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A SECOND-ORDER INVESTIGATION OF ASYMPTOTIC
ANCILLARITY

By IB M. SKOVGAARD
Royal Veterinary and Agricultural University, Copenhagen

The paper deals with approximate ancillarity as discussed by Efron and
Hinkley (1978). In the multivariate i.i.d. case we derive the second-order
Edgeworth expansion of the MLE given a normalized version of the second
derivative of the log-likelihood at its maximum. The expansion agrees with
the one derived by Amari (1982a) for curved exponential families, but holds
for any family satisfying the regularity conditions given in the paper. It is
shown that the Fisher information lost by reducing the data to the MLE is
recovered by the conditioning, and it is sketched how the loss of information
relates to the deficiency as defined by LeCam. Finally, we investigate some
properties of three test statistics, proving a conjecture by Efron and Hinkley
(1978) concerning the conditional null-distribution of the likelihood ratio test
statistic, and establishing a kind of superiority of the observed Fisher infor-
mation over the expected one as estimate of the inverse variance of the MLE.

1. Introduction. The purpose of this paper is to investigate some proper-
ties related to the conditioning on asymptotic ancillaries as proposed by Efron
and Hinkley (1978). Since exact properties are hard to derive in general, the
investigation is carried out in terms of second-order asymptotic distributions,
i.e., including the n~'2 terms in the asymptotic expansions. It turns out that
first-order asymptotics fail to discriminate between the conditional approach and
the usual (marginal) approach. Emphasis will be on the results, since the tech-
niques used to prove these are largely well-known, but in Section 7 we shall
sketch the ideas of the proofs.

Since the arguments for conditioning on (approximately) ancillary statistics
are outlined in Efron and Hinkley (1978), we shall not discuss the issue at length,
but merely give an example, essentially based on Pierce (1975), illustrating the
advantages of this approach.

EXAMPLE 1.1 Let (X, Y) be the average of n independent two-dimensional
normal variables, each with the identity matrix as covariance and with mean
#(B) € R?, where 8 is a real parameter, and y, is some smooth function. For each
B, let L; denote the line through u(8) orthogonal to the tangent at u(3). If § is
the maximum likelihood estimator of 8, then the observation (X, ) must be on
the line Lg; see Efron (1978) for further geometrical details. If n is large, we may
for inferential purposes approximate u(8) locally by a segment of a circle (see
Figure 1). Let P denote the center of this circle; then the lines L; will for 8 near
to 3 approximately go through P. Now, if we want a confidence interval for 3, a
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Fi1G. 1. Accuracy of the maximum likelihood estimate. The sensitivity of the estimate due to a
displacement 6 of the observation depends on the distance of (%, y) to P.

common method will be to “center” this interval at and let the length be
approximately proportional to the standard deviation of 3, disregarding the
position of (X, ¥) on the line L;. However, if the observation is (%, 7:), a
displacement of this by an amount é orthogonal to L; would change the estimate
from  to 3:, whereas, if the observation is (%, ¥2), a similar displacement would
only change the estimate to ;. This suggests that the “accuracy” of the estimate
is somehow increasing with the distance of (%, y) from the center P. It may be
noted that confidence intervals constructed using the likelihood ratio test would
certainly reflect this fact. This may be seen by noticing that if the observation is
near the center P, tpe distance to the curve u(8) is almost constant in the
neighbourhood of x(8). In more general examples, similar considerations hold,
but the geometrical picture is not equally obvious. [0

The example shows that the estimator may not be sufficiently informative. A
natural way to try to improve it is to look for an ancillary statistic and replace
the marginal distribution of the estimator by its conditional distribution given
the ancillary statistic.

Several suggestions of ancillaries capturing some of this additional information
have been put forward (see e.g. Barndorff-Nielsen, 1980), but except for one they
are related to exponential models or other specific classes of models, e.g.,
translation models. The remaining one is essentially the second derivative of the
log-likelihood function at its maximum. This idea goes back to Fisher, but was
suggested by Efron and Hinkley (1978) in more explicit form. A problem is that
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this second derivative may contain substantial information; however, after a
suitable normalization, it will be asymptotically ancillary.

Since this conditional distribution can rarely be calculated exactly, we shall
derive an asymptotic expansion of its distribution, which may serve as an
analogue of the more familiar expansions of the marginal distribution of the
MLE. To distinguish between the two methods, one has to compute the second-
order asymptotic expansions, i.e., include the n~'/2 terms of the distributions in
the case of n replications.

The resulting expansion for the conditional distribution is given in Section 4.
The expansion is of the Edgeworth type determined by the first three asymptotic
central moments of the conditional distribution, and it is seen that only the
variance is changed compared to the unconditional expansion.

This expansion may formally be derived from Expansion (6.5) in Amari
(1982a), which is more general in the sense that it is not restricted to maximum
likelihood estimators. The derivation is, however, restricted to curved exponential
families, although the result is not, in the sense that the quantities in the
expansion are defined outside this framework. The ancillary statistic in Amari’s
paper is any statistic which together with the estimator is minimally sufficient,
and it may therefore be of higher dimension than the Efron-Hinkley ancillary. A
heuristic argument suggesting the equivalence of the two approaches is as follows:
The maximum likelihood estimator together with the second derivative of the
log-likelihood function at its maximum is a sufficient statistic to second order
(see Section 5). Therefore the model can be approximated by a curved exponential
family generated by these two statistics, and within this family, the ancillaries
of Amari’s paper will coincide (locally) with the standardized versions of the
second derivatives of the log-likelihood, i.e., the Efron-Hinkley ancillaries.

Knowledge of this expansion makes the conditional approach feasible, but
provides no justification for the method. An investigation in this direction is
given in Section 5 in terms of (loss of) Fisher information. It is shown that the
average Fisher information contained in the conditional distribution differs from
that of the whole set of data only by an amount which tends to zero as the
number of replications increases, whereas the corresponding deficit for the
unconditional distribution converges to a fixed quantity depending on the cur-
vature of the model (see Efron, 1975).

A more operationally meaningful way of defining the loss of information
involved in a data reduction is in terms of the deficiency (LeCam, 1964), which
roughly speaking measures how well any test based on the full data set can be
mimicked using only the reduced data. The deficiencies for the reductions of the
data to the MLE and to the MLE supplemented by the ancillary statistic are
also investigated in Section 5, where it is shown as a general result that the
deficiency is bounded by an amount proportional to the square root of the relative
loss of Fisher information. Thus the results concerning loss of Fisher information
may be interpreted as providing bounds for the deficiencies for the various
reductions.

The variance of the second-order conditional distribution as calculated in
Section 4 is, when evaluated at the MLE, equal to the observed Fisher informa-
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tion. Hence, a natural consequence would be to replace the (expected) Fisher
information in the Wald test statistic by the observed Fisher information (see
Efron and Hinkley, 1978). A comparison of the behaviors of these two test
statistics compared to the likelihood ratio test statistic is carried out in Section
6 in two ways. First it is shown that the null-distribution given the asymptotic
ancillary statistic converges more rapidly (namely as O(n™")) towards its chi-
squared limit if the observed Fisher information is used than if the expected one
is used, when the convergence rate is O(n~"?). This was conjectured by Efron
and Hinkley (1978), and has been shown by Peers (1978) for the one-parameter
case. Next, it is shown that the use of the observed information is also superior
in the sense that it provides a better stochastic approximation to the likelihood
ratio test than the usual Wald test, when null-distributions are considered.

Proofs have been carried through for the case of n replications under the
assumptions given in Section 7, which also contains sketches of the proofs, but
we shall not give these in detail since they are based mainly on well-known
techniques. Some basic ideas of the proofs are, however, given along with the
results.

To introduce the results, some examples are given in Section 3; in particular,
Example 3.2 should give an impression of the kind and amount of computations
required for applications. '

2. Preliminaries. Let X, --., X, be independent identically distributed
random variables on some measurable space, and suppose that the distribution
of X; is a member of a family {Ps, 8 € B C RP}, where B is some subset of R,
We assume that the family is dominated by some measure u on R”, and let
f(x, B) denote the densities. We also assume that the conditions of Section 7 are
fulfilled, these essentially being various kinds of smoothness conditions.

For each 8 € int(B) define

D;(8) = (1/n) iy D’log f(X:, B), E;(8) = Es{D;(B)}
where D’log f(X;, 8) denotes the j-sided array of jth derivatives with respect to
8. Also, we define the joint cumulants of these derivatives by

Xj---k (ﬁ) = cumB{Djlog f(Xh ﬁ)9 Y DklOg f(Xh ﬁ)}
which is of dimension p’ ... p* = p/**""** In particular the (expected) Fisher
information per observation is

I(B) = —E3(B) = xu(B),
whereas the observed information per observation is
J = J(B) = —Du(B).

For convenience we shall use the following notational conventions. If the
argument $ is omitted, a fixed point 8, (the “true” parameter) is understood,
while a circumﬂexA indicgtes evaluation at the maximum likelihood estimate g,
e.g. I = I(8y) and I = I(B). Dependence on n is usually not explicitly indicated.

For multiplying vectors, matrices and arrays we shall sometimes use coordi-
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nates to clarify definitions and results; otherwise we use some notation that is
most easily explained by a few examples given below. When v = (v;), k = 1,
--+, ris avector, M = (m;) is a ¢ X r matrix, and A = (a;3) is a p X ¢ X r array,
then:

My = ¥, my, [vector]
M@? = 3, mpvjop, if g=p  [scalar]
Av = (3 aijxUr) [matrix]
AW®) = Tk aipvivvn [scalar].
Finally we use (, ) to denote the inner product, e.g.
(U, w) = Xp VW, (M, N) = 3% mpn,

where w is an r-vector and N is a ¢ X r-matrix (as is M). The coordinates are
collected in an obvious manner, e.g.

(Xzz)ij,kt = COV((d2/dﬁidﬂj)10g f(Xi, B), (dz/dﬂkdﬁl)log f(Xi, B)).

The Efron-Hinkley ancillary statistic A is defined as a standardized version of
the observed information, i.e.

(2.1) A=VnF'2(J-])er?
where F(8), defined as
(2.2) F(8)iju = (x22)ijkt = Ty (X21) 55,0 T ey (X12) .1t

is the asymptotic variance of vn (J -1 ). Here d is the rank of F, and F~2 is
defined as any smooth “square-root” of F, i.e.

(F~Y2)’F~Y2 = 14(the identity matrix on RY),

which is the asymptotic variance of A. It may be noted that F is the residual
variance of D, after regression on D;.

In the one-dimensional case F = (yI)2 where v is the statistical curvature
defined in Efron (1975). In the multidimensional case F is the square of the
second fundamental form in a differential geometry corresponding to that used
by Efron (1975); see Reeds (1975) and Madsen (1979, page 24).

3. Examples.

EXAMPLE 3.1. Non-linear normal regression. Let X, - - -, X, be independent
normal random variables with variance o> and expectation vector u(3), where
B € R? and u: R? — R" is a known function. The variance ¢2 is considered
known, since this is notationally more convenient and has no influence on the
estimate of 3 and its distribution. These models do not fit into the i.i.d. frame-
work, but the asymptotics ¢ — 0 corresponds to independent replications of the
entire experiment (since in that case ¢%/n — 0 as n — ®), and is furthermore
reasonable in cases where ¢ is small.
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The information matrix is
(3.1) I=3%, (Dw)' (Dw)/o? w(B) = EsX;
and the difference J — I between the observed and expected Fisher information
at B is
(3.2) A=d—-I=-3k (X — i)D%u/0?

where D2i; is the matrix of second derivatives of y; at 3. The ancillary statistic
A is a normalized version of the statistic A, but it need not be calculated in
applications.

The asymptotic unconditional distribution of vn(8 — 8) is the well-known
normal approximation with variance matrix I™?, and the second-order expansion
of this distribution is given by an Edgeworth expansion with the same variance,
but with a bias and third cumulant of order O(n~'/?), which are easily calculated,
see, e.g., Skovgaard (1980b).

The conditional second-order distribution is obtained from the unconditional
one merely by replacing the inverse variance matrix I by I + A (see (4.12)), or
equivalently we may write the variance matrix itself as

(3.3) Var(B| A) = I"{1, + (32 (% — fu)D%a)I Y.

It should be noted that this depends on the true parameter value 8, through
I, and that if the common practice of replacing I by I is adopted, the distribu-
tional approximation will in general only be of first order. However, if ~1is used
as an approximation to the variance (or equivalently I replaced by ! in (3.3)),
this will be superior to the usual approximation I~ for testing an hypothesis
about 3, in two specific ways stated in Theorem 6.1 and Theorem 6.2.

If the random variables X, - - -, X, are correlated with covariance matrix ¢33,
where 2 is known, the same results hold, except that the sums in (3.1), (3.2) and
(3.3) are replaced by inner products with respect to 1. 0

EXAMPLE 3.2. To be more specific we shall consider an example of
nonlinear normal regression. Consider a logistic growth function of the form
e’ /{1 + e}, where ¢t is time (the independent variable), « and v are
unknown parameters and the growth is supposed to be scaled, such that the
limiting “size” is 1. We shall consider this model in logarithmic scale, i.e. we
assume that X;, - - ., X, are independent normal variables with variance ¢2, and
with expectations

(3.4) EX; = pi(a, v) = a(t; — v) — log{l + e~}

where ¢, - - -, t, are known time points.
The information matrix is

(3.5) I =3 (D) Duifo® = Tizy Mi/(d}a?)

where d; = 1 + e*%™™ and

[ &=7)? —alti—7%)
M“‘(—am—w o )
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and the difference A = — equals (cf. (3.2))
(3.6) A =3 (6= e P M/(d?e?).
To derive the conditional distribution of (& — a, ¥ — v) one needs to compute

the bias and the third cumulant of the second-order approximation to this vector.
The general formulae are well-known, and in this example the bias is

(8.7 I‘ oy < B 7) “~Dirace{ M1} /d?,

and the third cumulant is of similar complexity, but more cumbersome to write,
because it is a 2 X 2 X 2 array. The conditional distribution of (&, v) is now
given by (4.11) in terms of these cumulants. 0

EXAMPLE 3.3. This example is the one from the end of the paper by Hinkley
(1980). Let (Y;, Z;) be ii.d. bivariate normal variables with Z; distributed as
N(6,,1) and Y; = 0,Z; + &;, where ¢; is N(0, 1). By simple computations we get

h=Z=3Z/n,  b,=3ZY/Y Z}
1(0) = diag(1, 1 + 63), J = diag(1, ¥ Z%/n).

Since J — I = diag(0, Y (Z; — Z)?/n — 1) has one-dimensional support, we only
compute the corresponding element of F, i.e. Fooy = 2, and define (see (2.1))

= (X (Zi - Zy - n)V2n.

A is seen to be exactly ancillary and (4, A) is sufficient. 6, is independent
of A, and since the conditional distribution of b, given Zi, --., Z, is
N(b,, (V2nA + n(1 + 62)7Y), it follows, that to second order the conditional
distribution of (4, 65) given A = a is normal with mean zero and

V{(6y, 6,)} ~ diag(n™, (V2na + n(1 + 62)) ™) =n"YJ + I - )

m agreement with (4.12). Also, if L is the likelihood ratio statlstlc, W =
@ - 0)16 - 0) is the Wald test statistic, and W, = (§ — 6)J(§ — 0) is the
modified Wald test statistic obtained by using the observed information ¢/ instead
of I, then, as noted by Hinkley, L = W, = n(Z — 6,)2 + (3, Z:e;)%/Y, Z? is exactly
distributed as X3, whereas W deviates from this by an amount of order n~"2 (cf.
Theorem 6.1 and 6.2).

4. Expansion of the conditional distributiqn. In this section we shall
expand the conditional distribution of Z = vn(8 — B,) given A under the
distribution Pj,. It is not hard to prove that to first order Z and A are asymptot-
ically independent. Thus to obtain any interesting results, we must carry the
expansion to second order, i.e., include the n~"/2 terms. The first step is to expand
the joint distribution of (Z, A). This is done in the following three steps:

(i) the second-order (stochastic) Taylor-series expansion of (Z, A) in terms
of the derivatives of the log-likelihood at 8, is computed;
(ii) the first three joint cumulants of these approximating polynomials are
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computed—these will be functions of the E’s and x’s;

(iii) by insertion of these cumulants into the general formula for the Edge-
worth approximation, the joint distribution is obtained. Since the expan-
sion obtained in this way is the basis of all our results, we shall state it
in detail in Theorem 4.1 below.

We shall refer to the cumulants of the approximating distribution as «, resp.
Kk, for the first cumulants (the means) of Z resp. A, k.., the third cumulant of Z,
k22« the mixed third cumulant of Z, Z, A, etc. The cumulants needed in the
expansion of the conditional distribution are given by

(4.1) (ke I2) = = (I, xan1(2) + x21(2))/Vn
(4.2) ke (12)%) = —(2x211(2%) + 3x12(2%))/
(4.3) kzallz, Iz, a) = —(F(2%), (F7Y))'(a))/Vn

(4.4) Kzaa = 0

for all z € RP, a € R
THEOREM 4.1. Under Conditions 7.1 we have the following local expansions
for any ¢ > 0: ‘
(4.5) sup{| g.(2, @) — vx(2, @) |; I 2, a||®> = c log n} = O(n™")
(4.6) sup{| hn(a) = £.(a) |; llall® < c log n} = O(n™),

where || - || denotes the Euclidean norm, g, and h,, are the densities of (Z, A) and
A, and
Ynlz, @) = (27)~P*2(det I)*{exp —%(I(2%) + (a, a))}

X (1 + (s, I2) + (Kay @) + Yokzzo((I2)%) + Yokaaa(a®)

4.7)
+ Yaka(I2, Iz, @) — Yo(l, k. (I2)) — Yo (I, kpa(a))
— Y trace{ka.q(a)}),

(4.8) (@) = (2w)~%exp{—Y4(a, a)}

- (1 + (Ke, @) + Yokaaa(a®) — Y2 trace{kau(a)}),
are the Edgeworth approximations to the two densities, in which d is the dimension
of A.

To clarify the meaning of the notation, we shall give formula (4.7) for the case
where Z and A (and hence all the «’s) are one-dimensional. We then have

Yn(z, @) = (2w)~PrI2[~1V2{exp —h(I2* + a?)}

(4.9) X (1 + k12 + ko + Yok, I°2° + Yokgoaa®
+ Vor,ul?2%a — Voky, 122 — VolK 00 — YoKaaa@),

which is, in fact, not much different from (4.7).
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It is seen from (4.8) combined with the fact that the first and third cumulant
(ko and kuee) of A are both O(n~Y2), that A is not, in general, second-order
ancillary in the sense that the second-order distribution is independent of 8o; but
it is locally second-order ancillary in the sense of Cox (1980). This means that
in any set of the form {8; || 8 — Boll < ¢/vn} with ¢ > 0 fixed, the distribution of
A is constant except for terms of order O(n~!). This is the property that turns
out to be important to avoid loss of information (see Section 5).

The expansion of the conditional distribution of Z given A may now be
obtained by dividing v.(2, a) by ¢{.(a), although the proof requires further
expansion than given in Theorem 4.1.

THEOREM 4.2. Under Conditions 7.1 we have the following expansion of the
conditional distribution of Z = vn (B — Bo) given A = a,

(4.10) P{ZEB|A=a}= J}; (2| a) dz + O(n™")

uniformly over all Borel sets B € RP and ||a||? < (2 + «) log n, for some a > 0,
where

m(z|a) = (2r)P7{det(I + F"(a))}exp{—(l + F"*(a))(2)}

(4.11)
X {1 + (kz, I2) + Yokooa((12)3) — Yol Koo (12))}

is the second-order expansion of the condition density.

REMARK. It is important to note that the event {|| A || = (2 + «)log n} has
probability 1 — O(n™!), so that Theorem 4.2 together with (4.6) implies, that

PiZ€ B} = f $nla) f m.(z|a) dz da + O(n™").
lla (122 (2+a)logn B

A local expansion of the conditional density of Z given A holding uniformly only
on a bounded set, would not suffice to prove this, and in this sense the result
would be incomplete.

There are some points worth noting about the moments of 75,,. The first and
third moment are (to second order) independent of a, and the same as in the
unconditional second-order expansion, whereas the variance depends on a. The
theorem says nothing about the conditional moments of the exact distribution,
but if these are to be used as descriptive quantities of the distribution, then
rather than expanding these, it is the moments of the approximating distribution
that are relevant.

To second order we have

(4.12) VZ|A=a)'=1+n""V2F"2%a)~dJ +1-1,

where V is the variance of the approximate distribution. Thus it is seen that if
the common practice of inserting the estimate 8 for the unknown parameter S,
is used in Formula (4.12), one arrives at the observed Fisher information J as an
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estimate of the inverse variance in the approximate conditional distribution, as
noted by Efron and Hinkley (1978) and Amari (1982a), Formula (6.12). If,
however, this approximation is used, the distributional approximation is no
longer of second order, and it is questionable whether anything has been gained
compared to the usual unconditional first-order approximation.

In the special case when the derivative of I(8) at 3, vanishes, as is the case of
the translation models considered in Efron and Hinkley (1978), then the approx-
imation

V(Z|A=a)~dJ

will, however, lead to a second-order approximation to the conditional distribu-
tion. In contrast the bias and the third cumulant of Z may in general be replaced
by estimates obtained through evaluation at § without changing the order of
magnitude of the distributional approximation in (4.10).

5. Recovery of information. Fisher’s main reason for considering ancil-
laries and, more specifically, conditional distributions given ancillaries was that
by the reduction to a single statistic, such as the MLE, one might lose a certain
amount of (Fisher) information, which might be “recovered” by a conditional
approach.

The total amount of Fisher information in the experiment is nl(8,) = inf(X),
say, where X = (Xi, ---, X,). In general we let inf(T") denote the Fisher
information (at 3,) contained in an experiment where only T is observed. Also,
we shall consider the information inf(T'| A = a) in the experiment, where A (X)
= q is fixed and T is observed, and its expected value is inf, (T') = E{inf(T'| A)}.
The well-known identity inf(T') = inf(X) — E{Var{D log f(X; 80) | T}}, see e.g.
Fisher (1925), is useful in computing inf(T'). It is well-known, see Fisher (1925),
that inf(X) — inf(83) tends to a finite limit as n — %, which Efron (1975) identified
as vZI in the one-dimensional case, where v is the statistical curvature of the
model at 8. The following theorem shows that this information lost by the
reduction of X to 3 is indeed recovered by conditioning by A as defined in (2.1).

THEOREM 5.1. Under Conditions 7.1 we have

(5.1) inf(X) — inf(3) = F(-, I, -) + O(n™Y)
(5.2) . inf(X) — inf(, A) = O(n™)

(5.3) inf(A) = O(n™)

(5.4) inf,(8) = inf(X) — O(n™)

where F(-, 17", .) is the matrix with entry (i, j) given by Y Fix (I )u

Note that (5.4) follows from (5.2) and (5.3), since inf, (B) = inf(ﬁ, A) —inf(A).
Formal proofs of (5.1) and (5.2) go back to Fisher (1925), whereas Rao (1961)
gave a strict proof of (5.1) in the multinomial case; see Efron (1975), Section 9,
for further discussion and references. Strict proofs may be given under weaker
assumptions than those of Section 7, but we shall not elaborate on this point.
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If one does not believe, as Fisher seemed to, that the (Fisher) information is
an absolute measure of information, then it would be natural to look for other
interpretations or implications of Theorem 5.1 and similar results; see LeCam
. (1975). A reasonable possibility would be to measure the information lost in the
reduction from X = (X,, - - -, X,,) to T'= T,(X) by the deficiency of the experiment
(Qs, B € B) with respect to the experiment (P, 8 € B), where Q) is the distribution
of T, as defined by LeCam (1964). The deficiency is defined as the “distance”
between the original distribution and the best “reconstruction” of it based on T'
by a randomization which is independent of the parameter. As the distance is
used the maximal difference in probability over all sets, and the supremum over
all parameters is the deficiency. This is an intuitively appealing measure, because
it tells something about the probabilistic performance of the two experiments,
namely how well any test based on X can be approximated by use of T only.

In agreement with LeCam (1956) and Michel (1978) we shall use a slight
modification of the deficiency by restricting attention to compact sets of param-
eter values. Define

ox(T, X) = infnsupgex 2 || Ps — TGl
= inf;supsexsupaf| Ps(A) — (IIQ;)(A) |}, K C RP compact

where II varies over the class of Markov-kernels and A over all measurable sets.
Except for minor technical differences concerning the class of kernels II this is
the deficiency of (Qs, 8 € K) with respect to (P, 8 € K). Attention is restricted
to compact sets K C B, since uniform approximation over B can hardly be
obtained in general. Notice thgt ox(T, X) = 0 if T is sufficient.

Let us now assume, that § is a function of T, although another first-order
efficient estimator might do as well as 38, and let us define II = Pf;, i.e. the
(I1Qp)-conditional distribution of X given T = t is P}, where P} is the
Ps-conditional distribution of X given T = t. We shall give a formal proof that
ox(T, X) is asymptotically bounded by the maximum over K of the square root of
the relative loss of Fisher information. More precisely

(5.6) I P, — T1Q, || < vp(trace Ry(T))¥2(1 + o(1))

where p is the dimension of 8 and Rs(T) = inf(X)'(inf(X) — infs(T)) is the
relative loss of Fisher information.

Let f'(x; 8) denote the density of P} with respect to u. The proof of (5.6) then
goes as follows

| Ps — Qs || =ff | f(x; B) = fi(x; B) | du(x) dQs(t)
~ff|(Dﬁ log f4(x; B))(B — B) | dPs(x) dQs(t)

= f f 1 18) (D log f'x; B)) |
BB - B) Py (x) d@y(2)
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< (Es{(nI(8))(B — B)H)V?
- (Bs{((nI(8)) 7, infs(X | T))})V?
< Vp(E;ftrace((ni(8)) infs (X | T))}) 2
= Vp(trace{inf;(X) "X(infs(X) — infs(T))}) /2

where the second inequality follows from Hélders inequality.

Using this result together with Theorem 5.1 we see, that éx(8, X) = O(n™"?)
and 0x((8, A), X) = O(n™'), which may be viewed as a specipl case of the result
in Michel (1978), where the statistics of the form T = (8, Ds, ---, D,,) are
considered. We also see that in the case T' = 8, we have

n'2| Py — NQyll = vp((I %, F(-, I, )V = ‘/E(Ei,j,k,l Fay (I (I ) V2

which reduces to the statistical curvature | v(8) | in absolute value in the case
p = 1, whereas in the multivariate case this quantity equals vp trace(IE), where

E is the p X p matrix termed the “Efron excess” by Reeds (1975).

6. Comparison of test statistics. 'Consider a hypothesis of the form Hj:
HB = hy, where H is a ¢ X p matrix of rank ¢ < p and hy € V, a known point.
The most interesting example of this kind is testing that a coordinate of 8 takes
a fixed value, but any “smooth hypothesis” may be written in this way, if necessary
by a reparametrization. Let § be the maximum likelihood estimate under Hy,, and
let H’ be the transpose of H. We shall consider the following three test statistics

of the hypothesis Hy:
L=2 3% (log f(X;, B) — log f(X;, B))
W = (HB — ho)'(H'I"*H) ™ (HB — ho)
W. = (HB — ho)’'(H'J™"H) ™ (HB — ho).

Here L is the likelihood ratio test statistic, and W and W, are quadratic test
statistics in (HB — ho) normalized by different estimates of its variance. In
particular, W is the Wald test statistic and W, a modified Wald test with J ! as
variance estimates of § instead of I~'. The index ¢ means “conditional”, although
Jlisnot in general the conditional variance of V(B — Bo) given A. The following
theorem confirms a conjecture by Efron and Hinkley (1978), that even condi-
tionally W, follows a chi-squared distribution with error term of order O(n™").

THEOREM 6.1. Under Conditions 7.1 and the assumption that 7.1 (vi) holds
for the restricted model H,, we have the following expansions under H,, i.e. if
HﬂO = hO,

(6.1) Py L < t|A = a} = x2-,(t) + O(n™)
(6.2) Py {W. < t|A =a} = x}-,(t) + O(n™)



546 I. M. SKOVGAARD

(6.3) PyiW < t|A = a} = x2(t) + O(n™"?)

uniformly int =0 for allain {|| a||* = (2 + a)log n}, where x 3, is the chi-squared
distribution function with p — q degrees of freedom.

The statement concerning W is in a sense negative and stated for comparison
only. The important point is that the error is not in general O(n™'). Note that
marginally all three test statistics are asymptotically chi-squared distributed with
error O(n™!); see Chandra and Ghosh (1979).

Although this result indicates that L and W, behave more like conditional
tests than W does, it says nothing about.the (marginal) properties of the tests. A
possibility would be to compare the (asymptotic) powers of the tests, but a
uniform superiority of any of these could hardly be expected. If one takes the
standpoint in accordance with Example 1.1 that L is theoretically preferable to
W and W,, then one could compare W and W, by their performance relative to
L. This leads to the following result.

THEOREM 6.2. Under the conditions of Theorem 6.1 W_ is stochastically closer
to L than W is, in the sense that for any continuous function h: R — [0, ®),
h(0) =0, h(xz) > h(x,) if 0 < x; < x5 0r x2 < x; < 0, we have

(6.4) Py th(¥n (W, — L)) < h(¥n (W — L))} = 5(h) + o(1)
with 6(h) = Y%, and 6(h) = Y. if and only if F = 0, and hence W — W, = 0(n™?)
with probability 1 — O(n™?).

Note that the function h is included to show that the result holds in “any scale”,
rather than, e.g., in the absolute values | W, — L| and | W — L|.

Both of the theorems suggest that W, should be preferred to W, whereas it is
hard to see any reason for preferring W to W, in general. Moreover in connection
with numerical maximization of the log-likelihood, W, is easily computed because
—J is just the matrix of second derivatives at the maximum. The results are,
however, only asymptotic, and in particular cases W may well be preferable.

7. Conditions and proofs.

CoNDITIONS 7.1.  Let 8 € int(B) be a fixed parameter value, then

() Ifxe ‘56; f(x; Bo) > 0}, then f(x; B) is 7 times continuously differentiable
w.r.t. 8 in a neighbourhood of g,.

(ii) I(B,) is nonsingular and 5 times continously differentiable in a neigh-
bourhood of B,.

(i) Ey{ll Dlog (X o) ) <o, 1</ <1.
(iv) 360> 0:
Eg,{(sup{|| D"log f(X; B) I; 1B = Boll = 80})7} < oo.
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(v) For n =1 the characteristic function of U(D;, -- -, D;) belongs to L,, for
some m € N, where U is an affine function mapping the affine support
of (Ds, - --, Dy) bijectively onto a real space, such that Vars {U} equals
the identity and E; {U} = 0.

(vi) For sufficiently large n the MLE 5‘,, of B exists with P, — probability one,
and forall¢>0

Pyt ‘/-ﬁ(én — Bo) 12> c log n} = o(n~%?).

(vii) Expectations with respect to Py, of all linear and bilinear functions of
D log f(X; Bo), D%log f(X; Bo) and D3log f(X; Bo) may be differentiated
by differentiation under the integral sign.

We have not tried to minimize the assumptions of each theorem; instead, since
the purpose of this section is to outline the techniques, they are a compromise
between the demand that they should be easily verifiable, and the desire to avoid
too great technicalities. In particular in (vi), probability one could be replaced by
probability 1 — o(n~%?). It may seem somewhat odd that 5 times differentiability
is considered in (ii), and that 7 derivatives of log f are considered in (iv). These
high numbers, compared to the theorems in which only second-order expansions
are considered, are first of all used to derive the higher order expansions of
(8, A) and A needed to control the error term of the expansion of the conditional
distribution. In the sequel we shall refer to the assumptions as (i)-(vii), and it
should be clear from the proofs what the purpose of each assumption is. Before
going on to these we shall state a lemma of some independent interest.

LEMMA 7.2. Let P be a probability measure and Q a finite signed measure both
dominated by a measure u on some measurable space (E, S). Let f = dP/du and
g = dQ/du denote the densities. If Q(E) = 1 and a set A € S exists, such that for
somee; =0,e0=0

(a) sup{|f(x) —g(x)|; x € A} = &
(b) fA |g(x) | du(x) < &

then

(7.1) ¢ sup{| P(B) — Q(B) |; B € S} = 2(e1u(4) + &).
PRroOOF.

|P(B) —QB)| =|P(BNA)—QBNA)|+|P(BNA)-QBNAY|
=eau(A) +1—PA) + e2=2(eu(A) + &3). O

We shall now proceed to comment on the proofs, avoiding details that may in
essence be found elsewhere.
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Expansion of the distribution of (D), ---, D;). By the conditions (iii)
and (v) we may apply Theorem 19.2 of Bhattacharya and Rao (1976) to
obtain an asymptotic expansion as n — % in powers of n~"/? of the density of
n2U(D;, - - -, D;), the error term being o(n~*?) uniformly over the whole set.

PROOF OF THEOREM 4.1. We shall use Theorem 3.2 of Skovgaard (1980a) to
transform the local expansion of U to a local expansion of (Z, A). This theorem
is stated in terms of distributions, but since it is proved by the use of local
expansions, it may be applied here in modified form. The technique was first
used by Bhattacharya and Ghosh (1978) to derive an expansion of the distribution
of Z under similar, but more general, assumptions. In Theorem 4.1 only the
second-order expansions are stated, but to prove Theorem 4.2 we need to establish
the validity of a local Edgeworth expansion with error term O(n~2"%) for some
6 > 0. To do this a Taylor-series expansion of the forin

Z ~ Ay(Dy) + n"Y2A,(Dy, D3) + -+ + n™?Ag(Dy, ---, Dg) + 0(n™*?)

uniformly in || U(D;, - - -, D7) |*> < c log n, is required. This is constructed as in
Bhattacharya and Ghosh (1978) using conditions (i), (iv) and (vi). A similar
expansion is needed for A, and this is obtained by expanding around B = B using
the expansion of Z and conditions (i), (ii) and (iv). The expansion of A is only
needed up to an error of order O(n~27%). On transforming the expansion of U,
the validity of local Edgeworth expansions of (Z, A) and A including the n™2
terms is established, the errors being O(n~27%). Condition (vii) is needed to
compute the second-order expansions, whereas we need not actually compute the
higher-order expansions.

There is a slight technical problem in computing the differential
DF~2(8 — B,) of F~2 in the direction 8 — f. Since

(F2)'F7'2 = F™
and
DF™ B = fo) = —F'(DF(8 — 8o))F*
we obtain by the product rule
(DF™2(8 — B,))'F~2 + (F~2)' DFV%(§ — B,) = —F(DF(8 — Bo))F ",

which turns out to be all that is needed. Note that the right-hand side is
independent ‘of which “square root” of F is used. Based on the Taylor-series
expansions, the computations of the «’s and the second-order expansions are
straightforward; see, e.g., Skovgaard (1980b).

PrOOF OF THEOREM 4.2. The method used to prove this is essentially the
one given in Michel (1980). (4.11) is obtained by dividing (4.7) by (4.8); the
problem is to prove the validity. To do this we need the expansions of g.(z, a)
and h,(a) with error terms O(n~%"?) as constructed above. The ratio of these will,
on expanding in powers in n~'/2 and keeping only the first- and second-order
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terms, give the same result as the ratio of the second-order expansions. The point
is now that if « in Theorem 4.2 is sufficiently small, then the relative error of
the higher-order expansion of h, (a) within the set || ¢ ||>< (2 + a)lognis O(n™'™)
for some ¢ > 0. On this set also the error of the higher order expansion of
8n(2, a) is O(n™'™), when divided by h,(a). The theorem then follows from
Lemma 7.2.

PROOF OF THEOREM 5.1. The main computations leading to (5.1) and (5.2)
are quite similar to those given by Fisher (1925) (or Amari, 1982b). For example,
to prove (5.2), an expansion of the likelihood equation gives

0 ~ D, + Dy(B — Bo) + %Ds(8 — Bo)? + O(n™13),
which in turn leads to an expansion of the form
D, ~ I(B = fo) + F?A(B — fo) + QB — Bo)* + O(n™™"),

where Q(f} — Bo)? is some quadratic form in B — Bo. This shows intuitively that
the conditional variance of D, given (8, A) is O(n™"), although there are still
some technical problems left. These problems are essentially overcome by show-
ing that in the calculations of variances of D;, one may neglect a region of the
form || D, |2 > cn log n, where c is some constant. In this way the problems with
integration of the error term may be avoided. It should also be noted that the
results of Section 4 do not suffice to prove this theorem, but the (higher order)
expansions used to prove Theorem 4.2 may again be used to establish the results.

Expansions of L, W and W.. In the proofs of Theorem 6.1 and Theorem 6.2
we shall confine ourselves to the case of a simple hypotheses, i.e. Hy: 8 = fo,
since the ideas of the proofs are the same in the more complicated setting. Note
that we then have W = I((8 — 80)2) and W, = J((8 — Bo)?). The Taylor-series
expansions to second order of L, W and W, around Z = 0 can be expressed as

L ~ (I + n™2F2(A))NZ%) + n™Y2(x12(Z3) + % x111(Z°))
W ~ I(Z% + n"2(2x12(Z5%) + x11(Z%))
W. ~ (I + n"2FY2A)Z?) + n™%(2x12(Z%) + x111(Z?)),

the error being O(n~Y)p(A, Z) with probability 1 — O(n™!) uniformly on each set
of the form || (Z, A) ||2 < c log n, where p is a polynomial independent of n. These
expansions are the key to the proofs of the two theorems of Section 6. Notice
that the quadratic terms in Z are the squared length of Z as measured by the
inverse conditional variance (cf. (4.12)) in L and W,, whereas the unconditional

variance is used in W.

PRrROOF OF THEOREM 6.1. Using the expansions above, (6.1) and (6.2) follows
from Theorem 1 of Chandra and Ghosh (1979); see their Remark 2.2. Their
condition (2.2) is not exactly fulfilled, because it only holds in sets of “size”
O(log n) instead of O(«/ﬁ), but it makes no essential difference in the proof. (6.3)
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is obvious, and it is seen that since n~2F*%(A) is in general not O(n'), neither
is the error in (6.3).

ProOOF OF THEOREM 6.2. Consider the differences
D =W =L ~n2(=F"7A)Z% + x12(Z%) + Ysx11:(Z?))
D.= W, — L ~ n""2(x12(Z*) + Y%x111(Z%)

both being of order O(n~?). To a first approximation, Z and FY?(A) are
independent, normally distributed with means zero and variances Var{Z} ~ I,
Var{F"%(A)} ~ F. Thus, to order n~"2, the conditional distribution of ¥nD given
Z is normal with mean vnD, and variance F(Z*), while D, is a function of Z. In
this approximate distribution it is seen that the probability of h(¥nD) being
greater than h(¥nD,) is a least Y4, since the probability of the event that this
occurs with D and D, of the same sign equals Y. Since the other part of the event
h(«/ﬁD) > h(vnD) has probability zero if and only if F is zero, and hence W =
W. + O(n™!), the theorem follows.
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