense (in the L, sense)
in the class of kernels of Theorem 1. This can be done by construction. First, we
construct a function K* as follows:

K*(x)=£K(y) dy/L dy,

A = (Syzja+8 — Syzp) N B, S, = sphere So.,

and B; is the cone of opening é centered at 0 around the axis joining 0 and x, and
6 > 0 is a small positive constant.

Each K} is continuous except possibly at 0, and each K} decreases along
rays. Futhermore, by the Lebesque density theorem (see, e.g., Wheeden and Zyg-
mund, 1977), K¥ — K as 6 — 0 for almost all x. Thus, by Scheffé’s theorem,
lim;p [ | K — K*/f K*| = 0. The construction is complete if we can take care of
the continuity at 0 and the compact support without upsetting the continuity or
monotonicity conditions. First approximate K; by min(K¥, M) where M is a
large positive number. Then multiply this new function with a function L(x)
satisfying all the conditions of Lemma 1, and taking the value 1 on Sy, for a large
constant M. This function can be forced to vanish outside S:) and to be
continuous in-between. This concludes the proof of Lemma 1.

where

LEMMA 2. It suffices to prove (7) for kernels as in Lemma 1, and for the
(artificial) estimator

(11) &n(x) = (1/n) Ty Ky x)(x — Xj).

REMARK. Estimator (11) is quite a lot easier to handle than (1) because the
summands are independent. Clearly, it is in the proof of Lemma 2 that we will
use conditions (6) and (5) about the H,s.

PROOF OF LEMMA 2. Define the function w(u) by [ | K — K, |, and note that
by the continuity of K and Scheffé’s theorem lim,,_,; w(u) = 0. Also, w(u) < 2, for
all u. Now,

1
f [fn— &nl == ¥ f | K, (x — Xi) — Kixy(x — X)) | dx
(12) n

ho(X; >>

1
= )Y f | K(x) — K xp/m,(x) | dx = = 21—1 w( H.
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By condition (5), each h,(X;)/H,; is distributed as h,(X;)/H,, and thus,
E(f|f.—8n|) > 0forallfif
lim, o E(w(h,(X1)/H,1)) =0,

for all f. By the Lebesgue dominated convergence theorem, it is clearly sufficient
that h,(x)/Hnu(x, Xz, ---, X,) — 1 in probability for almost all x and all f, but
this is precisely condition (6).

LEMMA 3. It suffices to prove that for the estimator (11) with kernels as in
Lemma 1, we have

(13) lim,,_,mE<f | 8 — fl) =0, foradl fE€ %.

REMARK. Lemma 3 is crucial. It tells us that we need only prove the
consistency of g, on a nice subclass of densities that is dense in % such as the
class of all uniformly continuous densities with compact support. The proof of
Lemma 3 is based upon embedding.

PROOF OF LEMMA 3. The embedding device. Let f.(x, X1, - - -, X,) € L,(R%)
be a density estimate of f based upon a sample Xj, - - -, X, of i.i.d. random vectors

with common density f. Then, for another density g and corresponding sample
X { y Ty X r,n

f lfn(x’ Xla ity Xn) _f(x)l dx
(14) . f lfn(x’ le ) Xn) _fn(x, X{, LN X,I,)I dx

+f Ifn(xy Xlla Sty Xrlt) _g(x)l dx + f Ig(x) _f(x)l dx‘

In (14), the dependence between (X;, ---, X,) and (X{, ---, X.) is un-
restricted. Next, define A = [ (f — min(f, g)). By geometrical considerations,
J1f—gl=2A, [min(f,g) =1 — Aand [ (g — min(f, g)) = A. Define also the
densities

¥min = min(f, g)/(1 — 4),
¥ = (f — min(f, £)/4, ¥, = (g — min(f, g)/A.
Next, consider three independent samples of i.i.d. random vectors:
Uy, U, ---, U, (common density Ymin);
Vi, Vg, --+, Vi (common density y;);
Wy, W, -, W, (common density y,).

Also, let N be a binomial (n, A) random variable independent of the three
samples, and let (o4, - - -, 0,) be a random permutation of (1, - - -, n), independent
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of N and the three samples. If we identify
(le ) Xn) = (Ul: ] Un—N: Vl’ ] VN)’
(XI” "'er,z) = (Uly ) Un—N) Wl, Tty WN)’

then it is clear that (X, , ---, X ) is distributed as a sample of i.i.d. random
vectors drawn from f, and that (le» -+, X)) is distributed as a sample of i.i.d.
random vectors drawn from g.

Let g, be the estimator (11). Then

f lgn(x, Xula Tty Xa,,) gn(x Xap ) X;,,) l dx
1 2N
== >N, f | Knvpx = Vi) = Kpwy(x — W) | dx < -

Since (11) is permutation invariant, we can drop the random permutation to
make the notation simpler. Thus, by (14),

E(f | gn(x, X1, - - ,.)—f(x)ldx>

(15) 2E(N)+E(f|gn<x,xl,-- X)—g(x)ldx> [ 1600 -1 10

=2f Ig_fl +E<f |gn(xyX{y ---,X,’,)—g(x)|dx>-

By (15), and the denseness of %, (13) would imply lim, ,.E(f | g. — f|) = 0 for
all f, which is all that is needed (Lemma 2).

Theorem 1 is proved if we can show

LEMMA 4. (13) holds for all kernels as in Lemma 1, and all sequences of
functions h, satisfying (2)-(4).

PROOF OF LEMMA 4. It suffices to show that g, — f — 0 in probability at all
points x at which f(x) > 0, and conclude from Glick’s extension of Scheffé’s
theorem that [ | g, — f| — 0 in probability, and thus that E(f | g, — f|) — 0.
Assume that we have shown that E( g,,) — f for all x with f(x) > 0. Then, note
that

&n(x) — E(gn(x)) = (1/n) ¥, (Kh,,(X,-)(x - X)) - E(Kh,,(X,-)(x - X))
is a zero mean random variable with variance not exceeding

Kh,x)(x — Xl)) < IK| E(gn(x))

1 pike _
- EKE x)(x — X)) = | K|l E( nhi(Xy) n inf,hi(y) "

In view of (3), the variance tends to 0, and thus, by Chebyshev’s inequality,
— E(g,) — 0 in probability when f(x) > 0.
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We will now prove that E(g,) — f when f > 0. Let K vanish outside S, and
let S denote the support of f. The point x is fixed throughout. For arbitrary ¢ >
0, we find no and ¢ such that for y € S5, n = ny,

| ha(y) — hi(x) | /hi(x) <e, |fy) — f(x)|/fx) <e
(use Condition (4)). Thus, for y € SN S,s,

1+ e)hd(x) K( ha(x)(1 — c)l/d) Knn(x = y)

1- e)h (x) K( ha(x)(1 + e)"“)

Thus,

) E(g,) = f f(NEKnn(x — y) dy = fs s [N EKnn(x — y) dy
= f(x)(1 — e) fs nSMKh,,<y>(x -y dy= f(x)1(1—+—ee)2

Also,

) E(g,) = J; s () Kn»(x = y) dy + fs s, f(¥)Kn,»n(x — y) dy

x)(1 + ¢)? -
SO, nfuquumf ha¥(y) dy.
— ¢ ¥ES, 6<|| x—yl|sch,(y)

The last integral in (17) does not exceed

cd
(18) — dy.
yes,s<liz-ylschuy || x — ¥ ||¢ Y

The function [|x — y|Ijyes z—yi>s is integrable. Since for almost all y,
h.(y) — 0 (condition (2)), we conclude by the Lebesgue dominated convergence
theorem that (18) is o(1). Combining (16) and (17) shows that E(g,) — f whenever
f >0 and f € %. This concludes the proof of Lemma 4 and Theorem 1.

3. Proof of Theorem 2. Fix x, and let A, denote the sphere centered at x
with radius D,(x). Let u be the probability measure corresponding to f, and let A
be Lebesgue measure. We will use the following convenient (but unorthodox)
decomposition: f}(x) = Y,Z, where Y, = (k,/nu(4,)) and Z, = u(A,)/MA,).
From the probability integral transform and properties of uniform order statistics,
we recall that u(A,) is beta(k,, n + 1 — k,) distributed. Thus, the distribution of
Y, is conveniently distribution-free. If W denotes a beta(k,, n + 1 — k,) random
variable, then we have

/Y, = (n/(n + DIW/E(W)),
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where
E(W)=k,/(n+1), Var(W)=~Ek,(n+1—-k,)/(n+ 1)%(n+2).

Thus, E(1/Y,) = n/(n + 1) and Var(1/Y,) = (n/(n + 1))%(n + 1 — k,)/(k.(n +
2)) = 1/k,. Thus, 1/Y, — 1 in probability if lim,_.k, = .

To treat Z,, we let S be the support set of f, and let B be the collection of
Lebesgue points for f (i.e., the points at which u(S,;)/\(S.-) — f(x) as r | 0). By
the Lebesgue density theorem, A(B°) = 0 (see, e.g., Wheeden and Zygmund,
1977). Assume first that x ¢ S. Since S is closed, we can find ¢ > 0 such that
S,. € S¢. Thus, AMA,) = A(S,,) > 0, and thus

E(u(An)/MAL) = ka/((n 4+ 1)N(S,)) — 0.
If x € S, then, by definition, for every ¢ > 0, u(S..) = p > 0. Thus,
P(D,(x) > ¢) = P(N < k,) (where N is Binomial(n, p))
P(N — E(N) < k, — np)

np(l — p) ey e .
= A =p) + (p = k) (by Cantelli’s inequality)
1-p
R — (when k, < np/2)

= o(1).

Thus, D, (x) — 0 in probability for x € S. Therefore, Z,, — f(x) in probability for
x € S N B. We conclude that Y,Z,, — f(x) in probability except perhaps on a set
of zero Lebesgue measure.
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