898 DISCUSSION

our simplified model; the posterior mean of 7 was now 0.60. This enabled us to
obtain a simple analysis for the full 12 X 8 X 5 table and to investigate the
associations between entry levels and final grades.

My overall conclusion is that most observed contingency tables possess intrin-
sically individualistic structures which should not be concealed by unduly con-
straining alternative hypotheses in advance. Diaconis and Efron are, however,
taking us in a good perceptive direction which should yield fresh advances in the
future.
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Some years ago, a well-known Irish newspaper carried a series of advertise-
ments by an eccentric entrepreneur known as “The Brother,” offering correspond-
ence courses in the art of “periastral peregrinations on the aes ductile,” more
commonly, but less accurately, known as tight-rope walking. Despite the incentive
of generous course credit, the University of the Air, as it was known, had few
registered students and no known graduates. In the present paper; Diaconis and
Efron give a superb exhibition of The Brother’s singular art in its metaphorical
form, by attempting to dance on two ropes at once—and almost succeeding!

Diaconis and Efron have chosen, quite sensibly, not to argue against modelling
departures from independence, noting that such models can often give deeper
insights into the data. Instead, they emphasize the common x? statistic, here
denoted by X2, as “an effective device for preliminary data analysis, particularly
when the statistician has many two-way tables under review.” This point of view
seems difficult to comprehend because the most common and compelling objec-
tion to the use of X? in applications is that it gives no information regarding the
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nature or direction of departures from independence. In Table 2, for example,
the observed value of X* = 568.6 gives no indication that nearly all the variation
can be accounted for by the observation that the approximate average numbers
of children per family in the four income groups are 0.89, 0.94, 0.76 and 0.60, i.e.,
that the higher income groups have substantially fewer children per family than
the lower two income groups. Similarly, in Table 1, the observed value of X2 =
138.3 gives no indication that brown-eyed people tend to have darker hair, hazel-
and green-eyed people tend to have intermediate shades and blue-eyed people
tend to have fair hair. These are the kinds of natural systematic effects we are
all familiar with and it would be an extraordinary analysis indeed that chose to
ignore them, particularly at the exploratory stage.

Just when is a statistician likely to be overwhelmed with two-way tables and
to have no alternative to using X*? The most likely scenario we envisage occurs
with a large multi-way table, where the statistician chooses to analyse the data
SPSS/CROSSTABS style, displaying two-way tables of a pair of variables
stratified by all possible combinations of the remaining variables. Putting aside
our strong preference for fitting structural models to data of this type, we question
the relevance of the authors’ proposals, which rely heavily on asymptotic argu-
ments for justification. In particular, an originally large sample size quickly
disappears as one carves a multi-way table into many two-way tables. The only
way large sample sizes are preserved is by collapsing the multi-way table into
two-way tables. This will preserve the original sample size for each two-way
table, but as illustrated by Simpson’s Paradox, at the risk of obtaining misleading
conclusions.

Our view is that, in applications, it is the departures from independence that
are of most interest and it is therefore essential first to identify and isolate the
major systematic effects, and only then, to assign the remainder to residual or
unexplained variation. Even then, the residual variation is likely to exceed that
predicted by Poisson or multinomial sampling. In such cases, the common
practice is to introduce a dispersion parameter o2 estimated by

6% = (residual X?)/(residual d.f.)

(Finney, 1971, page 471), and this factor plays the same role as the residual mean
square in ordinary linear models. The practice of accommodating extra variability
by treating ¢* as a variance inflation factor can be justified quite generally, not
just for two-way contingency tables, but also for arbitrary log-linear models and
even for continuous responses (Wedderburn, 1974; McCullagh and Nelder, 1983,
Section 6.3). This justification presupposes that all major systematic effects have
been accounted for by the model. Thus, to the extent that the authors consider
only models of independence, their choice of examples seems particularly unfor-
tunate. The advantage of the parameterization o2 over the authors’ “effective
sample size” » = n/¢? is that the interpretation of ¢2, as the ratio of the variance
of the data to the corresponding Poisson or multinomial variance, is independent
of the sample size. Alternatively, one could use “the effective sample ratio,”
v/n=oc"2

Another point concerns the dichotomy between the authors’ usage of Pearson’s
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statistic on the one hand, and the Kullback-Leibler distance or deviance statistic,
D, on the other. At this point, the authors sit rather uncomfortably on the fence,
giving all probability calculations in terms of X? and all justifications in terms
of D. Readers are invited to think of the two statistics as “close cousins,” and as
equivalent to a first order of approximation. This equivalence holds only if all
cell counts are sufficiently large, but, in fact, overdispersion can and does occur
even when the data are sparse. For this reason, the so-called improved formulae
(5.20) and (5.22) seem to be a backward step. The principal justification for (5.20)
is that it is the maximum likelihood estimate in the family (5.19). However, this
is a circular justification because the family (5.19) was constructed to have D as
a component of its sufficient statistic. The estimate based on X? on the other
hand, can be justified independently of (5.19), behaves sensibly even where the
data are sparse but extensive, and has the additional property that it is approx-
imately independent of all estimated structural parameters. In this sense, ¢ is
the natural generalization of the residual mean square in ordinary linear models.

Finally, to describe the volume test as a test for independence, as the authors
have done at the start of Section 2, is surely a gross abuse of terminology.
Probability calculations for this test are made under the mathematically attrac-
tive but statistically uninteresting hypothesis of equi-probable lattice points in
% The “acceptance region” based on small values of Pearson’s statistic is
concentrated near the independence surface, .% for which X? = 0, but this alone
does not make the volume test a test of independence. On a more technical note,
if we were to take the uniformity hypothesis (2.13) seriously, this would imply
that the marginal frequencies were approximately equal and the most powerful
tests of uniformity with independence as alternative are based on the marginal
totals alone. To avoid this embarassment, the authors have chosen to use X? as
test statistic for testing unconditional uniformity, justifying their choice on the
grounds that X? is appropriate for the entirely different hypothesis of conditional
uniformity.

One must at least admire the careful balance required for two statisticians to
sit, however precariously, on so many fences at once. The Brother would indeed
be pleased!
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