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I congratulate Professor Huber for an excellent survey of Projection Pursuit
methods. Putting together the diverse research in this area into a coherent
prospective is a difficult and challenging task. This paper represents an important
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contribution to this methodology, as well as to statistics in general. Professor
Huber was one of the first to recognize the potential of projection pursuit methods
and his early support was instrumental in inspiring others to pursue research in
this area. This paper integrates his own research with that of others into a
unified perspective. After reading this paper, I am of the opinion that projection
pursuit may have been a good idea after all. I also congratulate the editors of the
Annals for soliciting this contribution. Although this paper is a little different
than those usually found in The Annals of Statistics, 1 believe it nonetheless
brings considerable credit to this journal.

I divide my comments into three parts. The first part provides a brief historical
perspective and discusses the trade-off between methodology motivated by purely
heuristic (ad hoc) concerns as opposed to that based on sound statistical theory.
The second part expands Professor Huber’s discussion (Sections 11, 13, and 15)
on the relation between the “synthetic” and “analytic” versions of PPDE. Finally,
I update his discussion of PPR (Sections 9 and 20) by relating some more recent
work in this area.

The original projection pursuit algorithm (Friedman and Tukey, 1974) had a
modest goal. It was intended as an adjunct to the PRIM-9 graphical display
system (Friedman, Fisherkeller, and Tukey, 1975). PRIM-9 provided the user
the ability to perform what one would now term manual projection pursuit.
Displayed on the screen of a computer graphics terminal was a two-dimensional
projection of a multivariate data set. The parameters (linear combinations)
defining the projection could be changed in a continuous manner under user
control using graphical input devices (light pen and buttons). As the user
interacted with the device by changing the projection parameters, the point cloud
would appear to move on the screen. This changing configuration would tend to
become either more or less interesting as judged by visual inspection. If it was
becoming more interesting, the user would continue to change the parameters in
the same manner. If not, he would stop and try to change the projection in a
different way. In this way, the user would manually iterate to “interesting” views
of his data set.

The “batch” projection pursuit algorithm was intended as sort of an automatic
pilot to aid with this strategy. Starting with the current view, the algorithm
would try to imitate the strategy that a human would use to try to find a more
interesting projection. This projection would then be the starting point for human
interaction and so on. The details of the algorithm (projection index, optimization
method) were “worked out by observing people using PRIM-9. The algorithm
tried to imitate the successful approaches that people used to find interesting
projections. I believe that this is the reason that it worked so well. As Huber
points out, we now know that the projection index we used is related to a form
of entropy measure (density squared) and that there may be better ones based
on other entropy measures. At the time, however, the only motivation for the
procedure was heuristic; it seemed to work well in practice and provide interesting
results. There was, at that time, no mathematics to “back it up.”

Projection Pursuit Regression (Friedman and Stuetzle, 1981) was also origi-
nally motivated by purely heuristic reasoning. The idea was to extend linear
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regression by viewing it as a numerical optimization procedure and substituting
a curve estimate (smooth) for the (univariate) straight line fit in the inner loop
of the optimization algorithm. This procedure was iterated by applying it to the
residuals of the preceding step. We now know that this algorithm approximately
minimized

(1) E[Y = M1 fu(amx)P

with respect the parameters of the projections al = (a1 *** a,m) and the
projection functions f,,, along with a forward stepwise approach for choosing M.
Also, we now have better algorithms for minimizing (1) (Friedman, 1984b,c). At
the time, however, PPR was a purely ad hoc procedure with no foundation other
than it seemed to work well.

Projection pursuit methods are by no means the only ones to be originally
ignored for lack of theoretical justification. Factor analysis, clustering, multidi-
mensional scaling, recursive partitioning, correspondence analysis, soft modeling
(partial-least-squares), represent methods that were in common use for many
years before their theoretical underpinnings were well understood. Again, the
principal justification for their use was that they made sense heuristically and
seemed to work well in a wide variety of situations.

I think there are two lessons to be derived from this experience. First, if a
method works well in practice, there is probably a strong theoretical reason why,
and we ought to try to find it. In the case of projection pursuit, Professor Huber
has made substantial contributions to this, as have others (see Huber references).
Second, a good way to improve statistical methodology might be to observe how
good data analysts use powerful interaction tools. The PRIM-9/projection pursuit
connection is twelve years old. With today’s powerful technology, along with a
new generation of practitioners to use it, many new and powerful methods will
likely emerge.

My next set of remarks concerns Huber’s discussion of projection pursuit
density estimation and the relationship between the “synthetic” and “analytic”
approaches. From Huber’s discussion, one would get the impression that the
analytic approach was preferable to (or at the very least, as good as) the synthetic
version. First, it can be shown to exactly replicate product densities and, second,
it does not require numerical or Monte Carlo integration. This is the good news.
The bad news is that it provides poor estimates, poor enough to generally render
it useless in practice.

First, it should be noted that the analytic version can never produce zero
density estimates in a region where the initial density fo(x) has support. The
converse is also true; the synthetic version cannot produce estimates f(x) in
regions where fy(x) has no support. However, the symmetry is broken since we
have control over fo(x)—we can choose it—and (as Huber points out) it is easy
to choose fy(x) to have wider support than f(x). The converse is, of course, not
true. The practical consequence is that the analytic version will produce highly
upward biased estimates in regions of low data density.

There is an even more serious problem with the analytic algorithm. It produces
estimates with very high variance. This is because it weights the observations to
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produce marginal density estimates. If f(x) is not very close to fo(x), then the
weights will have high variability, inducing high variance in the marginal esti-
mates; the few observations with high weight will dominate the estimates. Again,
the converse is also true. The synthetic algorithm uses weighted Monte Carlo (or
numerical quadrature) points to produce marginal estimates. But again, the
symmetry is broken by the fact that we can control the variance of the Monte
Carlo estimates by controlling the number of Monte Carlo points—the higher
the variance of the weights, the more Monte Carlo points we use. This is implicitly
done in the accept/reject sampling method employed by Friedman, Stuetzle and
Schréeder (1984). Unless one has access to unlimited data, it is not very sensible
to vary the data sample size in this manner. One should use all the data (all the
time) in a “synthetic” strategy.

I would next like to comment on Huber’s discussion concerning the engineering
aspects of implementing projection pursuit procedures. As Huber correctly points
out, these aspects are seldom emphasized in published accounts and, yet, they
are often absolutely crucial to the success of the method. It is very unlikely that
an implementation based purely on the published description would work. There
are many design decisions that are made at the level of writing the code which
are usually based on considerable experimentation. These descriptions are usually
the first to be cut out when editors, pressed for space, suggest shortening the
manuscript. A more serious consequence is that the apparent success or failure
of a new method will be based on how well the complete implementation performs.
A good idea poorly implemented will not work well and will likely be judged not
good. It is likely that the idea of projection pursuit would have been delayed even
further if working implementations of the exploratory (Friedman and Tukey,
1974) and regression (Friedman and Stuetzle, 1981) procedures had not been
produced. As data analytic algorithms become more complex, this problem
becomes more acute. The best way to guard against this is to become as literate
as possible in algorithms, numerical methods and other aspects of software
implementation. I suspect that more than a few important ideas have been
discarded because a poor implementation performed badly.

Finally, I would like to bring the discussion of projection pursuit regression up
to date by relating some recent extensions to the procedure, as well as some
improved engineering aspects. I start with the engineering aspects. Huber cor-
rectly points out that the critical engineering relates to the method used for curve
estimation and the minimization strategy used to find the optimal linear combi-
nations. Both of these have been substantially improved in the most recent
implementation (Friedman, 1984c).

The new curve estimation procedure is detailed in Friedman (1984a). I sketch
it briefly here. Consider first the abstract version of the PPR algorithm. At any
point in the minimization procedure, the best curve, given all the projections and
all the other curves, is given by a conditional expectation (Huber, equation 9.7).
Thus, it would seem that in the sample version of PPR the proper trade-off
between over- and underfitting at any particular stage would be achieved by
obtaining the best possible estimates for the corresponding conditional expecta-
tions. The quality of the conditional expectation estimates can itself be estimated
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by cross-validation procedures. The meta parameter of the curve estimation
procedure (smoother span) is chosen to optimize the cross-validated predictive-
squared-error separately in each projection to which it is applied. In addition,
local cross-validation is used to estimate optimal span as a function of abscissa
value z = a”x within each projection. The result is the best possible curve
estimate for each projection. This is important. Using a constant global span for
all projections discourages the algorithm from iterating towards projections that
are good, but for which the particular global span value may not be appropriate
for the curve estimate in that projection. Also, an important side effect is that
the user is relieved from the burden of having to guess at a good span value. No
attempt at robustification is made at the curve estimation stage of the algorithm.
The best way to achieve robustification (I believe) is to iteratively invoke the
entire PPR fitting procedure with observation weights determined by the resid-
uals from the previous solution in analogy with linear regression robustification.

The new minimization strategy is described in Friedman (1984b,c). It is an
alternating optimization procedure based on Gauss-Newton stepping rather than
a nested optimization based on Rosenbrock stepping. (The Gauss-Newton pro-
cedure was suggested by A. Buja.) The practical consequence is that the algorithm
is far more reliable and typically 10-20 times faster than the previous version.
This reliability and speed increase are important in extending the size of appli-
cations to which PPR can be applied. An even more important consequence is
that PPR can now be used as a primitive operation that is itself iterated in more
complex algorithms. A straightforward application is to apply the backfitting
procedure to the projection parameters as well as the curve estimates, thereby
producing estimates that actually minimize (1) with respect to the empirical
distribution. These estimates can be considerably different than the stagewise
estimates for the projection parameters produced by the previous algorithm,
especially in the presence of high association among predictor variables.

The new speed of the PPR algorithm also permits more extensive generaliza-
tions. One such generalization is to multiple response variables which, in turn,
leads naturally to the classification problem. The multiple response models take
the form

(2) Vi=E[Yiln -+ %] = Vi + XM, Binfulalx) (1<i=<q)

with ¥; = EY;, Ef, = 0, Ef2 = 1 and aZla, = 1. The coefficients Bin, aZ =
(a1m *** apm)iand the functions f,, are parameters of the model and are estimated
by least squares; the estimates are chosen to be those values that minimize

3) L,=Y%, WE[Y; - Y]~

The W, represent a user specified loss metric. Models that take the form (2) are
termed SMART for Smooth Multiple Additive Regression Technique. Details of
the algorithm for minimizing (3) for SMART models are given in Friedman
(1984b,c). From (2), it is seen that each response variable is modeled as a (usually)
different linear combination of a set of predictor functions f,,. Each predictor
function f,, takes the PPR form: a smooth, but otherwise unrestricted, function
of a linear combination of the predictor variables.
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SMART models (2) are not the only possible extensions of PPR to multiple
responses. A more straightforward approach would be to model each response
variable Y; (1 =i < q) separately with PPR, obtaining models of the form

4) Vi=SX, fin(ahx).

Models of this form (4) are contained as special cases of SMART models (2).
However, SMART models have the opportunity to take advantage of (possibly
high) associations among the response variables to produce much more parsi-
monious models (fewer predictor functions and linear combinations). This can
reduce the variance of estimates, as well as produce more interpretable models.

In the classification problem, a single response variable Y assumes several
categorical (unorderable) values (¢, ¢z, * -, ¢;). This can be converted to a
multiple response regression problem by associating dummy (zero/one) variables
H; for each categorical value c;:

_ 1 if Y= Ci
) H = {O otherwise.

Clearly, H; = E[H;| x; -+ - %] =Pr{Y =c|x -+ x,}. The H; are estimated via
SMART (2, 3). The resulting estimates are used in a minimum (estimated) loss
decision rule

Y= minii<, {3, (Wilij/si)Hi}

where =; is the unconditional (prior) probability of Y = c;, [; is the loss for
estimating Y = ¢; when the truth is Y = ¢;, and s; is the total mass of observations

for which Y =¢,.
SMART modeling has been applied to several problems with success. See
Friedman (1984c) for some examples. Its general value will have to be learned

from experience.
I once again congratulate Professor Huber for a wonderful paper, and I thank
the editors of The Annals of Statistics for inviting me to make these comments.
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Professor Huber neatly reminds us how both principal-components analysis
and multiple linear regression may be viewed as special cases of PP. In this note
I would like to suggest a ramification of PP that incorporates the considerably
wider class of soft models (iterated regression protocols), variants of canonical
correlations analysis, lately developed by Herman Wold.

1. Section 7 of Huber’s article considers “questions of k-dimensional projec-
tions.” Rephrasing this as “one k-dimensional projection,” I shall reverse the
multiplicities to consider k one-dimensional projections instead. As Huber notes,
for a computation of multiple dimensions to be most easily interpretable, each
should be characterized uniquely. The simplest identification represents the
measurement space R”" as the direct product []%,;R™ of subspaces. In the
language of causal modeling, these are measurement blocks.

Partition Huber’s random vector X as (X;:X;: - - - : X3), conformally with the
projection vector a = (a,:a;: - - - :a). Each X; or a; is a vector of length n;, with
Y% .n; = d, the original dimension of X. Our “multiple projection” is then the k-
vector (Z,, -+ +, Z,) = (aT X3, -+ -, af X)). An appropriate normalization sets each
vector g; to length 1, so that the vector a has Euclidean norm k rather than 1.
The space of multiple projections, then, is no longer the unit d-sphere S%7, but
rather the direct product []%;S™%* of unit n;-spheres.

2. PP finds interesting projections by the numerical examination of an objec-
tive function Q that measures “interestingness” in some fashion. For the objective
functions Q(Z) of a single projection, interestingness seems to have a useful
general interpretation: nonnormality. For the multiple PP I am suggesting here,
there is a more fundamental aspect of interest: dependence. For instance, for k =
2 we might use Q(Z,, Z,) = {correlation}. The projection vector a = (a,, a;) that



