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A LOCAL LIMIT THEOREM FOR A BIASED COIN DESIGN
FOR SEQUENTIAL TESTS

By NaNcy E. HECKMAN!
State University of New York at Stony Brook

In a clinical comparison of responses to two treatments, patients are
admitted sequentially and given one of the two treatments. The allocation is
determined randomly, to decrease the possibility of personal bias in the
selection of subjects for the test. To balance the assignments, the probability
of receiving one treatment is a function of the proportion of patients previously
assigned to that treatment. A local limit theorem for the distribution of the
number of patients assigned to the first treatment is developed.

1. Introduction. Consider a sequential medical trial in which two treat-
ments are compared. Each subject is assigned to one of the two treatments. In
most statistical tests, it is desirable that an equal number of patients are assigned
to the two treatments. However, in a sequential test, this balance is not easily
obtained. For example, patients may be assigned to treatments by a completely
random rule, by flipping a fair coin. Since the sample size in a sequential test is
sometimes small, there may be a sizeable imbalance in the number of subjects
assigned to each treatment. Alternatively, a deterministic scheme may be used,
with assignments strictly alternating between the two treatments. But the
experimenter then knows the treatment to be given to a subject, possibly before
that subject has entered the trial. Thus, either consciously or unknowingly, the
experimenter may bias the test in favor of one of the two treatments (e.g., by not
admitting difficult cases when that treatment is to be administered). The allo-
cation bias of an allocation scheme is defined to be the probability of correctly
guessing the next patient’s assignment, given all previous assignments (Blackwell
and Hodges, 1957; Stigler, 1969). With the deterministic scheme, the allocation
bias is equal to one, the worst possible value. With the completely random
scheme, the bias is one-half, the optimal value.

Efron (1971) and Wei (1978) have proposed alternative allocation schemes.
Let é; = 1 if the ith patient has received one treatment, 0 if the other. Let

(1) D,.=2Zi'6,-—n,

the difference in the number of patients assigned to the treatments. These
schemes require that 4

(2) P{6n+l= 1 Ial) "',6,,} =h(Dn/n)’

where h is a nonincreasing function with h(0) = %. Efron considers a class of

Received April 1983; revised July 1984.

! Research Supported by Veterans Administration Health Services Research and Development
Predoctoral Fellowship.

AMS 1980 subject classification. Primary 62L05.

Key words and phrases. Sequential experiment, biased coin design, clinical trial, urn process.

785

28 fv{
)
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to o2z

o

The Annals of Statistics. IIKGIE ®

WWWw.jstor.org



786 N. E. HECKMAN

functions for which the asymptotic allocation bias (as the number of assignments
approaches infinity) is greater than one-half. Wei’s schemes, in which h satisfies
certain smoothness conditions, have asymptotic allocation bias equal to one-half.
In addition, in Wei’s scheme, n=/2D,, converges in distribution to a normal, mean
zero random variable with variance depending on h. Theorem 1 below, a local
limit theorem for n~'/2D,,, is an extension of Wei’s result. This theorem can be
used to study the properties of a sequential test comparison of two treatments,
using the described allocation scheme, as the expected sample size approaches
infinity. The asymptotic joint distribution of the stopping time and the proportion
of patients assigned to one of the treatments at this stopping time, in addition
to the Type I error probability have been determined in the sequential probability
ratio test and in the test of a simple hypothesis in a one-parameter exponential
family (Heckman, 1982, 1985).

The sequence, D,,, n = 1, has been studied extensively in the context of urn
models. In particular, the sequence generated in the case h(x) = % — x/2 can be
described by a Friedman urn model (1949). In this case, Freedman (1965) has
shown that n~"/2D,, converges in distribution to a normal random variable. Hill,
Lane, and Sudderth (1980) have studied the convergence of D,/n where D, is
generated by a continuous function, h, from the unit interval to [0, 1). Their
results relate the support of the limiting random variable to simple properties
of h.

2. A local limit theorem. Let h be a function from [—-1, 1] to [0, 1]
satisfying
(i) h is nonincreasing,
(ii)) hA(x) =1 - h(—x),
(iii) h(x) =%+ h’(0)x + B(x)x?
where sup,, <1| B(x)| < .
Suppose that m = m, is a sequence of integers with m — n even. Let x be a real

number and suppose that mn~"/? converges to x as n approaches infinity. Let
D, = 0 and let D, be as defined in (1) and (2). Then

THEOREM 1. lim,,.n'?P{D, = m,} = 2¢(x/7)/r, where ¢ is the standard
normal density and 7% = [1 — 4h’ (0)]™.

The proof of the theorem uses the following results of Wei (1978). Under the
assumptions of Theorem 1,

THEOREM 2. sup,E | n™*2D, |’ < o for all j greater than one.

THEOREM 3. The distribution of n™/2D, converges to a normal distribution
with mean zero and variance 2.

In the special case that h(x) = %, the §; are independent and identically
distributed, and Theorem 3 is simply the central limit theorem with 72 = 1. It is
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thus possible to reduce the asymptotic variance of n~/2D, from the case,
h(x) = Y., by making the slope of h steeper at x = 0.

PROOF OF THEOREM 1. By Fourier inversion,

/2
3) n2P{D, = m} = n"?z! f e ™y, (t) dt,
-m/2
where ¥, (t) = E(exp(itD,)). Theorem 3 and the continuity theorem (Feller,
1971) imply that
Yn(n"Y2t) — exp(—72t?/2).
So,

An~12

limA—»oo lim,,_,ml/ﬂ- f " n1/2‘pn(t)e—itm dt

=1/x f exp(—72s%/2)exp(—isx) ds = 2¢(x/7)/7.

Therefore it suffices to show that, in (3), the integral over t, An™Y2 < | t| < 7/2,
converges to zero as first n, then A, approaches infinity.

Theorem 1 follows from Lemma 2 below, after first expressing y¥,(t) in the
form given in Lemma 1, with j = [ne]. ([ ] denotes the greatest integer function.)

LEMMA 1. Forl=<j=<n,
Vn(t) = Yn—j(t)cos’t
+ 2k’ (0)sin t $i_, Yr-r(t)cos* ' t/(n — B) — Yi_; fa-r(t)cos* 1t

where | f,-1(t)| < K sin t/(n — k), for some constant K.
In addition, there exists C depending only on h such that, for all t €
[=%/2, x/2] and for all n,

| ¢n(t)| < cos’t + C(n — j) 2| ¢|7}, forall j<n.

ProOOF. By conditioning on D,_; and using condition (iii)
Yn(t) = Yn-1(t)cos t + 2h"(0)sin ¢ - Yr-1(t)/(n — 1) + fa-1(t)
where
fa-1(t) = 2i sin tE{e*P-1D2%_B(D,-1)}/(n — 1)

The first part of the lemma follows by iterating. The bound on f,_.(t) follows
from Theorem 2 and the boundedness of B.
The bound for y,(t) follows from Theorem 2, since

(n = B2 ¢ir(®)| < E|(n — k)™/*Dyesl.



788 N. E. HECKMAN
LEMMA 2. Forall ¢in (0, 1),

lim,_,n'? f rmtenrs | S el £, _i(t)cos*1te ™| dt = 0,
—w/2=t=m,

limy,e lim,_,.n'? f Yn—ine (t)cos™t dt = 0,
AnV2<|t|sn/2

lim,_,o limg_,e lim,_n'/?
[l J(n — k)! f e ™y _.(t)sin t cos* 't dt; = 0.
AnV2<|t|sx/2

The first statement follows immediately from the bound on f,—, in Lemma 1.
The second statement follows by bounding | ¥—(»(t) | by one. To prove the third
statement, integrate each term in the sum by parts with u = sin t cos*~!te™™,
sum, and use the bound on y,,—, given in Lemma 1.

Acknowledgements. I am grateful to Michael Woodroofe for his guidance
in this research and to Robert Keener for his helpful comments.

REFERENCES

BLACKWELL, D. and HODGES, J. L. (1957). Design for the control of gelection bias. Ann. Math.
Statist. 28 449-460.

EFRON, B. (1971). Forcing a sequential experiment to be balanced. Biometrika 58 403-417.

FELLER, W. (1971). An Introduction to Probability Theory and Its Applications 2, 2nd ed. Wiley, New
York.

FREEDMAN, D. A. (1965). Bernard Friedman’s urn. Ann. Math. Statist. 36 956-970.

FRIEDMAN, B. (1949). A simple urn model. Comm. Pure Appl. Math. 2 59-70.

HECKMAN, N. (1982). Two treatment comparison with random allocation rule. Ph.D. thesis, Univer-
sity of Michigan.

HECKMAN, N. (1985). A sequential probability ratio test using a biased coin design. Ann. Statist. 13
789-794.

HiLL, B. M., LANE, D. and SUDDERTH, W. (1980). A strong law for some generalized urn processes.
Ann. Probab. 8 214-226.

STIGLER, S. M. (1969). The use of random allocation for the control of selection bias. Biometrika 56
553-560.

WEI, L. J. (1978). The adaptive biased coin design for sequential experiments. Ann. Statist. 6
92-100.

DEPARTMENT OF APPLIED MATHEMATICS
AND STATISTICS

STATE UNIVERSITY OF NEW YORK
AT STONY BROOK

STONY BROOK, N.Y. 11794



