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A HISTOGRAM ESTIMATOR OF THE HAZARD RATE
WITH CENSORED DATA®

By REGINA Y. C. Liu AND JOHN VAN RyzIN

Rutgers University and Columbia University

A histogram type estimator of the hazard rate of lifetimes which are
randomly right-censored is studied. This estimator is based on random spac-
ings of the order statistics of uncensored observations and extends the idea
of the histogram density estimation suggested by Van Ryzin (1973) to censored
data.

In this paper we establish pointwise large sample properties of the esti-
mator including strong consistency, strong uniform consistency on a bounded
interval, and two asymptotic distribution results. Of particular interest is the
distribution result obtained by imposing extra “symmetry” conditions on the
interval covering the given point. In fact, it yields the best attainable rate of
convergence among all nonnegative estimators.

Comparisons of our results with the kernel type estimators proposed in
the literature are also given.

1. Introduction. In many lifetime studies, some of the subjects under study
are censored on the right by a prior censoring time. Let Xi, -+, X, denote
lifetimes (times to failure) for the n subjects under study, and C;, - - -, C, be the
corresponding censoring times. The observed random variables are then Z; and

0; where
(1.1) Z; = min(X;, C;) and & = Iix;=c),

where 4 is the indicator function defined to be 1 if event A occurs and 0
otherwise.
We assume throughout the paper that:
(i) Xi, -+, X, are nonnegative and iid with common continuous d.f. F and

continuous density f,
(ii) C,, - -+, C, are nonnegative and iid with common continuous d.f. G and

continuous density g, and
(iii) lifetimes and censoring times are independent.

The problem considered here is estimation of the hazard rate function given
by

(1.2) ” AMx) = f(x)/(1 = F(x)), F(x) <1.
Mathematically, we see that
(1.3) A(x) = (d/dx)[-log(1 — F(x))].
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HAZARD RATE ESTIMATION 593

In the censoring case if G(x) < 1, we have

fx)1 = Gx))

4 M®) = TR - 6@
If we let

(1.5) L(x) = P(Z: < x),

we see that

(1.6) (1 - L) =1 - F(x))(1 — Gx)).
Let

1.7) f*(@x) = f(x)(1 - G(x)),
and substitute (1.6) and (1.7) into (1.4) to obtain

(1.8) AMx) = f*(x)/(1 — L(x)).

Nonparametric estimation of the hazard rate has received much attention in
recent statistical literature because of its practical importance in survival anal-
ysis. There have been three approaches to estimation of the hazard function A(x)
due to the three different expressions of A(x) in (1.2), (1.3) and (1.8). Expression
(1.8), which is only useful in the random censorship model, will be the motivation
for our approach. Blum and Susarla (1980) were the first to use expression (1.8)
in the random censorship model by an approach using the kernel method.
Subsequent papers in the censored data case with the kernel method include
Tanner and Wong (1983), Yandell (1983) and Burke (1983). The paper by Féldes,
Rejté and Winter (1981) gives consistency results for kernel-type and fixed
partition histogram-type hazard rate estimates. For approaches using (1.2) and
(1.3) via the histogram method of this paper in the case of uncensored data, see
Prakasa Rao and Van Ryzin (1983).

2. Estimation of the hazard rate function. Before introducing our es-
timator we need some preliminaries:

Let D, denote the number of observed deaths (uncensored observations) when
the sample size is n, i.e., D, = Y=, 8;. We will write D instead of D, to simplify
notation. Let ¢(0) = 0 and let ¢(m) = inf{/: 3%, & = m} if m = 1. Let
T = Zyom) for m =0, 1, - -+, D, where we define To = Zy = —, (i.e., T, is the
mth uncensored observation in the sequence of Zy, Z,, - -+, Z,). Let U; be the
jth order statistic of Ty, Ty, * ++, Tp and let Ups; = +, then —0 = Uy < U <
s < Up < Upyy = +00.

Defining F*(x) = P(Z; < x, §; = 1), we have F*(x) = [§ (1 — G(s)) dF(s). Note
that F* is the subdistribution of the uncensored lifetimes with density f*(x) =
(d/dx)F*(x) = (1 — G(x))f(x). Let the subempirical distribution function be
denoted as F}, i.e.,

(2.1) Fx(x) = (1/n) X I(Zin,ai=1)-
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Let

(2.2) Hix)=PX;=x|6=1)

and

(2.3) p=P@:=1), 0<p=1.

Note that from (2.2) and (2.3),

(2.4) F*(x) = P(Z; < x,6;= 1) = H(x)p.
Our estimator of A(x) is defined to be

(2.5) A (x) = fr(x)/(1 — Ln(x)),

where ‘

(2.6) Ln(x) = (1/n) Tt Lizi=s,

and f¥(x) is an estimator of f*(x) obtained by using the density estimation
scheme proposed by Van Ryzin (1973) applied to the uncensored observations.
That is, for a fixed point x € R, we first choose positive-integer valued random
variables A, (x) which are measurable w.r.t the o-field generated by Xi, - - -, X,
and C,, - - -, C, such that

(2.7) P(OSAn(x)SD+1—k, UAn(x)5x< UA,,(x)+k)=1
and
_JO if x<U, or D+1-k<0
A"(x)“{DH—k if x> Up,

where k = k, is a sequence of positive integers satisfying:
(2.8) (i) k/n —> 0, and (i) (logn)/k—0 as n— .
We simply write A,(x) = A when convenient, and estimate f *(x) by

Fr(Ua+r) — Fr(Ua)
UA+k - UA ’

(2.9) fr(x) =

Note that in the case where A,(x) is a constant in x between any two
consecutive order statistics, the estimator (2.9) is a histogram (although not of
the classical type). Computationally such a choice of A,(x) has the advantage
that one need only compute the estimator once between pairs of order statistics.

To prove large sample properties for A, (x), we first investigate the distribution
of the uncensored observations T}, - -+, Tp, conditional on D.

LEMMA 2.1. Conditionalon D =d =1, Ty, ---, Ty are iid with the common
d.f. H, where H is given in (2.2).
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PROOF. We prove that
P(T;<x,i=1,+--,D|D=d)=[]% P(T;< x| D = d)

in order to show the independence. That P(T; < x;| D = d) = H(x;), for i = 1,
-+ -, d follows by similar arguments which are omitted. Let x, ER,i=1, ---, d.
Since

P(Ty<x, -, Ta< x| D = d)
= P(Xy < %1, ) Xp@ < 24| D = d)
=Y*PXi, =%, -+, Xiy, = xa|l¢(1) =1, -+, ¢(d) = iy)
- P(¢(1) =iy, + -+, ¢(d) = ia| D = d).

where Y * is the sum over all (}) subsets of distinct integers (i1, - - -, iy) from the
integers 1, -+, n, the lemma follows from the independence of ;s in the
definition of ¢(*)’s.

(2.10)

3. Consistency of \.(x). Since \,(x) = f¥(x)/(1 ~ L,(x)), to prove con-
sistency of \,(x), we first prove consistency of f¥(x). The following lemmas will
be useful for the proofs of the consistency of f*(x).

LEMMA 3.1. A,/n —» F*(x) wp.l, (A, + k)/n - F*(x) wp.1l as n — oo,
Furthermore, if F*(x — ¢) < F*(x) < F*(x + ¢) for any ¢ > 0, then as n — oo,
Ua,— xw.p.l, Uy 4 — xw.p.l and Up +r — Uy, > 0 w.p.1.

PROOF. The proof is similar to Lemma 1 in Van Ryzin (1973) with the
replacement of F by F* and by use of the Glivenko-Cantelli lemma applied to
subdistributions.

From Lemma 2.1 we see that conditional on D =d, T,, -+, Ty and hence
H(T,), -+, H(T,) are iid. Furthermore, we have

LEMMA 3.2. GivenD=d =1,

(a) H(Ty), * -+, H(T,) are iid with common uniform d.f. on (0, 1)

(b) H(Uy), H(U,) — H(U,), *++, 1 — H(U,) have the same joint distribution
as @1/Sa+1, Q2/Sa+15 ** 5 Das1/Sar1, where Sj = Zf=1 Q;, and the Q/’s are
iid with a common exponential d.f. with mean 1. Furthermore, H(Uj+x) —
H(U;) and (Sj+x — S;)/Sa+:1 are identically distributed and hence H(Uj.)
— H(U;) has a beta distribution with parameters k and d — k + 1 for j = 0,
1, --,d—k+1.

PrOOF. (a) follows from the definition of H; while (b) results from (a), the
monotonicity of H, and a well-known theorem on the joint distribution of
coverages (see, e.g., Breiman, 1968, Proposition 13.15).

The following representation of f¥(x) will be useful. If F*(Ua+x) > F*(U,),
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we write
(3.1) fr(x) = Val(x) Wa(x),
where
V. (x) = Fi(Uas) — Fr(Ua) _ k/n ’
F*(Uasr) — F*(Us)  F*(Uasr) — F*(Ua)
and
W.(x) = F*(Ua+r) — F*(Ua) .

UA+k - UA

The following two lemmas follow from Lemma 3.2 by conditional arguments
on D = d which are similar to those of Lemmas 2, 3'and 4 of Van Ryzin (1973).
Readers are referred to the technical report by Liu and Van Ryzin (1983) for
details.

LEMMA 3.3. (a) If F*(x — ¢) = F*(x) or F*(x) = F*(x + ¢) for some ¢ > 0,
then f¥(x) - 0 w.p.1 as n — oo,

(b) If F*(x — &) < F*(x) < F*(x + ¢) for any ¢ > 0 and x € C(f), the continuity
set of f, then W, (x) — f*(x) w.p.1l as n — oo,

LEMMA 3.4. Ifk=k,— © as n — «, then for any ¢ > 0, and m = 1, we have
@i):
P((H(Uj+x) — H(U;)) > k/(np(1 — ¢))| D = d)

=< exp(m{log[p(l — &) p z 1} + m2; 1})
and (ii):

P((H(Uj+) — H(Uj)) <k/(np(1 + ¢))| D = d)

< exp(m{log g log[p(l + e)<1 : %)]})

j=0,1,:--,d—k+1,ifd—k+1=0.

THEOREM 3.1 (Strong consistency of f¥(x)). Let A,(x) satisfy (2.7) and let
k = k, satisfy (2.8) and (k log n) = o(n). If x € C(f*), then f¥(x) - f*(x) w.p.1

asn— «o,

PRrROOF. If F*(x + ¢) = F*(x) or F*(x — ¢) = F*(x) for some ¢ > 0, then
f¥(x) = 0 and the result follows from Lemma 3.3(a).

Suppose F*(x + ¢) > F*(x) > F*(x — ¢) for every e > 0. Let f¥ (x) = V,(x) W,.(x)
as in (3.1). Then the result follows from Lemma 3.3(b) provided we show that
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V.(x) > 1 w.p.1 as n — o. But

P(] Va(x) = 1] >¢)

_ k/n _
‘P( F*(Unes) — F(Un) ll >">

= Yi-o P<U}t(’>¢+l‘{
(3.2)
k/n

= Yoo X P<'p(H(U,»+k) - H®U)) 1' =

= n Yo P(H(Ui) — H(U1)) > k/(np(1 = ¢))| D = d)P(D = d)

k/n _
P(H(Ug+r) — H(Ua))

1' >e A =jHD=d)P(D=d)

D= d)P(D =d)

+ 1 Yo PUH(Urr) — H(U1)) < k/(np(1 + ¢))| D = d)P(D = d).
From Lemma 3.4, the first term of (3.2) is

<n Yo exp(m{log[p(l ) 3 Z 1] +Z 2; 1})P(D =d)
=1 % idasnpti-en-1 exp<m{log[p(1 — ) o 1] e 1})P<D =d)

n m-—1
+ 1 X d:d=np(i—e)-1} exp<m{10g[p(1 —¢) ax 1] + % })P(D =d),

= (a) + (b), say, where ¢’ issuchthat 0<e¢’ <e.

By choosing m = m,, such that lim,_,.m,/k = 8, where
0=20.p=—log(l—¢)/(1—¢")>0,
it can be shown that
(a) = nO(e”®/?*),
For (b), we have
() < n[p — &)n]me™™ V2*P(D < np(1 —¢) — 1).

Then by the:‘central limit theorem for binomial random variables, we have

1
P(D < 1—8)—1)ﬁ1—<1><—n‘-’—°—t—),
e vnp(1 — p)

where ® is the d.f. of a standard normal distribution and = means approximately
equivalent up to an error of O(n™/?). Apply the fact that for all x > 0,

d - e P12 < f e V2 dy < 1 2 o [1 - @(Mﬁ)],
1+x x x ~/np(1 —p)
we have P(D < np(1 — ¢) — 1) = O(e™") for some ¢ > 0. Substituting this result
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into (b) we have
(b) = O(exp[(m(1 + 6/2)(log n)/n) — c]n).

Since & log n = o(n) and since m is chosen to satisfy m/k = 6 > 0, we see (b) =
O(e™) for some a > 0. Hence (a) + (b) = O(ne™*?*) + O(e™™"), which equals
O(e™®*) for some B > 0 since log n = o(k). Note that also

Zh=1 O(e®) = 01020 (l/n(ﬂk)/logn)),

which converges since k/(log n) — «, as n — o,
Similar arguments hold for the second term of (3.2) and thus we have shown
that Y1 P(| Va.(x) — 1| > ¢) converges. Therefore by the Borel-Cantelli Lemma,

(3.3) Vo(x) > 1 wp.las n— o,
THEOREM 3.2. (Strong uniform consistency of fx(x)). Suppose f is uni-
formly continuous on the support of f, S(f) = (a, b) with b < T, where T =

inf{x: G(x) = 1}. Suppose k = k, satisfies, in addition to (2.8), ¥ a1 nv* < + for
ally,0<v < 1. Then as n —» ®, sups<s| fr(x) —f*(x)| > 0 w.p.1.

The set of lemmas below will be ne¢ded in the proof of Theorem 3.2 given
below.

LEMMA 3.5. If k = k, satisfies the conditions in Theorem 3.2, then as n — o,
SUpz<s| F*(x) — An(x)/n| — 0 wp.1.
PROOF. Note that
sup.<s | F*(x) — An(x)/n|
< SupPz<s| F*(x) — Fr(x)| + supx<s| Fr(x) — An(x)/n].
By the Glivenko-Cantelli Lemma for subdistributions, we have
SUps<p | F*(x) — Fi(x)] >0 wp.las n— o,

The proof will be completed provided we show sup,<,| F5(x) — A,.(x)/n| —> 0
w.p.1 as n — . Since from (2.7), Uy < x < Uy, x+r W.p.1 for all x, we have
An(x) = nF¥(x) < A,(x) + k w.p.1 for all x and thus

supy<p| F¥(x) — A, (x)/n| =k/n—0 as n—o oo,

From Lemma 3.2(b) we can choose a proper set of iid exponentially distributed
r.v.’s {@;} with mean 1 and perform the following transformations: H(U;) =
S./Sp+1,j=0,1, -+, D+ 1, where S,, = X 2, Q; and Sy = 0. Then from Lemma
3.2(b), we have

(3.4) H(Uaw+r) — H(Uaw) = (Saw+r — Saw)/Sp+1-
LEMMA 3.6. (Kim and Van Ryzin (1975). If k = k, satisfies conditions in
Theorem 3.2, then, as n — ®,

SUPs<s | (1/R) (Sa,x)+k — Sa,)| = 1 w.p.l.
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LEMMA 3.7. Let k satisfy conditions in Theorem 3.2. Then, as n — o,
supz<s | F* (Uay+r) — F*(Uaw) | = 0 wp.1.

PrROOF. By the fact that
(3.5) F*(Uaw+r) — F*(Uaw) = p[H(Uaw+r) — H{Uaw)],
the result follows by an argument similar to that in Kim and Van Ryzin (1975)
with the representation (3.4).

LEMMA 3.8. If f is uniformly continuous on (a, b), the support of f, with b <
T, T = inf{x: G(x) = 1}, then f *o(F*)™ is uniformly continuous on [0, F*(b)].

ProOF. The proof can be carried out as in Kim and Van Ryzin (1975) with
F replaced by F*.
ProOF oF THEOREM 3.2. Recall that by (3.1),

F*(Ua+r) — F*(Uaw)
UA(x)+l? - UA(x) ’

Wa(x) =
Since
sup.<p| £ (x) — f*(x) ]| < supe<s| fr(x) — Wa(x)| + supe<s| Wa(x) — f*(x)],
it suffices to prove (i) sups<s| f¥(x) — W,(x)| = 0 w.p.1 and (ii)
SUPy<p| Wo(x) —f*(x)| >0 w.p.las n— o,

For (i) we have, by (3.4)

rp) = L2 -
fhx) = W"(x)[np : H(Uawy+r) — H(UA(xy):l

1 “1Sp,
Wn(x)[E(SA(ka - SM)J [ rlz)p ]

Then
Supx<b' f:(x) - Wn(x) l

= [sup.<s W, (x)]sup.<s

1 (S
[;(SA(ka - SA(x))] < :;1) - 1’-

Lemma 3.6 and Sp+1/(np) — 1 w.p.1 by SLLN, imply the second part on the
right tends to zero as n — . Applying the mean value theorem to W,(x), we
have W, (x) = f*(U%) where Uy < Uz < Ug(y+r, and hence

sup.<p Wi (x) = sup.<pf *(U%) =< sup,<pf *(x) < oo,
Therefore (i) is proved. For (ii), we write

0 if x<a and F*(x) =0
f*(x) = 1 f*o(F*) "1 (F*(x)) if a<x<b
10 if x=b and F*(x) = F*(b).
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By the mean value theorem, there exists Uy such that W,(x) = f*(U%?) w.p.1
where Up < U? < Ua)+x. Also, by (2.7) we have A(x) = 0 if x < U, and then
U"=a,and A(x) =D — k + 1if x = Up and then U} = b. The above facts and
the monotonicity of F* imply that W,(x) = f *o(F*)™*(F*(U%)) w.p.1. Therefore,
Sups<s| W, (x) — f*(x)| — 0 w.p.1, if we verify that sup,<;| F*(U}) — F*(x)| —
0 w.p.1 as n — oo, since

SUPu<s | Wa(x) — f*(x)| = sup.<s| f*(U%) — f*(x)|
= SUpP<s| f *0(F*) 1 (F*(U%)) — f*o(F*)™ (F*(x))|

and f*o(F*)™! is proved uniformly continuous on [0, F*(b)] in Lemma 3.8. To
verify sup,<,| F*(U?) — F*(x)| = 0 w.p.1, we note that F*(U,,)) < F*(U}) <
F*(Ujy+x) and apply the result by Lemma 3.1 to con;plete the proof.

THEOREM 3.3. (Strong consistency of \.(x)). Let x be such that L(x) < 1.
Let A, (x) satisfy (2.7) and k satisfy (2.8) and (k log n) = o(n). If x € C(f*), then
An(x) = AMx) wp.1l as n — oo,

PROOF. Since L(x) < 1, by the SLLN it is easy to see that (1 — L,(x))™ —
(1 — L(x))™! w.p.1 and the result follows from Theorem 3.1.

THEOREM 3.4. (Strong uniform consistency of A.(x)). Let u be such that
L(u) < 1. Suppose f is continuous on [0, u). Let {A,(x)} and k = k, satisfy
conditions in Theorem 3.2, then supo<y<u| An(x) — AM(x)| = 0 w.p.1 as n — .

PrOOF. Note that

SUPosx=u| An(x) — A(x)]

fakx) _f*x)
1-L,(x) 1-— L(x)

= SUPo=x=<u

< (supo=s=ufn (%)) (8Uposs<ul (1 — La(x))™ — (1 — L(x))7'|)

+ (suposz=u(l — L(x))™") (suposs=ul f (x) — f*(x)]).

The second term on the right of the inequality tends to zero directly by the result
of Theorem 3.2 and by the fact that

SUPoss=u(l — L(x))™ = (1 — L(u))™ < +oo.
Hence the result will follow if we prove the first term goes to zero. Consider
SUPo<z<ufn (£) < SUPosesu| f (x) — f*(x)]| + SUPosesuf *(x).

But suposy<u|f¥(x) — f*(x)| — 0 w.p.1 as n — o by Theorem 3.2, and
SUPo<s<uf *(x) < 400 imply supo<z<ufa (x) < +o w.p.1. Thus we need only show
that

SuPo<z<u| (1 = Ln(x))™ — (1 — L(x))™'| - 0 w.p.l.
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However,
SUPosz=u| (1 — La(x))™ — (1 — L(x))7*|
< ((1 = L(w))(1 — La(w))) " (suposs=u| Ln(x) — L(x) |)

and the desired statement follows by the Glivenko-Cantelli lemma.

4. Asymptotic normality of \,(x). To derive the asymptotic distribution
of A\, (x), we first give two theorems on the asymptotic distribution of f;(x). We
indicate convergence in distribution in this section by “—,”. Let S(f*) =
{x: f*(x) > 0} be the support of f*.

THEOREM 4.1. Let x € S(f*) be a continuity point of (f*)’, the first derivative
of f*. Let {A,(x)} satisfy (2.7) and A,(x) = An(x; Xy, -+, X, C1, = -+, Ca) be
invariant under the permutation of min(X;, Cy), * -+, min(X,, C,). Let k = k,
satisfy (2.8) and additionally let k satisfy the condition k%2 = o(n). Then,

EY2(f*(x) — f*(x)) —a N(O, (f*(x))).
THEOREM 4.2. Let x € S(f*) be a continuity point of (f*)”, the second
derivative of f *. Let k satisfy (2.8). Let An(x) satisfy (2.7),
R.(x) = max{j; U; < x}
and let An(x) = An(x; X1, « + +, X, Cy, - -+, C,) be invariant under the permutation
of min(X;, Cy), - -+, min(X,, C,). Suppose

(i) kY%[24,(x) + k — 2R, (x)] = o0p(n), where X, = o,(a,) if and only if
X,/a,—0inp asn— oo,
(ii) An(x) + kR — R,(x) > ®inp asn— »,
(iii) R.(x) — A,(x) > ® inp, as n — », and
(iv) k?n%[A,(x) + k — Rn(x)][Rn(x) — An(x)] = dinp, asn— o,

where d is a nonnegative constant. Then
B2 (fx(x) — f*(x)) —a N(b(x), (f*(x))?),
where b(x) = d (f*)”(x)/6(f*)*(x).
To prove these theorems, we again use the representation fx(x) = Wa(x)
. V,.(x) defined in (3.1) to obtain
EY2(fx(x) — f*(x))
= kY2V,(x)(Wa(x) — f*()) + k2 *(x) (Va(x) — 1).

Lemma 4.2 below states that the second term on the right-hand side of (4.1)
converges in distribution to N(0, (f*(x))?), and Lemma 4.3 below proves that
the first term converges to zero in probability. Therefore, the proof of Theorem
4.1 will be completed by Lemmas 4.2 and 4.3. The following result quoted from
the literature will be useful for proving Lemmas 4.2 and 4.3.

4.1)
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LEMMA 4.1 (Van Ryzin, 1977). Let {£;} be iid with E¢, = 0, E£2 = 1. For
eachnandi,i=1, ---, n,let I,(G) = I,(i; ry, -+, r,) be a Borel measurable
function on n-dimensional Euclidean space taking on values 0 and 1 which is
symmetric under the permutation of ry, =+ +, rp. If Tp = X1 I,()) and S, = 3%,
I.(i)¢;, then S, and S%, have the same limiting distribution, where S} = Y1, &,.
Furthermore, if T,/ET, — 1 in p. and E(T,) — © as n — o, then T;Y2S, —,
N(0, 1).

LEMMA 4.2. Under conditions of Theorem 4.1, k*(V,(x) — 1) =4 N(0, 1).

Proor. Recall that V,(x) = (k/n)/(p[H(Us+r) — H(U,)]). Then by (3.4),
we have

Va(x) = (k/(Sask — Sa))(Sp+1/np)

V2 (Vu(x) — 1) = [kl/z(—s—k—— - 1)]&’.‘2 + kl/Z(_‘h _ 1)

A+k np np
= (Iy) - (I5) + (I3), say.

Note that (Iz) = (Sp+1/(D + 1))((D + 1)/np) — 1 w.p.1, by the SLLN with
random index and by the regular SLLN. By noting that

(I) = (k/(Sa+r = Sa))((k = (Sasr — Sa))/EY),

we see (I;) converges in distribution to N(0, 1) since by Lemma 4.1 both
(k = (Sasr — Sa))/k? =4 N(0, 1) and ((Sa+r — S4)/k) — 1 in p_. Properly
decomposing (I3) and applying Lemma 4.1 and Slutsky’s Theorem, it can be
shown that (f;) converges to zero in p_, thus completing the proof.

and thus

LEMMA 4.3. Under the conditions of Theorem 4.1, k*?(W,(x) — f*(x)) — 0
inp, asn— o,

PROOF. Applying Taylor’s expansion to F*(Uyu,,) and F*(U,) in W, (x)
about x to the second-order terms, we have
(Uasr = 2)°(f*)" (Urn) = (Us = x)2(f*)’ (Usy)
2(UA+k - UA) ’

with Uy, and U,, are r.v.s between U, and Uja4, w.p.1. Since Uyyr — x and
Us — x w.p.1, from Lemma 3.2(a), and since (f*)’ is continuous at x, we have
(f*)" (Ui) = (f*)’ (x) and (f*)’ (Uzn) = (f*)’ (x) w.p.1. Therefore,

Wo(x) — F*(x) = (% Ua + Ussr) — 2)(f*)" () + 0,(Unsr — Ua).
Note that, from (3.1),
| %(Ua + Unsr) = x| < Upsr — Ua = (k/n)/ Vo (x) W, (x).

Recall that W,(x) — f*(x) w.p.1 from Lemma 3.3(b) and V, (x) — 1 w.p.1 from
(3.3) and the conclusion then follows since k%2 = o(n).

Wa(x) — f*(x) =
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For the proof of Theorem 4.2, we observe that Lemma 4.2 has taken care of
the second term of the expression in (4.1), and therefore what remains to be
shown is the following result, which can be proven in a manner similar to Lemma
3 of Kim and Van Ryzin (1980) with the replacement of f (x) by f *(x).

LEMMA 4.4. Under the conditions of Theorem 4.2, k"?(W,(x) — f*(x)) —
b(x)inp asn— o,

Theorems 4.3 and 4.4 on the limiting distribution of A\, (x) are direct applica-
tions of Theorems 4.1 and 4.2, respectively.

THEOREM 4.3. Suppose that the hypotheses of Theorem 4.1 hold. Then,
(4.2) BY2(Ap(x) — M(x)) =4 N(O, \%(x)), if L(x)<1.

PROOF. Rewrite
43) EY2(An(x) — M(x)) = B2 2f ¥ (x) - n'[(1 — La(x))™ — (1 — L(x))™
' + (1 — L) - BY2(f(x) — f*(x)).

Applying the result of Theorem 4.1 to (4.3), the proof will be completed if we
show that the first term tends to zero in probability. But this follows from
Theorem 3.1, the fact that (k/n)Y? — 0, and the result that

n'2[(1 = La(x))™ — (1 = L(x))7'] =a N(0, L(x)/(1 — L(x))?).

THEOREM 4.4. Suppose that the hypotheses of Theorem 4.2 are satisfied, then,
k2 (An(x) = Nx)) —a N(b(x)/(1 = L(x)), N*(x)), i L(x) <1,

(4.4)
where b(x) =d(f*)”(x)/6(f*)*(x).
PROOF. The result follows by the proof of Theorem 4.3 and directly applying
the result of Theorem 4.2 to (4.3).

5. Concluding remarks.

REMARK 5.1. To illustrate the differences between Theorems 4.3 and 4.4 and
their respective conclusions (4.2) and (4.4), we have the following remark. When
k%2 = o(n), conclusions (4.2) of Theorem 4.3 and (4.4) of Theorem 4.4 are
identical. However, if lim,_,..(k*?n™') = ¢ > 0, Theorem 4.3 provides no answer,
while Theorem 4.4 yields an answer provided f * is twice continuously differen-
tiable at x and the additional symmetry conditions about R,(x) for A,(x) and
(An(x) + k), as given by (i)-(iv) in Theorem 4.2, are satisfied. The conclusion in
this case can be shown to be (4.4) with lim, ,.(4n72k%?) = d. For example
if k, = n*°dZ, the rate of convergence of the normalizing term in the
limiting distribution in (4.4) is now n*%d,. If d, — d > 0, then the bias term
b(x)/(1 — L(x)) appears in the limiting distribution. If d = 0, then the limiting
distribution has mean 0 (i.e., no bias term). It is worth noting that in Theorem
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4.4 if d = 0 and d,, is properly chosen, the rate of convergence is the best attainable
rate for nonnegative estimators (see Farrell, 1972).

REMARK 5.2. By using kernel function methods of density estimation, Blum
and Susarla (1980) and Tanner and Wong (1983) in the censored data case
derived kernel function methods of estimating A(x). Although the respective
methods are slightly different, both estimators yield a A} (x) satisfying

(nha) 7 (NE(x) — Mx)) =4 N(O, coX(x)/L(x)),

where ¢, = [ K?(y) dy, K(y) = 0 is a symmetric kernel satisfying certain
conditions, provided (nh,)n"** = 0(1) and (f*)” is continuous at x. We can
compare the asymptotic efficiency of their estimators with ours by taking
nh, ~ k,. Comparing the ratio of the asymptotic variances (theirs to ours), we
get the asymptotic relative efficiency from the above results and Theorem 4.4 to

be
As eff. (A%(x), Aa(x)) = (coA(x)/L(x))/N%(x) = coff *(x),

f*(x) = f(x)(1 — G(x)). Note that our estimator is more efficient in the tail than
the kernel estimator whenever the subdensity function f *(x) is decreasing in the
tail, a common situation in survival analysis.

REMARK 5.3. It is also natural to consider the limiting distribution of the
maximal deviation of the hazard rate estimator A, over intervals. This is done in
Liu and Van Ryzin (1984).
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