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projection axis or plane varies. Derivatives of the indices are available at little
extra computational cost and may be employed to great advantage in the course
of the numerical optimisation of the chosen index. As Professor Huber points
out in a slightly different context “it does not matter very much if a particular
direction ... is determined inaccurately”, so a conceptually simple and compu-
tationally efficient steepest ascent algorithm has been used to good effect.

If we were to take issue with any of Professor Huber’s remarks, it would only
be to doubt the usefulness of three-dimensional projections in this exploratory
setting, particularly bearing in mind the additional computational burden such
projections would impose. Representation of three-dimensional data in a single
informative picture (on two-dimensional paper!) is not readily achieved in an
immediately meaningful way. Two-dimensional projections, via scatter plots or
bivariate density estimates, are readily interpretable, however, and, as Professor
Huber points out, may often show interesting features of the data which are not
apparent in any one-dimensional projection. For these reasons, we have restricted
our attention to both one- and two-dimensional projection pursuit, even, on
occasion, for application to three-dimensional data.

Finally, practical experience with the resulting version of the projection pursuit
algorithm has proved to be most encouraging. Considerable discussion of the
practical advantages and limitations of the technique, together with many further
details of the work outlined briefly above, may be found in the thesis of Jones
(1983) and in a forthcoming paper to be written jointly with Professor Sibson.
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In 1976 Dr. Gerald Reaven and I, with the assistance of M. A. Fisherkeller,
successfully applied projection pursuit to some diabetes data. The data consisted
of the (1) relative weight, (2) fasting plasma glucose, (3) area under the plasma
glucose curve for the three-hour glucose tolerance test (OGTT), (4) area under
the plasma insulin curve for the OGTT, and (5) steady state plasma glucose
response (SSPG) for 145 subjects at the Stanford Clinical Research Center, who
volunteered for a study of the etiology of diabetes. The goal of the study was to

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to @?’ /2
The Annals of Statistics. BIKOIRS ®

WWw.jstor.org



PROJECTION PURSUIT 511

investigate the interrelationships between these variables and to see what con-
nection they had with classifying patients as normal, chemical diabetic, or overt
diabetic.

The data set was examined with the PRIM-9 program at the Stanford Linear
Accelerator Computation Center. This program permits any three variables to
be selected and then displayed as a two-dimensional image of the projection of
the points along any direction. By continuously moving the direction, the three-
dimensional configuration of the points is revealed.

From a study of the various combinations of three variables, the configuration
displayed in Figure 1 (an artist’s rendition of the data cloud) emerged. This figure
was considered to be very interesting to medical investigators. The plump middle
of the points roughly corresponds to normal patients, the right arm to chemical
diabetics, and the left arm to overt diabetics.

After this unusual configuration was discovered through the use of the PRIM-
9 program, it was learned through ordinary two-dimensional plots of pairs of
variables that the same figure could be seen in these simpler plots. However, it
is not clear that merely examining the three plots of SSPG vs. Glucose Area,
SSPG vs. Insulin Area, and Glucose Area vs. Insulin Area would have revealed
the figure whereas it leaped out of the display screen for the viewers with the
PRIM-9 projections and rotations.
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This work, along with a simple clustering analysis separating the patients into
the three groups, was published in Reaven and Miller (1979). This application of
PRIM-9 was referred to in a Science article by Kolata (1982). Different clustering
algorithms were applied to this data set by Symons (1981). Also, Diaconis and
Friedman (1983) investigated these data by M and N plots and found a weak
association between relative weight and SSPG, which was not discovered in our
original work. This data set has also been referred to in Diaconis (1985).

During the last decade and a half, advances in computer technology have
revolutionized the practice of statistics. PRIM-9 and its newer versions have
enabled investigators to visualize multidimensional data as never before. Other
specialized hardware and software have provided the statistician with a new
variety of graphical and computational procedures for handling multivariate data.
These new techniques are being applied to data sets, and conclusions are being
drawn on the basis of these analyses.

With reference to this new technology, I feel that there is a gap developing
between practice and theory. While interesting shapes, clusters, and separations
are now more discoverable in high-dimensional data, how do we evaluate whether
these are real or merely random variation? The theory for separating real from
random seems somewhat limited at this point in time.

As an example, consider the simple problem of comparing two populations
with high-dimensional data. Are the two populations the same, or is there a
boundary which can be effectively used to separate data points into the two
populations with small error rates? There exist the classical multivariate tests of
equality of two populations and some newer tests like those of Friedman and
Rafsky (1979, 1981) using the minimal spanning tree, but these tests do not
describe a separation boundary. The classical Fisher linear discriminant function,
or the logistic function, with all or a subset of the variables and possibly some of
their interactions are typically used in practice to determine a boundary. This
analysis, however, assumes a very specific parametric form for the boundary
which may not be the best. Recursive partitioning, introduced by Friedman
(1977), Gordon and Olshen (1978), and Breiman et al. (1984), is sometimes used,
but at times this technique can produce somewhat bizarre multiple noncontiguous
regions for classification.

Suppose the statistician through his/her visualization of the multidimensional
data on the computer thinks that he/she sees some sort of smooth contour which
effectively separates the populations. How does he/she evaluate whether this
separation is real or random? The theory and critical constants to measure the
significance of the separation into a 2 X 2 table, or the significance of coefficients
in an equation defining the boundary, are unavailable at the present. The multiple
comparisons problem involved in this evaluation is enormous.

This article by Peter Huber is therefore a welcome addition to the literature.
It brings together for the first time some theoretical results on a set of diverse
but related new techniques. Much additional work in these directions should
appear in the statistical literature over the forthcoming decades because that is
where the computer is taking us.
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I would like to discuss the many interesting similarities and differences
between projection pursuit (PP) and computed tomography (CT) as emphasized
by Professor Huber.

First, just in case PP becomes a successful tool in exploratory data analysis
(EDA), I hasten to point out that CT has indeed had some influence on PP.
Indeed, the basic (to PP) concept of ridge function is an idea which was introduced
to CT already in Logan’s paper in the Duke Math. J., 1975. The idea of
superposing filtered projections, which is the basis of all algorithms used in
commercial CT, is analogous to superposing filtered projections in PP even
though “filtered” in PP is used in the sense that all but the “interesting few of
the prOJectlons” are discarded while in CT “filtered” means convolution of each
projection with a “filter function” (this is also due to Logan). Actually PP seems
even closer to emission CT than to transmission CT—see Vardi, Shepp and
Kaufman (1985), J. Amer. Statist. Assoc. 80 8-37.

Emphasizing next the differences between PP and CT for accuracy of discus-

sion, we note: »
(a) Parallel linear projections in PP are not fundamental—one could easily

imagine nonparallel projections, fan-beam, or even curvilinear projections
rather than straight line projections. Thus in PP the density is sampled,



