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SOME ADMISSIBLE NONPARAMETRIC AND RELATED FINITE
POPULATION SAMPLING ESTIMATORS
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Towa State University, University of Florida and Iowa State University

Given a random sample from an unknown distribution F, which is
assumed to belong to some nonparametric family of distributions, consider
the problem of estimating v (F), some function of F. When the loss function
is squared error, admissible estimators are exhibited for a large class of v’s. A
relationship between these estimators and similar ones in finite population
sampling is demonstrated.

1. Introduction. Let Xj, ---, X, be a random sample from an unknown
distribution F, which is assumed to belong to ©, some large nonparametric family
of distribution functions on the set of real numbers. We wish to estimate
v(F) = [ ¢(t) dF(t), where ¢ is some specific function, with squared error loss.

Cohen and Kuo (1983) recently demonstrated that the empirical distribution
function is an admissible estimator of F itself for a class of loss functions. They
showed that to prove admissibility it was enough to just consider the subfamily
of O consisting of all discrete distributions with at most a finite number of jumps.
For this subfamily, admissibility was proved by adopting an argument of Alam
(1979) for estimating multinomial probabilities. This type of argument, which
was originally discussed in Johnson (1971), can be thought of as an example of
proving admissibility by demonstrating that the estimator is stepwise Bayes
against a sequence of priors (see Hsuan, 1979; and Brown, 1981).

Cohen and Kuo then modify their argument to prove that the empirical
distribution function is an admissible estimator of the population distribution
function in finite population sampling.

Recently the authors have proved various admissibility results for finite
population sampling (see Meeden and Ghosh, 1983; and Vardeman and Meeden,
1983) using an argument based on a result in Meeden and Ghosh (1981) (which
is closely related to Hsuan, 1979).

In this paper we review all these arguments and show that they are essentially
the same. In addition, we demonstrate that there is a natural duality between
admissible estimators in finite population sampling and admissible estimators in
the nonparametric problem given above. This comes about because both problems
are related to proving admissibility for a multinomial problem. This observation
generalizes the work of Cohen and Kuo (1983) and for the first time proves the
admissibility of many standard nonparametric estimators.
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For estimating F itself the recent work of Brown (1984) uses similar techniques
to give a detailed study of the admissibility of various invariant nonparametric
estimators.

2. Proving admissibility. In what follows we will be proving admissibility
for several closely related problems. The first is the nonparametric problem. Let
6 be a specified Borel measurable function defined on the real numbers. Let ©
denote the class of all distribution functions F for which

(2.1) v(F) = f $(t) dF (t)

exists. Given X, ---, X,, a random sample from F, we wish to estimate v (F)
with squared error loss when F is assumed to belong'to ©. As we will see, one
can find admissible estimators for this problem by finding admissible estimators
for the following simpler problem.

Let a;, ---, a, be r distinct real numbers. Let O(ay, ---, @) denote all
distribution functions which concentrate all their mass on a;, ---, a,. We now
consider the problem of estimating vy (F) when F is assumed to belong to
O(ay, -, a,). In this case, X;, .- -, X, is a random sample from a multinomial
(1; p1, - - -, pr) population where p; = P(X; = a;) fori=1, ---,randj=1, -,
n. If x = (x1, - - -, ) denotes a possible set of outcomes for the random sample,
then we let w;(x) be the number of the x/s equal to a; for j =1, - - -, r. Note that
O(ay, - - -, a,) is equivalent to the (r — 1)-dimensional simplex

T={p=(p, --,p):pi=0fori=1,..-,rand ¥y p; = 1}.

Each p € T determines a unique F, say F,, and we write v(p) = v(Fp) =

I_1 ¢(a;)p;. As was noted by Cohen and Kuo (1983), to prove that an estimator
is admissible for the nonparametric problem, it is enough to show that it is
admissible for the multinomial problem with parameter space O(ay, - - -, ;) for
every choice of ay, - -+, a,forr=1,2, . ...

We will now show how these two estimation problems are closely related to
two estimation problems in finite population sampling. Consider a finite popu-
lation U with units labeled 1, 2, - - -, N. Let y; be the value of a single characteristic
attached to the unit i. The vector y = (y1, - - -, ¥n) is the unknown state of nature
and is assumed to belong to the parameter space I' C R™. A subset s of
{1, 2, - .-, N}'is called a sample. Let n(s) denote the number of elements in s.
Let A be a design which assigns positive mass only to sets of size n. Giveny € I’
ands={i, ---, in) where 1 = i1, <ip < --- <i, < N, let y(s) = (¥, - -+, ¥i,)-

It is conventional to take I' = R™. However, other choices are often sensible
as well. In particular, we will find it convenient to take I' equal to

M'ay, -+, 0)={y:y;=a;forsomej=1,-.-,rforalli=1, --., Nj

where {a;, - - -, a,} is a set of r distinct real numbers. No matter how I' is defined,
given a y € I' we denote by F, the distribution function which assigns mass 1/N
to each component y; of y. We consider the problem of estimating, with squared
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error loss,
(2.2) v(y) =y (F)) = f ¢(t) dF,(t) = T ¢(3:)/N.

Fory € I'(ay, - - -, a,), let w;(y) be the number of y;’s equal to «;, and w;(y(s))
be the number of y;’s with i € s equal to «;.

Let e(s, y) denote an estimator of v(y). (e(s, ¥) depends on y only through
y(s).) If the design A is used in conjunction with the estimator e, then the risk
function is r(y; 4, e) = ¥, [e(s, ¥) — v(¥)]?A(s).

It was demonstrated in Meeden and Ghosh (1983) that if an estimator is
admissible for the design A when I is taken to be I'(ay, - - -, «,) for every choice
of ay, -+, ay, for r =1, 2, -.., then it is admissible for the design A when
I' = RY as well. :

Note that this relationship is very similar to the one between the multinomial
estimation problem and the nonparametric estimation problem discussed above.
We will now indicate how these two sets of problems are related.

First consider the multinomial problem with parameter space T'= O(q, - - -,
o,). Let G be a prior distribution over T. Given a sample (X; = x;, - -+, X, = x,,)
the Bayes estimator of p; against G is

[ -+ [ pj 51 p¥*® dG(ps, -+, Pr)
= P(a; ,G
T T o dC o, gy~ Pl ®

where x = (x;, ---, x,) and P(e;| x, G) is the G posterior probability that an
additional observation takes the value «;. From this it follows that

(2.4) Eg(y|x) = i1 ¢(a)P(ei| x, G)

is the Bayes estimator of v against G based on x.

Next we consider the finite population estimation problem with T' =
I'(ay, -+, ay). First note that the prior distribution G on T induces a prior
distribution G* over I'(ay, - - -, a,) by the relationship

)= - [ Mt daion, )

fory € I'(ey, -+, a,). If the design A is used to pick the sample s which results
in the observations y(s), then the form of the Bayes estimator of v(y) and the
fact that the estimator does not depend on the design A are well known (see
Basu, 1969). That is,

(2.5)  Eg(v|y(s)) = (n/N) Ziax ¢p(a)wi(y(s))/n + (N — n)/N)Eg(v | y(s))

is the Bayes estimator of v against G* based on the sample y(s). (Note that here
we are identifying y(s), the observed values in our sample of size n, with x, the
vector of observations of length n in the multinomial problem.)

Note that there is an interesting relationship between the estimators in (2.4)
and (2.5). Suppose that we are given a set of n observations each of which belongs
to the set {a;, -+, a;}. If we assume that the observations arose from the

(2.3) Eg(pjlx) =
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multinomial model with prior G, then the estimator in (2.4) is the proper one. If,
on the other hand, we assume that the observations were generated by the finite
population model with prior G*, then the estimator in (2.5) is the proper one.
This suggests that the term Y., ¢(a;)w;(y(s))/n in (2.5) can be interpreted as
the finite population correction factor to the estimators in (2.4).

If we let F,(, denote the distribution function which puts mass 1/n on each
member of y(s) and

0g+(y(s)) = Eg-(v|y(s)) and dg(x) = Eg(y|x),

then equation (2.5) can be written as

(26)  9c(y(s)) = (n/N) f ¢(t) dFy5(t) + (N — n)/N)dg(y(s)).

If G is such that d¢ is the unique Bayes estimator against G for the multinomial
problem with parameter space T = O(ay, -, a,), then d; is admissible. In
addition, d¢+ is the unique Bayes estimator against G* for the finite population
sampling problem with parameter space I' (a4, - - -, @,) and hence ¢+ is admissible.
More generally, if 6 is the unique stepwise Bayes estimator against a
sequence of priors for the multinomial problem with parameter space T =
O(ay, - - -, a,), then 6 is admissible. In addition, the estimator

(2.7) 0*(y(s)) = (n/N) f ¢(t) dFy»(t) + (N — n)/N)s(y(s))

is a unique stepwise Bayes estimator for the finite population sampling problem
with parameter space I'(ay, - - -, ;) and hence is admissible.

Arguing as in Meeden and Ghosh (1983) or Cohen and Kuo (1983), it follows
that if for every finite set of real numbers (ay, - -, «,), 6 is admissible for the
multinomial problem with parameter space T = O (a4, - - -, a,), then § is admis-
sible for the nonparametric estimation problem as well. In addition, 6* is
admissible for the finite population sampling problem with parameter space
I' = RN, More generally, if for every finite set of real numbers {a, - - -, a;} there
exists aset {ay, + - -, a,} D {ay, - - -, az} such that 6 is admissible for the multinomial
problem with parameter space T' = O(ay, - -, «,), then § is admissible for the
nonparametric estimation problem and 6* is admissible for the finite population
sampling problem with parameter space I' = R”.

The preceding argument is summarized in the following theorem.

THEOREM. Let ¢ be a Borel measurable function with © = {F: [ | ¢(t) | dF(t)
< o}, Let Xy, -+, X, be iid F where F € O. If 8 is an estimator of v(F) under
squared error loss such that for each finite set of real numbers {a,, - - -, a} there
exist a set of real numbers {ay, - - -, a,} such that {a,, - --, az} C {ay, - -+, a,} and
0 is a unique stepwise Bayes estimator of v (F) for the multinomial problem with
parameter space T = O(ay, - -+, o), then & is an admissible estimator of v (F) for
the nonparametric problem when the parameter space is ©. In addition, for the
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finite population sampling problem with parameter space R" the estimator 6%,
given in (2.7), is admissible for estimating v, given in (2.2), for every design of
fixed sample size n.

3. Some examples. We now give some examples where admissibility fol-
lows from the above theorem and its obvious generalizations. The actual details
are omitted but can be found in Meeden, Ghosh and Vardeman (1984).

ExXAMPLE 1. Y2, ¢(x;)/n is admissible for estimating v (F) for the nonpara-
metric problem and Yic, ¢ (y:)/n is admissible for estimating $X; ¢(y:)/N in the
finite population sampling problem. The sequence of priors needed is the one
used in Brown (1981) (see also Alam, 1979) in the special case where ¢(t) = ¢ for
the multinomial problem. This sequence was also used in Meeden and Ghosh
(1983) for the special case where ¢(t) = t in the finite population problem.

EXAMPLE 2. Let ¢ be an arbitrary nonconstant Borel measurable function
with ¢ = inf,¢ (t) < sup,¢(t) = ¢. Let u* € (¢, ¢) and M > 0 be given. Then using
a sequence of priors given in Vardeman and Meeden (1983) it follows from the
theorem that Mu*/(M + n) + Y%, ¢(x;)/(M + n) is admissible for estimating
v(F) in the nonparametric problem. In the special case ¢(t) = t, this is the
estimator given in equation (7) of Ferguson (1973) if one identifies M with the
parameter o (R) of the Dirichlet process.

ExXAMPLE 3. The arguments of Section 2 can be generalized to obtain
admissible estimators of parameters v (F) of types other than those satisfying
equation (2.1). For example, let v(F) be an estimable parameter with kernel ¢
and degree m > 1, i.e.

7(F)=f fcb(xl, eey Xp) dF (x1), - -+, dF (xn),

where, without loss of generality, it can be assumed that ¢ is symmetric in its
arguments. One special case of interest for m = 2 is ¢(u, v) = (u — v)2/2. Using
the sequence of priors of Example 1, it follows that (n + 1)™* X%, (X; — X)? is
an admissible estimator of the population variance.

It is interesting to note that if one assumes the population to be normal then
this estimator is the best invariant estimator of the population variance o2
However, as shown by Stein (1964), such an estimator is not then an admissible
estimator of ¢2 under squared error loss.

If the sequence of priors of Example 2 is used then one obtains, as an admissible
estimator of the population variance, the estimator given in equation (15) of
Ferguson (1973). For the finite population analogues of these two estimators, see
Ghosh and Meeden (1983) and Vardeman and Meeden (1983).

EXAMPLE 4. Another possible generalization of the theorem is to two sample
problems. Suppose we have independent random samples from two different
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distributions, say F and G. Consider the problem of estimation

v(F, G) =fF(x) dG(x)

the probability that an observation from F is less than or equal to an observation
from G with squared error loss. The usual unbiased estimator is the Mann-
Whitney U-statistic. Another estimator is given in part (f) of Section 5 of
Ferguson (1973). It can be shown that both these estimators are admissible.

EXAMPLE 5. The theorem can be extended to nonparametric estimation
problems when sampling from a bivariate or, more generally, a multivariate
population. .

For example, for a sample of size n, from a bivariate distribution, the Kendall
tau statistic multiplied by (n — 1)/(n + 1) is admissible for estimating the
probability of concordance minus the probability of discordance nonparametri-
cally.

Finally, suppose we have a random sample of size n from a k-dimensional
distribution and wish to estimate the k-dimensional vector of marginal means
when the loss function is the sum of the squared error losses of each component.
It then follows that the sample mean vector is an admissible estimator of the
population mean vector for the nonparametric problem. This shows the absence
of the Stein effect for the nonparametric problem. For related results see
Gutmann (1982) and Joshi (1977, 1979).

REMARK. Several of the above estimators for which admissibility has been
demonstrated are proper Bayes estimators with respect to Dirichlet process priors
of Ferguson (1973). It is natural to wonder why this fact does not in itself
guarantee their admissibility. In the usual theory, there are two standard argu-
ments for showing the admissibility of Bayes estimators.

In the first, admissibility follows when all the risk functions are continuous
and the support of the prior is the entire parameter space. In the present case,
this fails because the Dirichlet prior is concentrated on the discrete distributions
and there is no way to topologize O so that all risk functions are continuous and
the closure of the discrete distributions, which is the support of the prior, is ©.

In the second approach, admissibility follows if a Bayes estimator is unique
a.e. F for all F € O. This fails here because the Bayes estimator is only uniquely
determined for almost all X = (Xj, - - -, X,) relative to the marginal distribution
of X. For example, suppose the parameter defining the Dirichlet prior is absolutely
continuous with respect to Lebesgue measure. The marginal distribution of X is
a mixture of distributions. One component is absolutely continuous with respect
to Lebesgue measure on R". The others are absolutely continuous with respect
to Lebesgue measure on lower dimensional hyperplanes defined by the equality
of some subset of coordinates of X. Hence it is easy to find a subset of
R" containing a finite number of elements which has zero probability under
the marginal distribution of X but which is assigned probability one when
Xy, ---, X, are iid F for all F € O(w;, - -, a,) for some choice of ay, - -, a.
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Since O(ay, - - -, a;) C O, an estimator which is Bayes against a Dirichlet prior
is not unique a.e. F for all F € O.
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