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As I understand Section 5, it provides strong evidence that the x 2 statistic is a
suitable measure of overdispersion only when its approximate effect is to increase
V(x) to (1 + ¢)V(x). This is an important result which is helpful in judging the
general usefulness of such methodology, which I will make some attempt to do
here. From the viewpoint of models for overdispersion that appeal to me, I will
question the appropriateness of using x? as a measure of overdispersion in
contingency tables when the marginal totals are quite heterogeneous, as in Table
2 of this paper.

The authors are careful to point out that this is being suggested only for a
rough preliminary analysis. In view of this, I am probably scrutinizing the method
rather severely. My aim is not to be critical of their results, but rather to
complement them with a way of thinking about the “roughness” question.

Two-stage models, such as that described near (4.15), are very appealing to
me. Since these are only mentioned in the preliminary heuristics, I may be
putting more emphasis on such a formulation than the authors intend. However,
it is hard for me to get down to what overdispersion really means without explicit
models such as this. Further, I believe that they are not necessarily Bayesian in
nature, any more than is the ordinary randomized block model. It may be helpful
to emphasize briefly the approximate connection between the results of Section
5 and the two-stage models. If overdispersion is thought of as the result of a
random perturbation on the mean parameter, as exemplified by the discussion
near (4.15), and if its marginal result is to rescale V(x), as noted by (5.23), then
the covariance matrix of the perturbation in the mean parameter must also be a
multiple of V(x).

For the contingency table case, the implicit assumption in measuring overdis-
persion by x? is given by (4.15); that = is randomly perturbed from #, with
covariance matrix X. Here X is the covariance matrix of the Fisher-Yates
distribution of x given the marginal totals. Consider a case where the marginal
totals are as in Table 1 of this comment, which is not intended to be special
other than that the totals are quite heterogeneous. The nonparenthetical cell
entries are 7;; and the parenthetical ones are the variance elements of Z.

In my judgement this is a strange enough model for dispersion in x to warrant
concern. The (1, 2) and (2, 1) elements have the same =;; but very different
variances. The (2, 1) and (2, 2) elements have the same variance but very different
7;;. There is, of course, no theoretical reason for a simple model for the coefficient
of variation of 7, but for a rough and ready model I think that assuming it to be
constant would have considerable merit. Unfortunately, this would apparently
lead to a more complex analysis.

Another example, which requires a generalization of the analysis of Section 5
which the authors might or might not endorse, is given by a typical binomial
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TABLE 1
Scaling of overdispersion for a table with quite heterogeneous margins
.01 (.008) .04 (.008) 50
.04 (.026) .16 (.026) 200
.15 (.030) .10 (.030) 750
200 800 1000

regression model. (The generalization corresponds to incorporation of the
possibly unequal binomial sample sizes.) Finney (1971, page 70) suggested
use of the x2 statistic to measure overdispersion in the probit model case, and
perhaps more importantly, the rescaling of the binomial-based variance of pa-
rameter estimates by the mean chi-squared, to allow for overdispersion. Writing
r; ~ Binomial(m;, p;), analysis like that given here suggests that this corresponds,
in terms of a two-stage model, to assuming that V(p;) « p;,(1 — p;)/m;. This may
be reasonable as a rough model when the m; are about the same size, which was
what Finney had in mind, but otherwise it seems questionable. Even when the
m; are equal and the p; are all less than 0.5, it is different than a constant
coefficient of variation model, V(p;) « p?. Some methodology following up on
this is given by Pierce and Sands (1975), Williams (1982), and for the Poisson
setting by Breslow (1984).

A one-parameter model of overdispersion necessarily requires a rather strong
model. It is unlikely that from enumerative data, without enormous sample sizes,
one will be able to verify this model in any detail from the data. The undisputed
virtue of what I take to be the implied model of this paper is that it leads to a
very simple analysis, and I put high priority on this. For the highly unbalanced
situations on which I have focused, it would be nice to understand more clearly
the end results of measuring heterogeneity by the chi-squared statistic. For more
balanced situations, I think the method may be very useful. However, I think
that this is to some extent because the choice of a model for overdispersion then
becomes largely irrelevant; most models, whether more generally realistic or not,
converge to the same thing.
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