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Many population processes in demography, epidemiology and other fields
can be represented by a time-continuous Markov chain model with a finite
state space. If we have complete information on the life history of a cohort,
the intensities of the Markov model may be estimated by the occurrence/
exposure rates or by nonparametric techniques. In many situations, however,
we have only incomplete information. In this paper we consider the special,
but important, case where the occurrences and the total exposure are known,
but not the distribution of the latter over the various separate statuses.
Methods for handling such data, so-called demographic incidence rates, and
methods for estimating the intensities from this kind of data, are known in
the literature. However, their statistical properties are only vaguely known.
The present paper gives a thorough presentation of the theory of these
methods, and provide rigorous proofs of their statistical properties using
stochastic process theory.

1. Introduction. In demography and fields with a similar methodology, a
population process on the individual level can frequently be represented by a
time-continuous Markov chain with a finite state space. The states of the Markov
chain represent the demographic statuses and the jumps between the states
correspond to the demographic events. The time parameter of the Markov process
may be the age of an individual, the time since a specific event, or some such
quantity. We will call it seniority.

Given this general framework, the population phenomena may be described
by the transition intensities of the model. Consequently, it is of great interest to
estimate these functions. In principle, this is an easy task if the individuals
studied are watched continuously over some period of time. One may then use
the classical methods based on occurrence/exposure rates (for a review, see
Hoem, 1976), or for small populations or samples, nonparametric techniques
developed by Aalen (1978) and others. Quite often, however, one does not obtain
the sufficiently detailed data required to use any of these methods. This fact has
inhibited the use of Markov chain models in demography and related fields. The
development and study of statistical methods for situations with incomplete data
is therefore of ¢onsiderable interest.

There seems to be no general solution to the problem of estimating the
intensities of partially observed Markov chains. In the present paper we consider
a special, but important, type of incomplete observation. Namely, that transitions
within a subset of states K are observed in detail, while counts of transitions out
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of this subset are only observed aggregated over the states. In applications, K
usually corresponds to the various demographic statuses for individuals who are
alive, so that a transition out of this subset corresponds to a death. This type of
data is often collected by Central Bureaus of Statistics. For instance, if marriages
in a female birth cohort are studied, one may have detailed information about
the marriages, but no information about the distribution of the women over the
various marital statuses.

In accordance with our special observational plan, we will have to assume that
the intensity for transition out of K does not depend on the state from which the
transition is made. In most applications, this is an assumption of nondifferential
mortality. This is, of course, quite a strong assumption. However, it should be
fulfilled, at least approximately, in demographic studies of e.g. fertility and
marriage formation and dissolution, in labor market studies, and in epidemiolog-
ical studies of nonlethal diseases. Moreover, investigations by Finnas (1980)
indicate that the methods studied in this paper are fairly robust to deviations
from the assumption of nondifferential risk of transition out of K.

For situations which fit into this framework, demographers have computed
incidence rates for a long time. These are calculated as the number of occurrences
of a specific event during a given period divided by the mean population alive
during that period, for all statuses specified, taken together. Those not “at risk”
for the event in question are not excluded from the population in the denominator,
as is the case for occurrence/exposure rates. Such rates, e.g. the number of first
marriages per 1000 women, are published regularly by Central Bureaus of
Statistics. When incidence rates are cumulated over age for a closed cohort, one
often gets an estimate for the prevalence of the event studied (Hoem, 1978).

For simple situations, like a Markov model for first marriages in a female
birth cohort, it has been known for some time how the cumulative incidence rates
can be used to compute estimates for the intensities themselves. Finnés (1980)
showed how this method can be generalized to any Markov chain model. He also
gave a rather informal discussion of the statistical properties of the proposed
estimators.

The main purpose of the present paper is to give a thorough presentation of
the theory of incidence rates and the related estimators for the intensities, and
to use stochastic process theory to provide rigorous proofs for their distributional
properties. The plan of the paper is as follows. In Section 2 we introduce the
Markov chain model and describe the observational plan. In Section 3 we show
how the situation at hand may be formulated in a counting process framework,
and review some useful results which emerge from this formulation. The cumu-
lative incidence rate is introduced in Section 4, where we also discuss its statistical
properties. In Sections 5 and 6 we discuss nonparametric estimation of the
integrated intensities and estimation of piecewise constant intensities. Some
approximation formulas are given in Section 7. In Section 8, the final section, a
numerical example for a first marriage model is given.

We will use results from the theory of counting processes, martingales and
stochastic integrals without further comment. The reviews given by Aalen (1978),
Aalen and Johansen (1978) and Gill (1980) should cover our needs. An approach
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to the theory of counting processes attempting to minimize the dependence on
general martingale theory is given by Jacobsen (1982).

2. Model and data. Assume that we study a closed cohort of n individuals,
and that the phenomena of interest can be described by a time-continuous
Markov chain model with time domain [0, z] and with a finite state space I. We
assume that the transition probabilities {P;;(x, v)} are absolutely continuous in
(x, ¥), and that the intensities, or forces of transition, defined as «;;(x) =
lim, . P;j(x, y)/(y — x), for i # j, exist and are integrable.

As mentioned in the introduction, I contains an absorbing subset R of states,
i.e. Yrek Pin(x,y) =0 for 0 = x <y =<z for all i € R where K = I\R, such that
transitions within K are observed in detail, while counts of transitions from K
to R are only observed aggregated over the states. Moreover, we have to assume
that ¥ er a;j(*) = u(*) for all i € K, so that there is nondifferential risk of
transition from K to R.

For Markov chains with this structure, Hoem (1969) has proved that

(2.1) Pi(x,y) = Pij(x, y)p(x,y) for i,j€EK,

where p(x, y) = exp(— [ u(s) ds) and the {P;;(x, y)} are the transition probabil-
ities of the partial Markov chain with state space K obtained by deleting R, i.e.
substituting 0 for «;; for all (i, j) with j € R. The partial Markov chain is a
convenient mathematical construction, but it does not necessarily have any real-
life interpretation. However, in the present situation, with nondifferential risk
of transition from K to R, P;;(x, ¥) coincides with the conditional probability
that an individual in state i at seniority x will be in state j at seniority y, given
that he is still in K at some later seniority w (y < w < z) (Hoem, 1969).

Let us assume that the individuals start in a state in K at seniority 0
independently of each other and according to an initial distribution (m.; & € K).
Define P;(x) = ¥ rek 7P (0, x), and let P;(x) = P;(x) p(x) for i € K, where p(x)
= p(0, x). Thus P;(x) is the probability of being in state i at seniority x, while
the similar partial quantity P;(x), in the present context, may be interpreted as
the conditional probability of being in state i at seniority x, given that the
individual is still in K at some later seniority w (x < w < z). We assume that out
of the n individuals, N, start out in state k € K, so that N,/n —p 7, as n — o,

Demographers often estimate quantities like the proportion of survivors in a
female birth. cohort which have experienced a birth of a certain order, or the
proportion ever married at the various ages (cf. Hoem, 1978). More generally,
one may want to estimate the expected number of transitions B;;(x) directly
from a state i € K to another state j € K in the seniority interval [0, x] for an
individual who is still in K at seniority x. It is seen that

(2.2) Bij(x) =J; a;j(s)Pi(s) ds.

Using the Kolmogorov differential equations one gets
(2.3) Pi(x) = B.i(x) — Bi.(x) + m;,
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as in Finnas (1980), where the dots here and in what follows signify summation
over all £ € K\{i}, if another definition is not explicitly given. Formula (2.3) also
follows directly from the fact that the indicator random variable for being in
state i at seniority x, for an individual who is known to be in K at this seniority,
equals the number of transitions into i, minus the number of transitions out of
i, plus the indicator for being in i at seniority 0. It should be realized that the
assumption of nondifferential risk of transition from K to R is essential for (2.2),
and therefore also (2.3), to hold true. Moreover, since (2.2) and (2.3) are key
relations in what follows, this assumption is absolutely necessary for the results
presented in this paper.

Estimation of the {B;;} is discussed in Section 4 below. Although these are
important quantities, it is the intensities {«;;} which measure the instantaneous
risk of transition between the various states. Therefore, it is the intensities which
are the entities of main interest. In Sections 5 and 6 it is shown how the
estimators for the {B;;} can be used to estimate the intensities themselves.

3. A counting process formulation. Denote by K;j(x) the number of
transitions directly from state i to state j experienced by the cohort in the
seniority interval [0, x], and let Y;(x) be the number of individuals in state i
“just before” seniority x, i.e. Y;(*) is left-continuous. Moreover, let %, be the
o-algebra generated by (N;; k € K) and (K;j(s);0<s=<x,i,j €I i#j). Then
(Kij(x);0=x=<z21i,j €I i#j)is a multivariate counting process where K;;(*)
has the intensity process «;; (*) Y;(*) relative to the increasing family of o-algebras
(&.). By the theory of counting processes, this implies that (M;;(x); 0 < x < 2,
i,j€I i#]j), given by

(3.1) M;i(x) = Kij(x) — J; a;j(s) Yi(s) ds,

are orthogonal square integrable martingales with respect to (%;). The variance
process (M;;)(*) of M;; is

(3.2) (M;;)(x) =J; aij(s) Yi(s) ds,

which means that M?, — (M;;) is a square integrable martingale.
For the situation with complete information, i.e. when the information struc-
ture is (%), Aalen (1978) proposed the estimators

(3.3) Aij(x) =j; Ji(s)[Yi(s)]™" dK;j(s),

for the cumulative intensities A;;(x) = [§ a;;(s) ds, generalizing the estimator
proposed by Nelson (1969). Here J;(x) = I(Y;(x) > 0) is an indicator process,
and 0/0 is interpreted as 0. Results on uniform consistency and asymptotic
normality of these estimators can be found in Aalen (1978).

In the situation considered in this paper, however, one does not observe the
{Y;} and all the {K;;}, so we are not able to calculate the Nelson-Aalen estimators
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(3.3). Our observational plan is to observe (N,), the K;; with i, j € K, and D =
Yiek X jer Kij, the process counting the number of absorptions in R. This means
that the individual {Y;; i € K} are not observed, but Y.(x) = Y.k Yi(x) =
n — D(x—) is still observable. Hence, the observed “history” of the cohort
in the seniority interval [0, x] can be described by the s-algebra &, generated by
(Np; k€K) and (D(s), K;i(s);0=s=ux,i,jEK,i#]).

For this situation we could try to use the EM algorithm to estimate the
cumulative intensities 4;;(x). Note that analogously to (3.3), we may estimate
Js u(s) dsby [5[Y.(s)]™" dD(s). So in principle, given initial estimates of A;;(x)
for all i, j € K, i # ], Vix) = E(Y;(x)| £.) could be computed if unknown
parameters are replaced by estimates. This would give [} [Yi(s)]™! dK;i(s) as a
new estimate for A;;(x). Iteration would then give nonparametric estimators of
the {A;;(x)}. However, the expectation step in this iterative procedure is not
feasible in practice (Borgan and Ramlau-Hansen, 1983, Section 6), so we will
have to derive estimators for the integrated intensities from more ad hoc argu-
ments. This will be done in Section 5.

4. Cumulative incidence rates. The purpose of this section is, within the
counting process framework introduced above, to consider nonparametric esti-
mation of the {B;;} defined by (2.2), and to prove uniform consistency and
asymptotic normality of the estimators. Introduce the cumulative incidence rate

(4.1) B;(x) =J; J(S)[Y.(s)]7" dK;(s),

where J(x) = I(Y.(x) > 0), as an estimator for B;;(x) for i, j € K, i # j. This is
an estimator of the same type as the Nelson-Aalen estimator (3.3).
To see that (4.1) is an approximately unbiased estimator for B;;(x), note that

by (3.1)

Bij(x) = f aij(s) Yi(s)[Y.(s)]™" ds
(4.2) ’

+j; J($)Y.(8)]" dM;(s).

Here, the final term is a stochastic integral with respect to a square integrable
martingale, and hence it is a zero mean martingale itself. Thus

EBij(x) =f0 a;j(s)E[Y;(s)/Y.(s)] ds.
Since we have assumed a nondifferential risk of transition from K to R,
(Yi(s); i € K) is multinomially distributed with parameters (P;(s); i € K),
conditionally on Y,(s) > 0. Therefore,

EB,-,-(x)=J; a;j(s)P;(s)P(Y.(s) > 0) ds

= fo P(Y.(s) > 0) dB;;(s),
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where P(Y.(s) > 0) =1 — (1 = p(s))". Thus, BU (x) is almost an unbiased
estimator for B;;(x) when n is large.

To discuss the asymptotic properties of (4.1), consider the sequence of counting
processes we get by letting n — , and index all relevant quantities by n. We will
prove that B{” is an uniformly consistent estimator for B;;.

THEOREM 4.1. Let B}J’-') (x) and B;;(x) be given by (4.1) and (2.2), respectively.
Then under the assumptions given in Section 2
SUP.eqo,e1 | B (x) — Bij(x)| —p 0
asn— o,
PROOF. By (4.2) it is sufficient to prove that
(4.3) supsepo,z1] Y{M(s)[Y™(s)]™! — Pi(s)| —p 0

and

—)PO

(4.4) SUP:xeio,2)

f JP ()Y ()] dM P (s)

as n — o, By standard results (4.3) is fulfilled. When we use Lenglart’s (1977)
inequality (cf. Andersen and Gill, 1982, Appendix I) and (3.2), we have

2
= ¢

+ P{ J; JP()[Y™ ()] d(MP ) (s) > a}

f JPESYP ()] dMP (s)

p {Supr[O,z]

=

® | O

® | O

+ P{J; aii(s)YP(s)[Y W (s)]2 ds > 6}

for all ¢, 6 > 0. Since [ ;i (s) Y (s)[Y™(s)]2 ds —p 0 as n — o, (4.4) is also
fulfilled. O

Let us then turn to the problem of proving an asymptotic distributional result
for the cumulative incidence rates (4.1). The usual way of proving such results
within the counting process framework is to apply some version of the martingale
central limit theorem (Rebolledo, 1978, 1980). In our case, however, it seems
difficult to proceed in this way, and we will therefore use a Skorohod construction
as applied in Breslow and Crowley (1974, Theorem 4).

For this purpose, we need the asymptotic distribution of the number of
transitions between the various states in the Markov chain. Let us denote the
normalized number of transitions between state i and j, i, j € I, i # j, by

(4.5) XP(t) = Vrin T KP () = vy (b)),
where ;;(t) = n " EK{ (t) = [§ Pi(¢)ai;(s) do. Then by the central limit theorem



570 BORGAN AND RAMLAU-HANSEN

for Markov chains given in the Appendix, we have that X" = (X{?; i, j €I,
i # j) converges weakly to a mean zero Gaussian process X = (X;;; i, j € I,
i # j) with covariance structure given for s < t by

Cov(Xi;(s), Xu(t)) = fo J; Pji(o, T)an(r) dvj(o) dr

+f f Pji(o, 7)an(r) dvj(s) dr
(4.6) T

* j; J; Pu(r, o)aij(o) dvu(r) do

+ 8:iwij(s) — wij(s You(t),
where §;, is a Kronecker delta.

To apply this result to prove weak convergence of the cumulative incidence
rates given in (4.1), we introduce

4.7 U™ (x) = Vn{n 'Y (x) — p(x)},

and denote the corresponding limiting process by U. Then, by (4.6) and the
assumption of nondifferential risk of transition from K to R, it is seen that
(U™, X{P; 4, j €K, i #j) converges weakly to (U, X;j; i, j € K, i # j), where

ij o

COV(Xij (x), U(y))

f p(s, ¥) dvij(s) — p(y)wj(x) for x=y
(4.8) =% ,

vij(x) = i (y) + j; p(s, ¥) dvij(s) — p(y)vij(x) for y<ux
and
(4.9) Cov(U(x), U(y)) = p(y)(1 — p(x)) for x=y.

We are now able to state the following result.

THEOREM 4.2. Under the assumptions in Section 2, the multivariate process
(vVn(B M — Bij); i, j € K, i # j) converges weakly to a zero mean Gaussian process
(Zij;i,JEK,i#]), where

Zij(x) = - J; U(s)[p(s)]7* dwij(s) + Xij(x)[p(x)]™!

(4.10) x
—J; Xij(s)u(s)[p(s)]™" ds.
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For x < y, the covariance structure of the limiting process is given by

Cov(Zj(x), Zu(y)) = fo ) J; tuh(r, w)an()[p(r)pW)]™ dv;(r) du
+ j; ) fo rP,,-(u, ra; (N [pr)pW)]™ dvu(u) dr
+ f ’ j; xP,-k(r, u)aw(w)[p(r)p W)™ dv;(r) du
(4.11) + 6uby J; ) [p@)]™® dyi;(u)
- J; ) J; ) [p(M]*[p )] dvyj(r) dvi(u)

) fo fo PO P )T dou(r) dvij(u)

- (j; [p(r)]™? dVij("))(JJ: [p(u)]™ del(“))-

PROOF. The convergence of (Vn(B \» — Bj;)) to (Z;;), given by (4.10), follows
by a Skorohod construction just as in the proof of Theorem 4 in Breslow and
Crowley (1974). (Be aware of the misprint pointed out by Gill, 1983, page 50.)
The covariance structure (4.11) follows by straightforward computations given
in some detail in Borgan and Ramlau-Hansen (1983, Appendix B). O

In general it seems as if we need data at the individual level to estimate the
covariances given by (4.11). However, when (i, j) = (k, [) and only one transition
from i to j is possible for each individual, the first three terms of (4.11) vanish,
so that Cov(Z;;(x), Z;(y)) may be estimated by substituting n™' Y (+) and
n'lKﬁj'f’( *) for p(*) and »;;(*), respectively. An example of such a situation is
given in Section 8.

5. Estimation of cumulative intensities. The purpose of this section is
to develop nonparametric estimators of the integrated intensities A;;(x) =
J ¢ aij(s) ds, within our observational plan, and to outline how their asymptotic
distributional properties may be derived. As discussed in Section 3, the estimators
have to be derived by ad hoc arguments.

By (2.3), a natural “estimator” for the unobserved number Y;(x) at risk is

(5.1) Yi(x) = Y.(x)[B..(x=) — Bi.(x—=) + Ni/n].
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Therefore, by analogy with (3.3), we propose
(5.2) Aij(x) = J; Ji(s)[Yi(s)]™ dK;;(s)

as an estimator for A;;(x), where J:(x) = I(Yi(x) > 0).

One should realize that the “estimated number at risk” Y;(x) can be negative.
Consider for example a first marriage model, where K = {0, 1}, R = {2}, and no
transition is possible from state 1 to 0. Let No = N; = 1, and assume that at 7,
we have a transition 1 — 2, at 7, > 7, a transition 0 — 1, and at 73 > 75 a
transition 1 — 2. Then Yy(x) = Y.(x)(%2 — Bo:(x—)), and we find Yo(r1) =
2% — 0) = 1, Yo(r2) = 1(% — 0) = ¥, and Yo(r3) = 1(% — 1) = —%. The way
we have defined fi,-,-, the seniorities with negative 17',-‘ do not contribute to the
estimator, so we get a nondecreasing estimator for the integrated intensity, as
we should. But the possible negativity of the “estimated number at risk” does
suggest that the estimators (5.2) may behave badly in small samples. For large
samples, however, they behave reasonably, as it is seen from the following result.

THEOREM 5.1. Assume that P;(+) is bounded away from zero. Then

SuPsefo, | AP (x) — Aij(x)| >p 0 as n— oo,

PrOOF. According to Theorem 4.1 and (2.3),
(5.3) SuP,eo1| Y (x)/n — Pi(x)| »p0 as n — oo,

and the remaining part of the proof follows as in Theorem 4.1 by applying
Lenglart’s (1977) inequality. O

It is possible to derive the asymptotic distributional properties of the {A;;} by
an argument similar to the one used in Theorem 4.2. We will not do this here,
however, for the estimators proposed in our next section will usually be preferred
in the applications we have in mind.

6. Estimation of piecewise constant intensities. In demography and
other fields, it is quite common to assume that the intensities are piecewise
constant (e.g. Hoem, 1976; Hoem and Jensen, 1982). This may be appropriate
when the focus is concentrated on the global behavior of the intensities, so that
we deliberately want to smooth “nuisance” variation of the intensities (Hoem,
1972, Section 10). The assumption may also be made to simplify computa-
tions, especially for large samples, or it may be forced on us in cases when only
grouped data is available (cf. Section 7 below). Therefore, in this section we let
0=a;<a;< +-+ <ags = 2 be a partitioning of the seniority interval [0, z] into
subintervals (a,, @41}, r = 1, 2, --+, R, and assume that the intensities are
constant on each of the subintervals, i.e. a;;j(x) = a;j, for x € (a,, r+1].

If the cohort had been observed completely, we would have estimated the {a;;.}
by the occurrence/exposure rates (cf. Hoem, 1976)

(6.1) am = Fm /LM

ijr ijr
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where F{}) = K" (a,+1) — K{P(a,) and L{® = [+ Y{”(u) du. For the situation

ijr

considered in this paper, such detailed data are not available. However, we may
“estimate” the exposure L{™ by

(6.2) LM = f Y (u) du,

where Y™ is given by (5.1). We therefore suggest the estimators
(6.3) af) = FQ/LP,

for the {«;;}.
By (5.3) it is seen that the estimators (6.3) are consistent. We can also prove
the following result.

THEOREM 6.1. Consider a fixed pair (i, j) and assume that Jar Pi(u) du>0
forr=1, -+, R. Then,

{\/ﬁ(au’r - aijr), r= 19 t 0ty R} —>D NR(O’ 2)9
where Z = (a,,) is given by

— Qjjr 2aur

" = Jo Pi() do | ([o Pi(o) do)?

(6.4a) s @p()
f ffp“p(' Pio)(1 = Pio))ulo) do du dr

and

O = QijqQijr

" fen Pi(o) do [ Pi(o) do
(6.4b)

xfrﬂfq-t-lf Mﬁ.(d)(l—ls,(a))p(a) do du dr
ar L o plo)

for g <r,and Ng(0, Z) denotes the R-dimensional multivariate normal distribution.

PROOF. Let Xﬁ,’-” be given as in Section 4 by (4.5) and introduce

.Y V() = «/ﬁ(J; Y™ (u)/n du — J; Pi(u) du).

Then, by a Taylor series expansion, it follows that {vn( (@) = ajr)yr=1, -+,

R} has the same asymptotic distribution as the vector with rth component

,:f ~ P;(u) du]_ (X,{;’)(ar+1) - Xijn)(ar))

T

(6.5) -~ -1
- Olij’[ Pi(u) du] (Vi (a41) — VP (a,)).
a,
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Now we may write

V() = J; Pi(s)Vn(Y™(s)/n — p(s)) ds

+ f p(s)Vn(BP (s=) — B.(s)) ds

t (n t
—fo p(s)Vn(B{ (s—) — B..(s)) ds+Jﬁ<Ni)—1r,)f p(s) ds

n

(n)

t
+ f (BS”(S—) — B (s-) +
0

and it follows by a Skorohod construction that the sequence of processes

(Xf;", V{”) converges weakly to a limiting Gaussian process (X;;, V;), where X;;

is defined in Section 4 and

- Fi(s)>~/r_z(Yf"’(s)/n = p(s)) ds,

Vi(t) = J; Pi(s)U(s) ds + J; p(s){Z.i(s) — Zi(s) + My} ds.

Here U and Z;; are given by (4.7) and (4.10), respectively, and M, is a normal
N(, m(1 — =;)) random variable, independent of X;;, U, Z;;, describing the
number of individuals which start out in state { € K at seniority 0. Substituting
X;; and V; for X and V{® in (6.5), we get random variables with the same
dlstrlbutlon as the asymptotic distribution of {vVn(a{ — a;,), r=1, -+, R}.
The expressions for the variances and covariances follow by some straightfor-
ward, but very tedious, calculations using (2.1), (2.3), (4.6), (4.8), (4.9) and (4.11).

Details are given in Borgan and Ramlau-Hansen (1983, Appendix C). O

The first term in o, is exactly the asymptotic variance of the occurrence/
exposure rate (6.1). Therefore, the efficiency of our estimation method may be
compared easily with the situation where complete information is available and
the occurrence/exposure rates are used. An example of such efficiency
calculations is given in Section 8. Note also that the asymptotic variances and
covariances may be estimated consistently by substituting Y™ (x)/n for Pi(x),

B®(x—) — B™(x—) + N™/n for Pi(x), Y™ (x)/n for p(x), and a) for a;j, in
(6.4a) and (6 4;b). Moreover, by (6.4b), ¢, is always positive, so that the estimators
(@, r=1, -+, R) are all positively correlated.

7. Approximation formulas. When handling large populations, which is
often the case in demographic applications, the cumulative incidence rates (4.1)
will be computationally demanding. This will also be the case for the estimators
(6.3), which are based on (4.1). It will therefore be useful to have simple
approximation formulas for (4.1) and (6.3).

To derive such approximations, let us assume that the partitioning 0 = a;, <
a; < -+ <agy = 2z of [0, 2] is so fine that Y. (*) does not vary much over each
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subinterval (a,, a;+1],r=1,2, -+, R. Let L, = ¥ ;ek L, where L;, is defined just
below (6.1). (We omit the index n in this section.) Then for all s € (a,, a,+1),
Y.(s) is close to its average value over this subinterval L.,/(a,+, — a,). Hence, for
X = a,4+1, we get the following approximation formula for (4.1)

(7.1) Bij(@r41) = Tine1 (Fijm/Lo)(@me1 — @),

where F;;,, is defined just below (6.1). Using the same approximation for Y (¢),
and approximating K ;(x) and K, (x) by interpolating linearly between their
values for x = a, and x = a,+,, we find (cf. (5.1) and (6.2))

Ly = L,[N/n + B.(a,) — B.(@,)] + (F.r — Fi)(@r1 — @,)/2.
By this we arrive at the following approximation formula for (6.3)
(72) &ijr = Fijr/{L.r[Ni/n + B.i(ar) - Bi- (ar)] + (F-ir - Fi.r) (ar+l - ar)/z}’

where for the sake of brevity we have written B; ; for the right-hand side of (7.1).

The right-hand sides of (7.1) and (7.2) are nothing but the “classical” cumu-
lative incidence rates (cf. Hoem, 1978) and Finnas’ (1980) estimators for the
intensities. So this strongly suggests that these estimators are only applicable for
situations where they are good approximations to our (4.1) and (6.3). It should
be realized that we need only information on the occurrences [F;;.}, the total
exposures {L..}, and the initial distribution {N;} in order to compute the approx-
imation formulas (7.1) and (7.2). Therefore, these formulas may be used in
situations where data availability does not allow exact computation of the original
estimators (4.1) and (6.3).

8. An example. A first marriage model. In order to illustrate the use of
the demographic incidence rates (4.1) and the estimators (6.3) based on these,
we have studied a first marriage model. This simple Markov model is illustrated
in Fig. 1. All women start out in state 0. Once a woman gets married she moves
to state 1, where she remains until death. At death she moves on to state 2. A
woman who dies before she gets married (for the first time), moves directly from
state 0 to state 2.

alx)
> Married

Unmarried

wix) rix)

Dead

F1G. 1. A first marriage model for a female birth cohort.
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For the female birth cohort of 32542 women born in Denmark in 1940, data
were available so that we could compute the cumulative first marriage incidence
rates (4.1), and estimate the first marriage intensity by the incidence rate method
(6.3), as well as by the occurrence/exposure rates (6.1). (The data were also used
by Finnias, 1980, for illustrative purposes.) In the actual computations, the
approximation formulas of Section 7 were used.

Let us assume that the intensities of the model in Fig. 1 are constant over
single year age intervals, and let us denote the first marriage intensity and the
force of mortality in the age interval (r, r + 1] by a, and ,, respectively. Then
the cumulative incidence rates {B, = By, (r)} are shown in Fig. 2, whereas the
occurrence/exposure rates {a.} and the estimates based on the incidence rates
{a,} are shown in Fig. 3. The rates are also given in Table 1. As mentioned in
Section 2, B, is an estimate of the probability that a woman still alive at age r
has experienced her first marriage before this age, and as such it represents a
measure of the “risk” of getting married. This risk is also illustrated by the two
sets of estimates for the intensities shown in Fig. 3. It is remarkable that the
difference between the two sets of estimates is so small, and it suggests that the
incidence method (6.3) is quite efficient.

We have also estimated the asymptotic variances and covariances given by
(4.11) and (6.4), respectively. The former of these are estimated as indicated at
the end of Section 4, and by applying an approximation argument similar to
those of Section 7. The estimated standard deviations of the {B } are given in
Table 1. The estimated correlation coefficients between B, and B, are high when
r and s are close to each other, but diminish when the distance between r and s
increases. The increments are all negatively correlated, e.g. the correlation
coefficient between B, and Bys — Bay is —0.425 whereas the correlation between
B, and By, — B,, is —0.839.

]
1000/~
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F1G. 2. Cumulative first marriage incidence rates for women born in 1940 in Denmark.
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F1G. 3. Estimated first marriage intensity for women born in 1940 in Denmark.

To estimate the covariances in (6.4), the integrals in (6.4) have been ex-
pressed as functions of the {«,} and the {u,}. This is easily done, by using the
relations Po(0) = Po(r)exp(—a,(c — r)), p(¢) = p(r)exp(—p.(¢ — r)), and
Py(c) = Py(a)p(c) for o € (r, r + 1). Here, Py(r) = exp(— Y5} a,) and p(r) =
exp(—X 525 us). In Table 1 we have given the estimated standard deviations and
the asymptotic efficiency of &, relative to a,. The values have been computed by
substituting &, for a, and

fir = 2YP() = YO + D)/(YO() + YO + 1)

for u, in (6.4a). The estimated standard deviations of the two methods differ very
little, which implies an efficiency of the incidence rate method of 99.5 per cent
or more for all ages.

The estimated correlation coefficients between &, and &, do not exceed 0.005
for any two age intervals, so the {&,} are nearly asymptotically independent. This
indicates that the slightly lower estimates obtained by the incidence rate method
are not due to the positive correlation between the estimates, but, as suggested
by Finnis (1980), are due to the fact that out-migration for this birth cohort
mostly takes place among the unmarried women. Thus, the assumption about
nondifferential “mortality” (or more correctly, the total effect of mortality and
migration) is not completely satisfied.

The very high efficiencies obtained in this example are partly explained by
the low mortality for ages below 40 years in the cohort of Danish women born in
1940. The average yearly “mortality” rate is 1.7 per 1000. Since the two estimation
methods coincide when there is no mortality, it is not surprising that we get such
high efficiencies in our case. To study the effect of the mortality further, we have
also calculated the asymptotic relative efficiencies for situations where the {«,}
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TABLE 1
Cumulative first marriage incidence rates and estimated first marriage intensities, with standard
deviations, for women born in Denmark in 1940

(1) (2) @) (4) (5) (6) (¥))
Incidence
Age Cumulative Standard Occ/exp rate Standard Standard
incidence deviation ratesa, method deviation deviation
rates B, on B, per per a, per on a.per on a.per Efficiency
per 1000 1000 1000 1000 1000 1000 {(6)/(8)}2

15 — — 0.4 0.4 0.111 0.111 1.000
16 0.4 0.106 6.7 6.7 0.455 0.455 1.000
17 7.0 0.463 25.6 25.6 0.900 0.900 1.000
18 32.1 0.981 92.6 92.3 1.766 1.766 1.000
19 1175 1.799 138.6 138.4 2.294 2.294 1.000
20 231.7 2.360 191.4 190.6 2.925 2.925 1.000
21 365.4 2.695 255.2 254.1 3.777 3.778 0.999
22 508.5 2.803 297.4 292.4 4.648 4,651 0.999
23 633.8 2.705 301.9 293.9 5.399 5.405 0.998
24 727.7 2.504 2714 266.9 5.929 5.939 0.997
25 791.8 2.288 250.2 241.8 6.417 6.430 0.996
26 836.7 2.088 194.5 190.9 6.357 6.371 0.996
27 865.2 1.934 160.2 157.6 6.306 6.320 0.996
28 884.9 1.812 128.0 125.6 6.051 6.063 0.996
29 898.5 1.718 130.6 126.8 6.482 6.499 0.995
30 910.6 1.627 85.7 81.9 5.494 5.504 0.996
31 917.6 1.571 60.2 56.7 4.733 4.739 0.997
32 922.2 1.533 42.7 39.3 4.034 4.038 0.998
33 925.2 1.507 54.1 49.4 4.622 4.628 0.997
34 928.8 1.475 475 43.0 4.415 4.420 0.998
35 931.8 1.448 44.2 40.2 4.362 4.367 0.998
36 934.5 1.423 26.6 24.2 3.441 3.443 0.999
37 936.0 1.408 36.5 33.1 4.082 4.087 0.998
38 938.1 1.388 19.7 17.8 3.033 3.034 0.999
39 939.2 1.377 — — — — —

remain unchanged, but the mortality is increased by a factor 2, 4, 6, 8, or 10 for
all ages. In all these cases the lowest efficiency was obtained for age 29, where it
attained the values 0.990, 0.981, 0.972, 0.964, and 0.957, respectively. So the
relative efficiencies will exceed 95 per cent, even when we increase the mortality
by 1000 per cent. This suggests that in this particular example, the level of the
mortality does not influence the efficiency of the incidence rate method (6.3)
very much.

To explore further how the efficiencies depend on the values of the {a,} and
{ur}, we have made some additional numerical computations. Since some cohorts
are watched over their entire life span, and not only over a limited period as in
the previous example, we have calculated relative efficiencies for a period of 70
years. For simplicity we assume in all these examples that «, = a and u, = u for
all r, for some « and u. The resulting efficiencies for a = 0.05, 0.10, 0.15 and u =
0.001, 0.01 are shown in Fig. 4.
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EFFICIENCY
0 =005, u=0.001
a=0.05,=0.01
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Fi1G. 4. Asymptotic relative efficiencies of the incidence rate method for the first marriage model
assuming constant intensities throughout all ages.

The efficiencies decrease with increasing age for all the six cases considered,
and the higher the values of « and u are, the faster is the decrease. The value of
o seems to be of great importance for the efficiency. The efficiencies are above
90 per cent for ages below 20 years. For higher ages the efficiencies may be low.
Consider for example the case where a = 0.15, u = 0.001. Here the efficiencies
decrease sharply after age 30 years. The reason seems to be that at age 30 years,
there will only be 1 per cent of the original cohort left in state 1. Therefore (5.1)
will be a poor “estimator” for the true number at risk, which again makes &, an
unreliable estimator for «,.

To summarize, the efficiencies for the incidence rate method (6.3) for the
model in Fig. 1 seem to be rather high for younger ages, unless the parameters
{a,} take very large values. The efficiencies may become smaller in the higher
age groups, where the number of individuals at risk is small. The level of mortality
is also important, but its does not seem to influence the efficiencies as much as
the values of the {a,} do.
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APPENDIX

Central limit theorem for the number of transitions between the states in a
time-continuous Markov chain.

In this appendix we prove the central limit theorem for the number of
transitions between the states in a time-continuous Markov chain, which was
applied in Section 4. The Markov chain does not ‘need to have the special
structure considered in the main body of this paper.

THEOREM. Consider n independent copies of the same time-continuous Mar-
kov chain on [0, z] with a finite state space I and with transition intensities {a;;(s)}
and probabilities {P;;(s, t)}, respectively. Assume that [? a;;(s) ds is finite for all
i,j € L, i # j, and denote the normalized number of transitions from i to j in [0, t]
by X{P(t) as in (4.5). Then X™ = (X{; i,j € 1, i # j) converges weakly to a
mean zero Gaussian process X = (X;j; i, j € I, i # j) with covariance structure
given by (4.6).

The convergence takes place in the space D™[0, z] of m-dimensional D0, z]
functions equipped with the Skorohod product topology (Billingsley, 1968), where
m is the number of component processes.

PrROOF. The theorem is a central limit theorem for i.i.d. versions of the
multivariate Markov chain W(¢t) = (K;;(t), N;; i,j €1, i # j) where K;;(t) and N;
now denote the values for a single individual. According to Hoem and Aalen
(1978, formula (12)), Cov(K;;(s), Ku(t)) equals (4.6). Therefore, by Hahn (1978,
Theorem 3), in order to show tightness, it is sufficient to demonstrate the
existence of nondecreasing continuous functions F;; such that

(A1) esssupy, ) E, (K;; (t) — Ki;j(s))? < (F;(t) — F;;(s))?, s<t,

holds for some 8 > %, where E; denotes the conditional expectation given W(s)
= w(s) or equivalently given W(u) = w(u), u < s. Hahn’s Theorem 3 concerns a
one-dimensional process, but since a multivariate process is tight if each com-
ponent is tight, (A.1) is the multivariate generalization of her tightness condition
(i). To verify (A.1), fix i, j and s and note that by (3.1)

K;;(t) — Kij(s) = f Y}(u)aij(u) du + M;;(t) — M;;(s).

Since Y;(u) equals zero or one (for a single individual) [! Y:(u)a;;(u) du <
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[t aij(u) du. Moreover, M;;(t) — M;;(s) and

(M (t) — Myi(s))* - f Yi(w)aij(u) du

are zero mean martingales in ¢t = s by the counting process theory of Section 3.
Thus

E (K;(t) — Ki;(s))? = Es(f Yi(u)aij(u) du + Mi;(t) — Mij(8)>

2

t 2
= 2Es<f Yi(u)a;i(u) du) + 2E,(M;;(t) — M;;(s))?

= 2E‘<f Yi(u)a,-j(u) du) + 2Es(f Yi(u)aij(u) du)

t
Scf aij(u) du

for some constant ¢ since [} a;; (1) du < co. This gives (A.1) and the theorem has
been proved. 0

As pointed out to us by Richard Gill, the theorem is also a consequence of
Kurtz (1983, Theorems 2.1 and 2.2).
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