The Annals of Statistics
1993, Vol. 21, No. 4, 2108-02137

NONPARAMETRIC BINARY REGRESSION: A BAYESIAN
APPROACH

By P. Diaconis! anp D. A. FREEDMAN 2

Harvard University and University of California

The performance of Bayes estimates are studied, under an assumption
of conditional exchangeability. More exactly, for each subject in a data set,
let ¢ be a vector of binary covariates and let n be a binary response
variable, with P{n = 1|£} = f(¢). Here, f is an unknown function to be
estimated from the data; the subjects are independent, and satisfy a natural
‘“balance” condition. Define a prior distribution on f as L,w,m,/X,w,,
where m, is uniform on the set of f which only depend on the first %
covariates and w,, > 0 for infinitely many %. Bayes estimates are consistent
at all f if w, decreases rapidly as %k increase. Otherwise, the estimates are
inconsistent at f=1/2.

1. Introduction. To illustrate the topic of this paper in a specific context,
consider a clinical trial. Each subject has a response variable n and covariates
&. The response variable is 1 or 0, corresponding to success or failure. For
instance, n = 1 if the subject survives to the end of the study period, else
1 = 0. The covariates are a sequence of 0’s and 1’s. For instance, ¢, might be 1
if the subject is male, 0 if female; ¢, might be 1 if the subject has high blood
pressure, otherwise 0; and so forth. (For present purposes, assignment to
treatment or control is just another covariate.)

Given the covariates, assume that the response variables are independent
across subjects and

(1.1) P{n = 1l¢} = f(¢).

Here, f is a measurable function from the space of sequences of 0’s and 1’s to
the closed unit interval [0, 1].

The function f is an infinite-dimensional parameter to be estimated from
the data by Bayesian methods. There is a fairly conventional prior distribution
which is “nested’”’ or ‘“hierarchical.” Begin with a prior 7, supported on the
class of functions f that depend only on the first % covariates, so &, 1, €42, -+
do not matter in (1.1). Then treat # as an unknown ‘“hyperparameter,”
putting prior weight w, on %. Thus, our prior is of the form

(120 7= Luim T .
E=0 E=0
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where

(1.2b) w, > 0 for infinitely many % and ) w, < .

E=0
The question is whether the Bayes estimates are consistent: Do the posterior
distributions pile up around the true f? (More precise definitions will be given
shortly.)

Let C, be the set of strings of 0’s and 1’s of length k. The prior m, is
defined by the joint distribution it assigns to 2* parameters, 6,: s € C,. Here,
6, is the probability of success for subjects whose covariate string begins with
s. For the present, these 6, are taken as independent with respect to 7, and
uniformly distributed over [0, 1]: as we say, “m, is uniform.” Other distribu-
tions for 6, will be considered below. This completes the definition of the prior.

Turning to the data, at stage n there are 2" subjects indexed by ¢ € C,.
Each subject ¢ has a response variable n, = n(¢), and an infinite sequence of

covariates £,(¢), £5(¢),... . However, the design is ‘“balanced”: among the first
n covariates, each possible pattern appears exactly once. More specifically,
(1.3) &(t)=t; forallteC,.

The remaining covariates ¢;(¢) for j > n are uniform and independent. Call
this data structure a ‘‘balanced design of order n.”’ The assumptions are made
to simplify the calculations below. The designs can be nested in an obvious
way, by adding 2" subjects to go from stage n to stage n + 1, but the joint
distribution of the designs for various n’s will not matter.

Before stating the main theory, we give a more careful definition of consis-
tency. Let C, = {0, 1)*; so x € C,, has coordinates x,, x,, ... which are 0 or 1.
Write X° for the uniform measure on C,, that is, Lebesgue measure. With
respect to A°, the coordinates are independent, and A{x; = 1} = 1/2. By
definition, the parameter space O is the set of measurable functions from C,
to [0, 1]; functions which are equal a.e. are identified. Put the L, metric on the
parameter space. Of course, all the L, metrics on © give rise to the same
topology for 1 < p < », as does convergence in measure—by the dominated
convergence theorem. We write | - ||, for the L, norm.

A typical neighborhood N(f,8,¢) of f will be defined in Definition 1.4.
More formally, the N(f, 8, ¢) are a basis for the neighborhoods at f. [Using
weak rather than strong inequalities in Definition 4 is an arbitrary choice.]

(1.4) DEFINITION. If f€ ©® and §, ¢ > 0, let N(f,§,¢) be the set of h € O
with '
{x:x € C, and |h(x) — f(x)| <&} =1-35.

If 7 is a prior probability on ©, the posterior probability 7, on © is the
conditional law of f given the data; this will be computed explicitly in Section
2. By definition, the prior 7 is “consistent at f” if 7, {N(f, 8, )} — 1 almost
surely as n — o, provided the data are generated according to a sequence of
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balanced designs and (1.1) obtains, so f is the true value of the parameter.
This frequentist notion of consistency, and its role in Bayesian inference, is
discussed in Diaconis and Freedman (1986). The main theorem of this paper
can now be stated.

(1.5) THEOREM. Suppose the designs are balanced, m, is uniform for all
k, the prior w is hierarchical in the sense of (1.2), and f# 1/2. Then m is
consistent.

The case f = 1/2 is covered by Theorem 1.9. For example, suppose the m,
are uniform and w,, = r* for £ > 0. Then = is consistent at all f if r < {/1/2;
but 7 is inconsistent at f=1/2if r > /1/2.

De Finetti (1959, 1972) studied the performance of Bayes estimates where
the data are exchangeable given covariates; also see Bruno (1964). This paper
gives precise results in a version of this problem. What is the connection
between Theorem 1.5 and the de Finetti’s work? From his perspective, sub-
jects with the same covariates would be of the same type and exchangeable. In
the present setup, ‘“theory 0’’ says that all subjects are exchangeable, that is,
of the same type. “Theory 1" says that all subjects with ¢; = 0 are exchange-
able, as are all subjects with ¢, = 1, but the two groups are not exchangeable:
so there are two types of subjects. And, so forth. De Finetti studied an example
with only three types, and found that the Bayes estimates converged very
slowly to the true parameters. (He did use the frequentist notion of consis-
tency as a benchmark.)

In the present set-up, a Bayesian who believes theory & would have prior
7, subjects would be of the same type provided their first % covariates agreed;
in all, there would be 2* types. A balanced design of order n > & would
provide a chance to observe 2" ~* subjects for each of the 2* types. And within
a type, the response variables would indeed be exchangeable. However, if
wy > w,; > ---, it takes a long time for the data to swamp the prior: the
posterior tends to concentrate on theories with too few types of subjects. That
was the content of de Finetti’s example.

It is natural to conjecture that with infinitely many types, and rapidly
decreasing w,, the data may never swamp the prior, so Bayes estimates would
be inconsistent. The facts are otherwise. If w, decreases rapidly, the Bayes
estimates are consistent. In the present setup, there are a continuum of types
because there are countably many covariates. The prior 7 says there are only
finitely many types, although that number can be indefinitely large. Consis-
tency is all the more surprising. .

More curious still, if w, decreases slowly, and the 7, are uniform, Bayes
estimates can be inconsistent—for the function which is identically 1/2. This
f is the mean of =; and no covariates matter, so there is only one type of
subject in the clinical trial. Of course, the Bayesian statistician does not know
this a priori, and the “curse of dimensionality’’ strikes again.

Coming back to the mathematics, we establish results on consistency and
inconsistency for a more general class of priors with “I'-uniform =,”; these
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will be defined in Definition 1.7. First, the success probabilities 8, are defined
more carefully in Definition 1.6.

(1.6) DeFINITION.  Fix & > 0. Let ®, C © consist of the functions A which
depend only on the first k covariates. If 2 € @,, then 6,(h) is the value of
h(x) when x € C,, s € C, and x;=s;forl<j<k.

Informally, if 7, is I'-uniform, then 7, envisions 2* types of subjects, each
with a distinct success probability 6,. The 6, are independent but not identi-
cally distributed: each 6, has its own prior density y,. These vy, are uniformly
bounded above by B < «, and below by b > 0. Furthermore, the mean of v, is
constrained to be in a given finite subset F of the open unit interval. The
index s runs through C,, the set of strings of 0’s and 1’s of length k.

To state the formal definition more compactly, each s € C, is also viewed as
a subset of C.:

s={x:x€C,and x; =s; for 1 <j <k}.

If f€ 0, then f(x)is constant as x ranges over s € C,, when s is viewed as
a subset of C,.

(1.7) DeFINITION.  Fix 0 < b < B < «, and a finite subset F of (0,1). Con-
sider the class I' of all densities y on [0, 1], with b < y < B and [}0y(6)d6  F.
Consider m, which concentrate on ©,, make the 2* success probabilities 6,:
s € C,, independent, and give each of them a density v, in the class T. Let g,
be the mean of y,, so g, = [767,(6) d9 € F. Write g,(s) = g, and extend g,
to a function on C, by setting g,(x) = g,(s) for all x € s. Assume g, comes
from a limiting function g, that takes values in F and is continuous on C,. Of
course, a ‘‘continuous” function on C, that takes only finitely many values
must be piecewise constant on C,, for all large k. To avoid extraneous
complications, suppose that g, = g, for all £ > n,. This completes the defini-
tion of I'-uniform .

For comparison, the original setup had b =B =1and F = {1/2}, s0 g, =
8- = 1/2 for k > 0. Theorem 1.5 continues to hold for I-uniform m,: there is
consistency at f unless f = g, a.e., as Theorem 1.8 shows. The case f = g, is
handled by Theorem 1.9.

(1.8) THEOREM.  Suppose the designs are balanced; the m, are T-uniform in
the sense of Definition 1.7, the prior 1 is hierarchical in the sense of (1.2), and
f # g.. Then 7 is consistent.

(1.9) THEOREM.  Suppose the designs are balanced; the , are T-uniform in
the sense of Definition 1.7; the prior m is hierarchical in the sense of (1.2); and
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f = &.. Let | be the smallest k with w, > 0. Let 8 = (1/2)log2 and & > 0.

(a) Suppose Y;_,w, < exp(—Bn2' —&n2") for all large n. Then m is
consistent at f.

(b) Suppose T3_,w, > exp(—Bn2' + 8n2') for infinitely many n. Then
is inconsistent at f.

What happens if 7 is inconsistent? For m > 0, let m,,, be the prior 7 with
theories 1 through m deleted. Let || - || be the variation norm, and suppose for
instance that w, = 1/k% Fix K large but finite. Asymptotically, theories
indexed by & < n + K are negligible. Indeed, |7, — Tin+ K)H — 0 almost surely
as n — ., This is true for any finite K. In the long run, there are infinitely too
many types. And the success probabilities are independent, so the f’s you
have left are very wiggly indeed.

Suppose f depends on only finitely many covariates, say &;,..., &,. Under
the conditions of Theorem 1.8 or 1.9a, the posterior concentrates on such
functions: 7,{C,} — 1 a.s. as n — «. The argument is about the same as for
the theorems. Thus, the Bayesian gets the order of the model right too. This is
a bit surprising, because many rules for model selection will over-estimate %.

Section 2 gives explicit formulas for the posterior; Section 3, some prelimi-
nary estimates. Theorem 1.8 is proved in Section 4, and Theorem 1.5 is a
special case. Theorem 1.9 is proved in Section 5.

Our results may seem a bit special; however, we believe the phenomenon to
be fairly general. We think it applies to other sequences of nested models, and
other kinds of problems (like regression). For example, see Diaconis and
Freedman (1988, 1991); in the latter, we show that very similar results hold
for unbalanced data, with random covariates.

Here is another kind of generalization. We have assumed that =, is
I-uniform in the sense of Definition 1.7, but the arguments go through almost
without change for =} which make the joint distribution of the 6, absolutely
continuous, having a density (in R?") relative to 7 > bounded above by B* < «
and below by 5* > 0, where b* and B* do not depend on k. For the proof, let

o 0
= E wymE Z w
k=0 k=0

Then b*m < 7w* < B*w, and (b* /B*)7, < #f < (B*/b*)7,. Indeed, for any
events C and D, (b*/B*)w(C|D) < w*(C|D) < (B*/b*)w(C|D).

Our concern is with the consistency of Bayes estimates. Of course, consis-
tent estimates (based on other principles) are generally available. For example,
Stone (1982) gives consistent nearest-neighbor estimates for f and shows that
under smoothness conditions, these estimates achieve best possible rates of
convergence. Cox and O’Sullivan (1990) derived similar results for penalized
likelihood estimates of log(f/1 — f). O’Sullivan, Yandell and Raynor (1986)
describe applications. Leonard (1978) discusses connections between penalized
likelihood and Bayesian methods.
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There have been many other studies of nonparametric regression, using
nested increasing sequences of finite-dimensional approximations. Akaike’s
criterion was adapted to regression by Shibata (1981). Shibata considers
increasing families of regression functions, for instance, all polynomials of
degree k, or less with %, = o(n) as n — «. For each n, a model size &, <k,
is chosen to minimize estimated prediction error. This estimate is the sum of
bias and variance terms. Shibata proves that the bias term is asymptotically
smallest with his rule, but he does not address consistency issues. Schwartz
(1978) proposed a Bayesian version of model selection when the dimensionality
is bounded. Our paper can be viewed as an extension of Schwartz’s idea to the
infinite-dimensional case. For reviews of the literature on model selection, see
Breiman and Freedman (1983), Li (1986) or Shibata (1986).

There is related literature on sieves and orthogonal series. With sieves, one
considers an increasing family of finite-dimensional models in an infinite
dimensional space. A cut-off sequence %, 1 is chosen. With n data points, one
estimates the %,th model by maximum likelihood as in Geman and Hwang
(1982) or least squares as in Cox (1988). Also see Grenander (1981). With
appropriate smoothness conditions, %, can be chosen to get consistency. Cox
carries out the details for regression problems. Our paper puts a posterior
distribution on %, rather than imposing a sharp cut-off.

In the density-estimation context, orthogonal-series estimators consider
f(x) = Tk_,B; f.(x) for a fixed series of orthogonal functions { f,}. The weights
ﬁi are estimated from the data. The order % can be chosen by cross validation,
as suggested by Rudermo (1982) and Bowman (1984). For reviews, see Hall
(1987) or Eubank (1988). Our Bayes estimates are formally similar, being
infinite mixtures of finite-dimensional Bayes estimates, with data-driven
weights.

Our consistency proof shows that the prior piles up around the MLE, which
is consistent. There are similar ideas in Datta (1991) and Gilliland, Hannan
and Huang (1976). Of course, LaPlace (1774) deserves mention too.

2. Computing the posterior. Fix n, and consider a balanced design of
order n. The posterior 7, for = will be computed in Lemma 2.14. First, we
compute the posterior for 7, with & < n, then for 2 > n. To get started, fix
k <n.For s € Cp, let X, be the number of successes among subjects whose
covariate sequence begins with s. More formally, n(¢) is the response for
subject ¢ € C,, and

(2.1) X,= Y {n(t):t,=s;fori=1,...,k}

teC,

Assume that 7, is I'-uniform in the sense of Definition 1.7, so the success
probabilities 6, are independent as s ranges over C,, and 6, has the density
v, € I'. The parameter space is @. Let Q) be an underlying probability space, on
which the response variables 7(¢) and covariates £,(¢) are defined. For f € 0,
let P, be the probability on ) which makes the response variables and
covariates distributed in a balanced design so that (1.1) holds.
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As usual, 7, can be extended to a probability on ® x €, by the formula
m(A X B) = [ Pr{B}m{df}.

In this formula, A is a measurable subset of ® and B is a measurable subset
of ). We endow ® with the o-field generated by the strong L, topology:
f = P¢{B} is measurable because

f= Pl&y(t) = e, &5(t) = e5,...,&,(t) =€, n(t) = ¢}
is continuous, the e’s being 0 or 1. Write bin(m, ) for the binomial distribu-

tion, with m trials and success probability 6.

(2.2) LemMA.  Suppose k < n and 1, is T-uniform. With respect to the prior
Ty, the pairs (6, X,) are independent as s ranges over C,. The parameter 0,
has density y, € T. Given 0,, the number of successes X, is bin(2"*, 0,).

The proof of Lemma 2.2 is omitted as routine. In Lemma 2.2 and similar
contexts, ), is viewed as a probability on ® X Q. For y eI, m = 1,2,... and
Jj=0,1,...,m,let

6/(1 — 6)" Vy(6)
d(m,j,v)

(2.3a) y(m,j,*):0—>

b
where the normalizing constant is

(2.3b) d(m. jy) = [[07(1 ~ 0)" Ty(6) db.

To intrepret ¢, suppose a Bayesian with prior density y on 6 tosses a f-coin m
times. Then ¢(m, j,y) is the predictive probability of any particular sequence
of outcomes with j heads.

Let 7, , be the posterior distribution of f, computed relative to 7 5 given
the data from a design of order n. Lemma 2.4 computes this posterior for
k < n, and is almost immediate from Lemma 2.2.

(2.4) LEMMA. Suppose k <n and m, is T-uniform. According to the
posterior 1, ,, the success probabilities 0, are independent as s ranges over C,,
and 0, has density y,(2" %, X, 8) with respect to Lebesgue measure on [0, 1.

Turn now to 7, with k > n. Thére are 2* parameters 6,, indexed by
s € Cy; and 2" < 2* subjects indexed by ¢ € C,. Lemma 2.6 describes the
extension of m, to ® X () for designs of order % > n. The idea is simple. There
are 2* independent coin-tossing experiments, with random success probabili-
ties. And 2" of the coins actually get tossed—once each; as we say, there are
observations on those parameters. The remaining 2% — 2" coins do not get
tossed at all, and there are no observations on their parameters. The notation
is complicated, because we have to keep track of which parameters are which.
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According to theory &, covariates beyond the £th do not matter. For subject

t € C,, covariates n + 1,..., k are denoted ¢, (?),..., &,(¢): these are ran-
dom. Let 7, be the first 2 covariates for subject ¢, that is,
(2.5) T, =t,&,.4(8),...,&(t) € C,.

Let C} ={r;: t € C,}, so C; is a random subset of C,, and |C}f| = 2". Let
Ci* = C, \ C}, so |Cj*| = 2F — 27,

The parameters with observations are indexed by s € C}; the others, by
s € Ci*. (The number of observations per parameter is either 1 or 0.) In other
terms, C; is the set of k-strings of covariates for subjects in the design of
order n < k; C* is the set of k-strings of covariates for subjects not in the
design: the response 7, has not been observed at stage n < & for s € C;**, so
no distribution is given for 7, in Lemmas 2.6 and 2.4. The proof of Lemma 2.6
is routine, and Lemma 2.7 follows. [If £ = n, C}* is empty, and the formula-
tions in (2.2)-(2.4) apply as well.]

(2.6) LEMMA. Suppose k >n and ), is T-uniform. Condition on the
covariates for the 2" subjects. With respect to the prior m,,

(6,,m):teC, and 6,:seCy*

are all independent; 0, has density v, €I forall s € C,. Fort € C,, given 6, ,
the response variable "h is 1 with probability 6,, and 0 with probabzlzty 1- 0

(2.7 LEMMA. Suppose k >n and w, is T-uniform. According to the
posterior T, ,, the success probabilities 6, are independent as s ranges over C,.
Ift € C,, then 0, has density v,(1,7,, 0) with respect to Lebesgue measure on
[0,1). If s € C}¥*, then 0, has density y, € T.

To compute the posterior relative to 7, the m,-predictive probability of the
data is needed. To set up the notation, recall the normalizing constant ¢ from
(2.3b). Let

(2.8) Prn= 11 6(2"7% X,,y,) forO<k<n.
seC,
Recall 7, from (2.5). Let
(2.9) = IT ¢(1, M Y,,) fork>n.
teC,

By Lemmas 2.2 and 2.6, p, , is the m,-predictive probability of the data.
Before going on to compute the posterior relative to 7, we pause to rewrite
(2.9) in terms of entropy. Recall from Definition 1.7 that the prior means fit
together into the function g,, which is constant on each ¢ € C,, provided
n > n,. Write g.(¢) for the common value of g(x) when x € C, but x; = ¢; for
l1<j<n.
Define the relative entropy function H(p, #) as usual:

(2.10) H(p,0) =plogd + (1 —p)log(1l - 6),
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unless p =60 =0 or p =60 =1. The function H is left undefined at the
corners, where it has bad singularities.

(2.11) LEMMA.  Suppose the designs are balanced and the m, are T-uni-
form. For all sufficiently large n, for all k > n,

logpy.= X H[m,gt)].

teC,

Proor. If m is 0 or 1, and g, = [307,(0)d6, then log ¢(1,7,y,) =
nlog g, + (1 — mlog(1 - g,) = H(n, g,). So

logp, ,= X H(n,&,,).

teC,

If t€C, and n > n,, then g, is constant on ¢ and g, = g(¢), by Definition
1.7 of T'-uniformity. O

Turn now to the posterior 7,, computed relative to 7. Informally, the
“theory index” % in (1.2) is a parameter, which has a posterior distribution
relative to 7. Let

(212) wk,n = wkpk,n‘
Now, m,{data}/m{data} = 0, ,/L%_o0, ,. So

(213) ﬁn(k) = wk,n/ E wk,n'
k=0

As Lemma 2.14 shows, 7, is a mixture of the posteriors 7, ,, with weights
equal to the w, , of (2.12).

(2.14) LEMMA.  Suppose w is hierarchical in the sense of (1.2), and the m,
are I'-uniform. Given the data from a design of order n, the posterior is

or Lot B

The proof is omitted as routine.

ReEMARK. The Bayes estimate of f under quadratic loss is just the mixture
Zk oWh,n fk n/ Lh=oWp, n, Where fk » 18 the mean of 7, . This posterior mean
is eas11y computed From the pomt of view of =, there are 2* independent
experiments going on, one for each type of subject. These types are indexed by
s € C,. For each type of subject, there are 2" * tosses of coin, which lands
heads with probability 6,; and 7, puts prior density y, on 6,. So, you compute
the posterior mean of y, given the number of successes among the subjects of
type s. And that is the value of f, (x) for x with x; =s;, 1 <j < k.
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3. Some estimates. The entropy function H is defined as usual:

_|plogp + (1-p)log(l —p), for0<p<1,
(3.1) H(p) = {O, forp =0or1.

Recall ¢(m, j,y), the normalizing constant from (2.3b). If y = 1, abbreviate
d)(m’ j’ 7) to ¢(m, ]) Then

J10m =)

¢(m,Jj) = (m+1)!

The ¢(m, j, y) can be estimated using ¢*, defined as follows. For m = 1,2, ...
and j=0,...,m,let p =j/m and

R 1
emH®) . = .‘/_27,.‘/13(1 -p), for0<j<m,
(3.2) ¢*(m,j) =

1
—, for j =0or m.
m

(8.3) LEMMA. Letm =1,2,....Let yeT,500<b<y<B<wx.

(@) There are 0 <a <A <o such that for all yeT and all j=
071""’m’ a < d)(m"]”y)/(ﬁ*(m’.]) <A'

() 1/[12™(m + 1] < ¢(m, j) < 1/(m + 1).

(©) —m <log ¢(m, j) < —log(m + 1).

(d —m +logb < log ¢(m, j,vy) <O.

(e) ¢(m, j,y) <B/(m + 1).

Proor. Claim (a). Clearly, b¢(m, j) < ¢(m, j,y) < Bp(m, j). If j = O(1)
or m — j = O(1), the result is clear. Now use Stirling’s formula on ¢(m, j) for
J and m — j large.

Claim (b). Clearly,

(3.4) ¢(m,j)=1/[(m+1)(’;?)] and 1s(’l’?)<2m.

Claim (c). For the upper bound, use (3.4). For the lower bound, ('Jn) takes
its maximum when j = [m /2]. Let

g(m) =(m + 1)([mn;2’])e"" form=1,2,....

By a direct calculation, g(m) decreases as m increases for m > 2. For m = 1
or 2, by another direct calculation, q(m) < 1.

Claim (d). The upper bound is clear, since ¢(m, j, y) represents a probabil-
ity. The lower bound is immediate from (c), because y > b as part of the
definition of T.
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Claim (e). ¢(m, j,y) < Bp(m, j) < B/(m + 1) because y < B as part of
the definition of T, and ¢(m, j) is maximum at j = 0 or m. O

ReEMARK. If vy is smooth and e <p <1 — ¢ for € > 0, then

1
log 9(m. . 7) = log 6*(m. J) = »(8) + 0 =
We will not need such estimates for proving Theorem 1.8. The constant
V27 y/p(1 — p) in (3.2) and @, A in Lemma 3.3a will be absorbed into error
terms. What counts is exp[ mH(p)]. For Theorem 1.9, the Ym matters too; p
near 0 or 1 for theories £ near n is a more technical nuisance. The bounds in
Lemma 3.3a, d and e are uniform in y € I'; this will be used in the proofs. For
related expansions of ¢, see Johnson (1967, 1970) or Ghosh, Sinha and Joshi
(1982).
To state the next result, extend ¢(m, j,vy) in (2.3b) from integer j =
0,1,...,m toreal x in [0, m].

(3.5) LEMMA. x — log ¢(m, x,y) is strictly convex.

Proor. The second derivative with respect to x is

j{log - f ; }2q(0) do — {flog - ﬁ -a(6) do}z,

where

q(0) = 0(1 = 0)" "y(8)/d(m,x,7).
In particular, g is a density and the second derivative is a variance. O
Of course, there are more general results for exponential families; see
Lehmann (1983, page 26 ff. Recall the predictive probabilities p, , from (2.8)

and (2.9). We will be estimating these by taking logs, so expected values come
into the calculation. To set up the notation, for m = 1,2,... let

1
(3.6) ([/(m,p,y)=E{;log¢>(m,X,'y)}, where X is bin(m, p).

(8.7 LEMMA. Let Y = L |m,, the m,;’s being independent and 0 — 1 valued
with P{n; = 1} = p;. Let (1/m)L" p, = p. Then

1
E{E log¢(m,Y,y)} <¢(m,p,v).

Proor. This follows from Lemma 3.5, by Theorem 3 in Hoeffding (1956).
a
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(3.8) LEMMA. Define the entropy function H by (3.1). For all p € [0, 1] and
Y € I

(@ —1+([Jogb)/m] < y(m,p,y) <0 form=1,2,....
(b) For m = 2,3,... there is an ¢,, > 0, which does not depend on p or
v, such that

¢(m’p’7) = H(p) T €

Proor. Claim (a). Use Lemma 3.3d.
Claim (b). For any particular p and vy, we will show

(3.9) ¢(m,p,y) <H(p).

Indeed, consider two laws P and @ for X = (Xj,..., X,,). According to P, the
X, are iid, each being 1 with probability p and 0 with probability 1 — p. Let @
be the predictive probability for X, for a Bayesian who has a prior density y on
p. Now P # @ provided m > 1, so

Ep{log Q(X)} < Ep{log P(X)}.
The left-hand side is my(m, p, y); the right-hand side is mH(p). This proves
(3.9). Now put the weak star topology on Pr{0, 1], the space of probabilities on
[0, 1]. The class I is compact, and (m, - , - ) is continuous on [0, 1] X T'. This
proves (b). O

REMARK. When m =1, (1, g,v) = H(g), where g = [60y(6)d0; if p + g,
¥(1, p,y) < H(g). Of course, ¢(1, p,y) = H(p). Intuitively, tossing a coin with
a random parameter is the same as tossing an ordinary coin—provided you
only toss it once. This may seem like a trivial observation, but it is the root
cause of the inconsistency of Bayes estimates in Theorem 1.9.

(3.10) LEMMA. Let u and v be two probabilities on ©. The variation
distance is llu — vl = 2sup,|u(A) — v(A)|. Let ¢ and d be positive real num-
bers. Then

cu +dv
c+d

—u”s luw —vil <
C

c+d +d’

The routine proof of Lemma 3.10 is omitted. The following calculations are
standard, but are included for ease of reference. Recall the entropy function H
from (3.1). Since H is strictly convex,

H(p) + H'(pXx — p) < H(x) for all x € [0, 1], with equality
only at x = p.
For p €(0,1) and x + p, let

H(x) - H(p) - H'(p)(x —p)
e d b} .

(x = p)

Clearly, H, can be extended to a continuous, positive function on [0, 1], whose
value at p is (1/2)H"(p).

(3.11)

(3.12) H,x

P
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(3.13) DEFINITION. Let H*(p) be the maximum of H, on [0, 1].

Reorganizing slightly, we get

H(x) < H(p) + H'(pXx — p) + H*(pXx — p)? for all x € [0,1]
(3.14) . : 1],
with equality only at x = p.
(3.15) CoroLLARY. Let X be a random variable taking values in the unit
interval. Suppose E{X} = p and var{X} = ¢% > 0. Then

H(p) <E{H(X)} < H(p) +a’H*(p).

4. Proof of Theorem 1.8. Before proving Theorem 1.8, we outline the
argument; and a brief review of the notation may be helpful. The parameter
space © consists of all measurable functions from C, = {0, 1}* to [0, 1]; func-
tions which are equal a.e. are identified. We put the L, metric on ®, making it
complete and separable but not compact. For f € 0, f, will be the conditional
expectation of f given the first £ covariates: See (4.1).

Let Pr(®) be the space of probabilities on ®. Endow Pr(®) with the weak
star topology; for a discussion of weak star topologies, see Parthasarathy
(1967). Then 7 is consistent at f € @ if 7, converges a.s. [p,] to point mass
at f. The prior 7 is defined by (1.2), making the ‘“theory index” % a
parameter: k says how many covariates come into the formula (1.1).

We now outline the proof of Theorem 1.8 in the case f = f, for no k. There
is a posterior distribution for %, computed in (2.13). Fix a large positive integer
K. Theories with 2 < K or & > n — K have negligible posterior mass. For the
“mid-zone,” theories £ with K <k <n — K, the posterior piles up around
the MLE, and the MLE is close to the true parameter.

The assertion about the theory weights has to be proved almost surely as
n — o, and the predictive probabilities p, , of equations (2.8) and (2.9) have to
be estimated. For each £, p, , — 0 a.s. at the rate exp{2"« + 0(2")}, where « is
an entropy. To make this precise, zones are needed.

ZoNE I. 0 <k <K, where K is a fixed positive integer.

The posterior weight on theory % is of order exp[2"k + 0(2")], where the
entropy « = [H(f,) is negative, but increases with k. As the data come in,
early theories become less likely than later ones.

THE MID-ZONE. K <k <n — K. These are the theories that count—as a
group. No particular theory survives.

ZoNE II. n — K <k < n. Fix j. The posterior weight on theory n — j is of
order exp[2”«’ + 0(2")], where k' < [H(f) — ¢; and ¢; > 0. Theory n —j yields
to theory I, where [ is fixed but large. In the long run, theory ! becomes
obsolete too, but it stays plausible enough to eliminate theory n — j.
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ZonNE III. n < k < . The total posterior weight on theories & > n is of
order exp[2”«” + 0(2")], where the relative entropy «" = [H(f, g.) < [H(f),
because f # g, by assumption. Again, Zone III bows to theory I.

The posterior piles up around the MLE. For the theories that matter, the
posterior 7, , piles up around the MLE p,, which takes the value p, =
X,/2""* on s € C,: See (2.1) or Definition 4.7. (The MLE depends on n and
the data, not shown in the notation.) The piling-up has to be established
uniformly in £ for 1 < k£ < n — K, almost surely as n — .

The MLE is nearly right. ||p, — f,ll2 is small uniformly in % for 1 <k <
n — K, almost surely as n — «. (Alas, p, — f, will not converge to 0 for
k = n — K with K finite, because there are only a finite number of observa-
tions on each type of subject.) On the other hand, || f, — flls = 0 as & — ». So
), Piles up around f, completing the sketch of proof.

Theory weights, Zone I, 0 < k < K. Coming back to rigor, for x € C_ =
{0,1 and s € C, = {0, 1}%, let

(4.1) fu(s) = fcf(sx)/\‘”(dx) = E{f|(%1,...,%,) = s}.

We may extend f, to C, by setting f,.(x) = f,(x4,...,x,). Then
(4.2) fu(x) = E{f]xq, ..., %}

(4.3) LEMMA. The sequence f, is a martingale, converging to f a.e. relative
toX*andin Ly, so llf, —fllz > 0 as k —> .

(4.4) LEMMA. The sequence h) = [c HI[ f,(x)]IX"(dx) is nondecreasing, and
converges to [c H[ f(x)IX(dx). Furthermore, h; < h, forj <k unless f; = f,.

Lemma 4.3 is routine. Lemma 4.4 follows fram lemma 4.3 and densen’s
inequality, because the entropy function H in (3.1) is strictly convex.

(4.5) LEmMa. In a balanced design of order n, the response variables m(t)
are independent for t € C,, and Pi{n(¢) = 1} = f,(2).

The probability in Lemma 4.5 is unconditional, averaged over the covari-
ates; so is independence; and the proof is routine. P; is the probability on the
sample space () that makes the response variables and covariates distributed
like balanced designs, according to (1.1). Unless noted otherwise, expectations
and variances are relative to P;.

Recall X, from (2.1); more explicitly,

(4.6) X,= ¥ n(su).

ueC,_,
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(4.7) DerFINITION. Let p, = X,/2" % The MLE p, takes the value p, on
s € C,. We extend p,, to C, by setting p,(x) = p,(x,, ..., x;).

(4.8) LEMMA.  For a balanced design of order n and s € C, with k < n, the
variables p, are independent, 0 < p, <1, E{p} = f,(s), and varp, <
1/(4 - 2nF),

The routine proof is omitted.

Lemmas 4.9 and 4.10 and Corollary 4.11 are first results on the MLE, more
specifically, the merging of p, with f,. Corollary 4.11 will be used in proving
Lemma 4.12, which estimates p, ,.

(4.9) LEMMA. Fix £ with 0 < e < 1. For a balanced design of order n and
se€C, withk <n:

(@) Plp, — fr(s)l > ¢} < 1/(422"7F),
() PAlp, — fi(s)l > &) < 2exp{—(1/4)e2"7*}.

Proor. Claim (a). Use Lemma 4.8 and Chebychev’s inequality.

Claim (b). Essentially, this is Bernstein’s inequality. To get the precise form
of the bound, use (4) in Freedman (1973), noting that ¢ < 1 and f,(s) < 1.
Also see Gilliland, Hannan and Huang (1976) or Theorem 2 in Hoeffding
(1963). O

(4.10) LEMMA. Choose D so that D log2 > 1. Fix € > 0. Almost surely, for
all sufficiently large n, in balanced designs of order n, simultaneously for all
s € C, withk <n —Dlogn,

|Bs = fu(s)| <e.
Note. ‘““Almost sure” statements are with respect to P;.

Proor. Use Lemma 4.9b and the Borel-Cantelli lemma. The critical sum
is bounded above by

Y 2 exp{—%ez2"‘k}

< Y2t Y 27exp{-$e%2/}

n=1 j=Dlogn

(4.11) CoroLLARY. With balanced designs of order n, as n — «:

(@) sup,{llp, — fille: 0 <k < n — Dlog n} = 0 almost surely.
(b) supy{llp, — frll2: 0 <k <n — Dlog n} - 0 almost surely.
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(4.12) LEMMA. For each k, with balanced designs and T-uniform 1,
almost surely as n — o,

1 o
g7 108 o1 = [ H[f(3)]X(d).

Proor. Recall ¢ and p from (2 3b and 2.8). Clearly,

3y 10g¢(2" —k Xs,ys)

seCy,

1

(4.13) o log p;, , = n
Let C? be the set of s € C, with f,(s) = 0. Likewise, s € C} if and only if
fi(s) = 1. And s € Cy if and only if 0 < f,(s) < 1. We split the sum in (4.13)
into three corresponding parts, and deal with them separately. If s € C?, then
X, =0ae. and ¢(2"* Xs, v,) < B/(1 + 2" *) by Lemma 3.3e. The contrlbu-
tion to (4.13) from Ck is o(1). Of course, if s € C?, then H[f,(s)] =
because H(0) = 0. Likewise for C;. For s € C;, we use Lemma 3.3a to
estimate ¢. As n — o, the right-hand side of (4.13) is almost surely

Y 2" "*H(p,) +o(1) = 2k L H[fi(s)] +o(1).

s€C, seC,

2n
Indeed, by Corollary 4.11, p, is close to f,(s); and H is continuous. Finally,

2k L H[fu(s)] = [ H[fu(x)]¥(dw). o

sEC,

ReMARk. Thus, p, , and @, , are of order exp[x2" + 0(2")] where «
depends on k. The idea is that k increases with %, so posterior mass shifts to
higher-order theories as more data comes in. In Lemma 4.12, % is fixed and C,
is finite, so use of Corollary 4.11 is overkill.

(4.14) Lemma. Fix K > 0. Suppose f # fx. With balanced designs and
l-uniform ,,

K )
Y u”)k,n/ Y. Wy, = 0 almost surelyasn — .

Proor. Fix k < K. Consider the indices [ with w; > 0, so [ - « and
fi—f Find I >K with w, >0 and f, #fg, so f,#f, for all k <K <.
Then [H(f,)dX* < [H(f,)dX" by Lemma 4.4. By Lemma 4.12,

1 1
hm =7 logp, , < lim —logp, ,.
n—>oo 2 v
By (2.12), w, ./, , = 0. O

Informally, @, , and @, , are of order exp[«2" + 0(2")] and exp[A2" +
0(2)], respectively; and k = JH(f,)dXx* < [H(f,)dX* = A. So theory k yields
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to theory I, and Zone I yields to the mid-zone, completing the argument for
Zone I

Theory weights, Zone II, n — K <k <n. Fix j with 0 <j < K. Let k =
n —j. Asin (4.13),

1
4.1 = 1 i = Z
( 5) on ngn—j,n on—J se%_. 59
where
1 J
(416) Zs = EJ- 10g ¢(2 ’ Xs’ ys);

X, was defined in (4.6) and ¢ in (2.3b).

(4.17) LEMMA.  Fix j with 0 <j < K. With balanced designs and T-uniform
T, almost surely, as n — o,

Z Zs_ Z E{Zs} _)O

seC,_; seC,_;

2

Proor. By Definition 1.7 of I'-uniformity, y, > b > 0 and then by Lemma
3.3d the Z, are bounded between —G and 0, where G = 1 + [log b|/2. So
|Z, — E{Z}| < G and var{Z,} < G*. Furthermore, the Z, are independent as s
ranges over C,, by Lemma 4.8. By Chebychev’s inequality, for § > 0,

Pf{ X Z,- X Ez)> 62n—f} < G*/(8%2"7),

seC,_; seC, _
n—j n-y

which sums in n for each fixed j. The Borel-Cantelli lemma completes the
proof. O

(4.18) LEMMA. Fixj=1,2,.... Let m = 2/. Recall ¢,, > 0 from Lemma
3.8b. With balanced designs and T-uniform m,, almost surely,

1 .
limsupz—n logp,_;, < (fc H[ f(x)]X(dx) | — &,,-

n—o

Proor. Recall the definition of Z, from (4.16). By Lemmas 4.5, 4.8
and 3.7,

(4.19) E(Z) <¢(2, fuj(5),7%)-
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For 6 > 0, and n sufficiently large,

1 1
7 108Pu =55 L Z, by (4.15)

seC,_,
<—— Y E{Z}+§5 byLemmad.l7
2" e,
< 2n—j E (/1(2'}7 fn—j(8)>ys) + 4 by (419)
seC,_,
< f H[fn_j(x)]/\“(dx) —¢€, +6 byLemma3.8b
Ce

- / H[ f(x)]X*(dx) —¢,, + 8 by Lemma4.4.
C,
This proves Lemma 4.18, since § was arbitrary. O

(4.20) LemmaA.  Fix K > 0. With balanced designs and T-uniform ,,
n—1

o
Y wk,n/ Y, W, ,— 0 almostsurelyasn — .
K k=0

k=n-

Proor. Fix j with 1 <j < K. By Lemma 4.18, almost surely, for all
sufficiently large n,

1
(4.21) 57 108 P < fH( £)dx —e,/2.
Using Lemma 4.4, find [ large with w, > 0 and
(4.22) JH(f)dx > [H(f)dX —e,/4.
Combine (4.21) and (4.22): almost surely, for all sufficiently large n,

1
(4.23) 57 108 o0 < fH( £,)dx —e, /4.
By Lemma 4.12, almost surely, for all sufficiently large n,

1
(4.24) 77 108 P = [H(f) dX —e,./8.
Combine (4.23) and (4.24):
wn—j,n/wl,n - 0. o

Informally, @,_; , and @, , are of order exp[«2" + 0o(2")] and exp[A2" +
0(2")], respectively; and k < A, because « is further below [H(f)dA*. Thus,
theory n — j yields to theory /, and Zone II yields to the mid-zone.
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Theory weights, Zone III, n < k < », Abbreviate Ly, , = log p;, ,. The rel-
ative entropy function H(-,-) was defined in (2.10). Write g(¢) for the
common value of g (x) over x € C, with x;=1t; for 1 <j <n. By Lemma
2.11, for all sufficiently large n,

(4.25) L,,= Y H[n,gJt)] forall k> n.

,n
teC,

In particular, in this range L, , does not depend on k. Let

(4.26) W= T HIG0, &A1) =2"[ H(f,.8)dxr
and
Tn = ZC [H[nt’goo(t)] _H[fn(t)’gw(t)]]
(4.27) £.(t)
=t§é [ = fa(£)]log w(t)]

where g, is bounded away from 0 and 1 by Definition 1.7 of TI'-uniformity.
Clearly,

(4.28) Ly,=h%+T, forallk>n.

(4.29) Lemma.  With balanced designs and T-uniform ,, almost surely,
for all sufficiently large n, |T,| < V2" n.

Proor. Use Chebychev’s inequality and the Borel-Cantelli lemma. O

(4.30) LEmma.  Suppose f # g, With balanced designs and T-uniform Tk

almost surely as n — o,
[ o
Z wk,n Z Wy,
k=n k=0

Proor. Since f# g, (H(f)dX* — [H(f, g,)dX =& > 0. Now
1
it = [H(f,,8.) dX° by (4.26)
< [H( f,8.) dX +e/2

< /H(f) dx —e/2.

The second line holds for all sufficiently large n, because f, — f. Further-
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more, T, /2" < /4 for all sufficiently large n, by Lemma 4.29. By (4.28) and
(2.12),

Z wk,n = ( Z wk)exp(hﬂr‘z + Tn)
k=n

k=n

< (éowk)exp 2n[[H( f)dx — 8/4]).

As in Lemma 4.20, choose ! with w, > 0 and [H(f,)dX* > [H(f)dX* — /8.
By Lemma 4.12, almost surely, for all sufficiently large n,

W, > w, exp(2”[fH( f)dx — e/s]).

Thus, theories n,n + 1,... have negligible posterior weight, by comparison
with theory I. Here, n — o while [ is fixed but large. O

Informally, theories n,n + 1,... have total posterior weight of order
exp[k2” + o(2")]; theory ! has posterior weight of order exp[A2” + o(2™)];

= [H(f)d X" for | large, but « = [H(f, g.)dX* < [H(f)dA*. All theories in
Zone III, combined, yield to theory I. So Zone III is a posteriori dominated by
the mid-zone, completing the argument for Zone III.

Remark. If f=g,, so does f,, and [H(f,) will be constant for most
theories £—except for a few near 0 and a few just below n. This is a more
delicate case, to be considered in the next section. So far, it has only been
necessary to estimate p, , for one %k at a time; in the next section, uniform
estimates will be needed for ranges of &’s.

The posterior piles up around the MLE. Fix a nonnegative integer k, and
small positive numbers § and ¢. Define G C ©, X Q as follows: (f, w) € G if
and only if f€ @, and |0, — p,(w)| < ¢ for all but at most 62* strings s € C,.
The set G depends on 6, ¢, & and n.

(4.31) ProPOSITION. Fix 8, ¢, & > 0. Suppose the m, are I'-uniform, and
the designs are balanced. There is a K < o such that ), {G} > 1 — & for all
w€Qandalln,kwithK<k<n-K.

Proor. Corollary 2.6 in Diaconis and Freedman (1990) establishes that for
some y(g) > 0, for all s € C,, ‘

ﬁk,n{les _ﬁsl > 8} < 1/[1 + ¢(8)exp(2 . 2n—k . 82)]
<56/2 for0<k<n-K,

(4.32)

provided K Is large enough.
From the point of view of 7, ,, the events |6, — p,| > & are independent as
s ranges over C,, by Lemma 2.4; each event has probability at most §/2, by
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(4.32). The 7, ,-chance that more than §2* of these events occur can be
estimated by Chebychev’s inequality:

1 -7, G} <4/(8%2%) <&
for all n» and & with K < k <n — K, provided K is large enough. O

The basic neighborhoods N(f, 8, ) were given in Defintion 1.4, and the
MLE p, in Definition 4.7.

(4.33) CoroLLARY. Fix 8, €, 8 > 0. Suppose the ), are I'-uniform and the
designs are balanced. There is a K < » such that 7, {N(p,,8,¢)} > 1 — & for
all we Q andn,kwith K <k <n — K.

ReMARk. Although Corollary 2.6 in Diaconis and Freedman (1990) is cor-
rect, there is a minor error in the proof: ¢, should be defined as [g(h) —
2h%1/g(h), not g(h) — 2h% The h there corresponds to & in Proposition 4.31.
The ¢(h) is not related to (m, p), but is positive. It is remarkable that
Proposition 4.31 holds for all w: There is no exceptional null set to eliminate.

If f=f, for some k, theory %k counts; and Corollary 4.33 is not enough.
The next proposition covers theories in the range 0 <%k <n — Dlog n, and
modifies the definition of G. Fix ¢ > 0. Let (f,w) € G if and only if f€ O,
and |6, — p(w)| < ¢ for all s € C,,.

(4.34) ProprosiTION. Fix g, 8 > 0. Choose D < » so Dlog?2 > 1. Suppose
m, is T-uniform, and the designs are balanced. There is a finite ny, =
ny(e, &, D) such that 7, (G} > 1 — & forall o € Q and alln,k with 0 <k <
n — Dlog n, provided n > n,.

The proof of Proposition 4.34 is like that of Proposition 4.31, but using the
Bonferroni inequality:

1— 7, (G} < 28/[1 + y(e)exp(2 - 2" 7% - £2)] - 0

as n — o, uniformly for 2 < n — D log n. The range of %’s covered by Proposi-
tion 4.34 overlaps that of Proposition 4.31; however, Proposition 4.34 covers
k’s near 0 while Proposition 4.31 gets a little closer to n. For the %’s they both
cover, Proposition 4.34 is better.

For all £ with0 <% <n — Dlog n, p, stays close to f,(s) for all s € C,, as
in Lemma 4.10. The proof of Proposition 4.34 uses the condition % <
n — Dlog n from another perspective, to make the bound on 1 — 7, {G} go
to 0.

(4.35) CoroLLARY. Fix 8, €, 8' > 0. Suppose the m, are I'-uniform and the
designs are balanced. There is a finite ny = ny(e, 8, D) such that
T AN(Dy, 8,€)} > 1 — & forall w € Qandalln, kwith 0 <k <n — Dlogn,
provided n > n,.
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(4.36) CoroLLARY. Fix 8, ¢, 8 > 0. Suppose the m, are T-uniform and the
designs are balanced. There is a K < » such that 7, {N(p;,8,e)} > 1 — & for
all kwith 0 <k <n — K.

This is immediate from Corollaries 4.33 and 4.35.

The MLE is nearly right. Corollary 4.11 establishes merging of p, with f,
for 0 <k <n — Dlog n, where Dlog2 > 1. The next result establishes it for
Dlogn <k <n — K, the lower end of the range being redundant. Recall the
empirical probabilities p, from Definition 4.7, and f,,(s) from (4.1).

(4.37) PropoSITION.  Fix 8, ¢ > 0. Suppose the designs are balanced. There
is a positive, finite K such that, almost surely, for all sufficiently large n, for
all k with Ddogn < k < n — K, for fewer than 82* strings s € C,

(4.38) 1B, — fu(s)] > &.

ProOF. By Lemma 4.8, the events defined by (4.38) are independent as s
varies over C,. By Lemma 4.9a, each event has probability less than

1/(4-277% - £2) < 5/2

provided & < n — K and K is sufficiently large. The chance that 82* or more
of these events occur is at most 4 /(522*), by Chebychev’s inequality.
We must show

bn
(4.39) Y Y 1/2% <.
n k=a,

The lower limit on the inner sum is a, = D log n; the upper limit is b, =
n — K. The inner sum is of order 1/2% = O(1/nP¢2), This proves (4.39),
and the Borel-Cantelli lemma completes the argument. O

NoTeE. Proposition 4.37 involves the “objective” probability P, on the
sample space Q, while Proposition 4.31 involves the “‘subjective” 7, , on the
parameter space ®. However, the proofs are virtually the same.

(4.40) LEMMA. Fix ¢ > 0. Suppose the designs are balanced. There is a
K < o such that ||p, — fillz < & for all k with 0 <k <n — K, almost surely,
for all sufficiently large n. ‘

Proor. This is immediate from Lemma 4.10 and Proposition 4.37. O

Tue ProoF oF THEOREM 1.8. Combining Corollary 4.36 and Lemma 4.40
gives Lemma 4.41a; § and ¢ in Corollary 4.36 and Lemma 4.40 must be
computed from the § and ¢ in Lemma 4.41. Then use Lemma 4.3 to get
Lemma 4.41b.
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(4.41) LEMMA.  Fix 8, &, 8 > 0. Suppose the m, are T-uniform and the
designs are balanced. There is a K < « such that almost surely, for all
sufficiently large n:

(@) 7, AN(f,,8,e)} > 18 forall k with 0 <k <n — K.
() ), AN(f,6,)} >1—8 forall kwithK <k <n - K.

Suppose f = f,, for no k. Theorem 1.8 will now be proved under a side-condi-
tion, that f=f, for no k. Recall that ||u — v|| is the variation distance
between u, v € Pr(®); the posterior 7, was computed in Lemma 2.14. Fix a
large, finite K. Let

n—K n—K
~K - ~ -
Ty = Z wk,nﬂ-k n Z Wk n
k=K k=K

Combine Lemmas 4.14, 4.20, 4.30 and 3.10 to see that
|#, — #K|| > 0 as n — o, almost surely.

Fix 8, &, 6’ > 0 and use Lemma 4.41b: almost surely, for all sufficiently
large n, for all 2 with K <k <n — K,

ﬁk,n{N( fya’ 5)} >1-9".
So,
lim #,{N(f,68,¢)} =1 almost surely.

This completes the proof of Theorem 1.8, provided f = f, for no k.

Suppose f = fix for some K, but f # g,. The remaining case in the proof of
Theorem 1.8 can now be handled: Suppose f = fx for some K, but f# g,.
Lemma 4.14 shows that all theories £ < K can be ignored. Lemmas 4.20 and
4.30 eliminate k£ > n — K. Suppose K <k <n — K. Then f, =f, and the
argument proceeds from Lemma 4.41a rather than Lemma 4.41b. This com-
pletes the proof of Theorem 1.8. O

5. Proof of Theorem 1.9. The proof of Theorem 1.9 is rather like that of
Theorem 1.8, but now g, = f. In other words, the mean of the prior happens
to be exactly equal to the true f. Oddly, that is the delicate case. Indeed, p kon
turns out to be of order

exp[zn[H( f) - B(n ; k)2* + o[(n — k)2*]

for all & except those just less than n. Here, B = (1/2)log 2. We must estimate
L, ,=logp, , to order (n - k)2* or better, and uniformly in k. The factor
1/ vVm in (3.2) provides crucial leverage.

In Theorem 1.9, there are two cases, according as g, is constant or not.
Only the first case will be done, where the analysis is a bit easier. The second
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case can be handled by splitting ® and then using similar arguments: indeed,
8., 1s piecewise constant on ® by Definition 1.7.
We are assuming that for some p < (0, 1),

(5.1) f(x) =g x)=p forall x € C,.

Recall Definition 1.7 of I'-uniformity. The index n,; was defined in Definition
1.7, and g, = g,, for £ > n,. By Definition 1.7 and (4.1),

(5.2a) fr(x) =p forallx € C,andall 2 >0
and

(5.2b) g.x)=p foralxeC,
provided (as we will assume throughout)

(5.2¢) nx=n,;.

Results on L, , are summarized in Proposition 5.5. To motivate the form of
the results, consider L, , for k > n. By (4.26)-(4.28) and a bit of algebra
based on (5.1),

(5.3a) L,,=2"H(p)+T, fork=>n,

where

(5.3b) T,=H'(p) ¥ (.~ p).
teC,

The random term 7, is of order V2", and turns up (somewhat surprisingly) in
all the L, ,, even for k <n. Therefore, T, does not affect likelihood
ratios—and further terms in asymptotic expansions are needed. For 0 < % <
n — D log n, we can approximate L, , by

(5.4a) @, =2"H(p) + T, — B(n — k)2*.

For late &’s, there is an additional term. To define it, let N, be the number of
s € C, with X, =0or 2" % (For k <n — Dlog n, N, = 0 almost surely; but
for k near n, N, may be appreciable.) Let s € D, if and only if 0 < X, < 2"7%,
and let

(5.4b) Brn=—B(n k)N, + L logyp,(1-5,).

seD,

For n—Dlogn<k<n-—-1,we approx1mate Ly , by a, , + E, ,; all terms
in 5, , are negative, because 0 < p, < 1.

Assume the designs are balanced and the ), are I-uniform; (5.1)-(5.4) are
in force. Let ¢ be small and positive. Choose D with D log2 > 1. For Proposi-
tion 5.5e, choose K = K(¢) large but finite. Then, for Proposition 5.5f, choose
¢’ = ¢/(K) small but positive. Claims 5.5a—f hold uniformly in the indicated
range, for all sufficiently large n, almost surely. Write C,, C;, ... for positive,
finite constants, whose exact values do not matter. These constants are
distinguished by context from the sets of strings C,.
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(5.5) PROPOSITION.  Assume the conditions of Theorem 1.9 and (5.1)-(5.4).
Fix small positive ¢, ¢' and a large positive integer K. Almost surely, for all
sufficiently large n:

(@) For 0<k<n—Dlogn,I|L,, —a,,| <(C, +en)2k

(b) For Dlogn <k <n —Dlogn, L, , — a, | < Cy2~.

() Forn —Dlogn<k<n—1,IL, , — a,, — B, .| <Cy2~

(d) For 0O<k<n-Dlogn,IL,, - akn|<2e(n—k)2k

(e) Forn —Dlogn <k <n—K,I|L, , - a,, — B, | <2e(n — k)2*.
() Forn—-K<k<n-1, LanZ"[H(p)—a]

(g) Fork >n, Lkn—2”H(p)+T

Note. For k <(1/2)n, T, matters. For £ > (1/2 + 8)n, T, can be ab-
sorbed into the error terms in (b) and (c).

Some preliminary estimates are needed, before proving Proposition 5.5.

(5.6) LEMMA.  Suppose n > k and n > n,. As s varies over C,, the variables
X, are independent and bin(2" %, p).

Proor. In view of (5.1), this follows from Lemma 4.5 and (4.6). O

Recall the entropy function H from (8.1) and the bound H*(p) from
Definition 3.13. Recall that p, = X,/2" *. By Lemma 5.6 and Corollary 3.15,

(5.7) H(p) <E{H(p,)} <H(p) + H*(p)p(1 - p)/2"~*.
To help estimate L, ,, let
(5.8) Qun=2"" L (b,-p)"
seC,

(5.9) LEMMA. Supposen >k and n > n,.
(@ E{Q, ,} = 2p(1 - p).
(b) Let ¢ =1 — p. Then
var(Q, .} = 2*2p%¢*[1 + pg(1 - 6pq) /2" 7*].
(c) 15 - 2*p%q2/8 < var @, , < 27‘/6.

Proor. Claim (a) is elementary, starting from Lemma 5.6; and so is
(b) although the algebra is irritating; see Cramer [(1957), page 195]. Claim
(c) follows from (b). Indeed, 0 < pg < 1/4. The function x — x(1 — 6x) on
[0,1/4] is bounded between 1/24 and —1/8. O

(5.10) LEMMA.  Almost surely, for all sufficiently large n, for all k with
Dlogn<k<n-18,, <2~
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Proor. By Chebychev’s inequality and Lemma 5.9,
P{Q,,, > 2%} < const. /2.
But

o n—1
YooY 1/2k<w

n=1%k=Dlogn

because D log2 > 1. Now use the Borel-Cantelli lemma. O
A similar argument proves the next result.

(5.11) LEMMA. Fix 6 > 0. Almost surely, for all sufficiently large n, for all
kwith 0<k<n-1,Q,,<[p(l-p)+ sn]2k.

Recall T, from (5.3). Let
(512) Rk,n = 2n—k Z H(ﬁs)

seC,

(5.13) LEMMA. For all n, all k with 0 <k <n — 1, and all w € Q, with
H*(p) as defined in Definition 3.13,

|Ry,, — 2"H(p) — T,| < H*(P)Q%,»-
Proor. Expand H around p, using (3.11)-(3.14). After a bit of algebra,

R, .~ 2"H(p) — 2" *H'(p) L (b, —p)| <H*(P)Q%,n-

seC,
The linear term can be reorganized:
(5.14) 2" *H'(p) ¥ (b, —p) =H'(p) L (n,—p) =T,. O
seC, teC,

(5.15) LEMMA. Fix 8 > 0. Almost surely, for all sufficiently large n, for all
k<n—-DlognandallseC,, |p, —pl <8é.

Proor. This is a special case of Lemma 4.10. O

(5.16) LEMMA. Almost surely, for all sufficiently large n, for all k with
0<k<n-Dlogn, ,
|Lk’n -R, ,+B(n - k)2k| < const. 2*.
ProoF. L, , =logp,, =LX,cc, log $(2" % X, v,) by (2.8). Now use

Lemma 3.3a to estimate ¢. Informally, the term B(n — £)2* comes from the
1/Vm in (3.2). Because m = 2",

log(1/Vm) = —(3log2)(n — k) = —B(n — k).



2134 P. DIACONIS AND D. A. FREEDMAN

Summing over C,, with 2% terms, yields —B(n — k)2*. The constant terms in
(3.2) and (3.3a), namely,

log V21, log /B,(1 — B) , loga, log A,

add up to the error term O(2%). We are using Lemma 5.15 to keep p, bounded
away from 0 and 1. O

Proor oF ProrosiTION 5.5a. Combine Lemmas 5.11, 5.13 and 5.16. O

ProoF oF ProposITION 5.5b. Replace Lemma 5.11 by Lemma 5.10 in the
above. O

Proor ofF ProprosiTION 5.5¢. This is like (5.5b), and the proof of Lemma
5.16. Each s € C, with X, = 0 or 2"~ * contributes an extra term —B(n — k)
to L, ,, because (3.2) defines ¢*(m, j) differently for j = 0, m and 0 <j < m.

Furthermore, terms involving log/p,(1 — B,) have to be entered explicitly,
because p, can be close to 0 or 1. O

ProorF oF ProprosITION 5.5d. This is immediate from parts (a) — (b); use (a)
for theories & < Dlog n, and (b) for the range Dlogn <k <n — Dlogn. O

Proor ofF ProposITION 5.5e. This is immediate from Proposition 5.5¢c. O

Proor ofF ProrosiTiON 5.5f. This follows from Lemma 4.18, because
H(f)=H(p) by (5.1). O

Proor oF ProposITION 5.5g. This is just (5.3). O

This completes the proof of Proposition 5.5. The next lemma will help with
the consistency argument, and the elementary proof is omitted.

(5.17) LEMMA. Let n > 1.

(a) x > log(n — x) + x log2 is strictly concave on [0,n — 1], and strictly
increasing on [0,n — 2].
) (n — k2 >nfork=0,...,n— 1.

The next lemma will help with the inconsistency argument. Recall the basic
neighborhood N(f, §, ¢) from Definition 1.4; § and ¢ are not related to those
in Proposition 5.5.

(5.18) LEMMA. Suppose f = p and 1, is T-uniform. Fix § € (0,1/4). There
is a small positive & (which does not depend on 8) such that 7, {N(f,8,e)} <
1/2™ uniformly in k > n and w.
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ProOF. Recall that 0, is the set of functions that depend only on the first
% bits. The success probabilities 6,(h) were defined for A € ®, by Definition
1.6.If h € ©,, then h € N(f, ¢, ) if and only if |§ (h) — p| < € for all but 52
strings s € C,,.

Of course, 7, ,(0,) = 1. By Lemma 2.7, from the perspective of 7, ,, the
random variables 6, are independent as s ranges over Cj, and 6, has one of
the following densities:

Yoo ¥ (1,0,°), v (1,1,).

The latter two densities are defined in (2.3), and the normalizing constant
#(1,7,vy) in the denominator is estimated next. By (2.3b), ¢(1,1,7) =
[0y(0)dO > b[6d6 = b/2, and likewise for ¢(1,0,y). So each of the three
densities is bounded above by G = 2B /b. Therefore,

7 a{l0, — Pl <&} < Ge for each s € C,.

[The constants b and B appear in Definition 1.7 of I'-uniformity.]

Choose £ > 0 so small that Ge < 1/4. Then #, {N(f,$,e)} is bounded
above by the chance that, among 2* independent events of probability Ge <
1/4, at least (1 — 8)2* > (3/4)2* will occur. Chebychev’s inequality gives the
bound 1/2*% < 1/2". O

Proor oF THEOREM 1.9.

CramM (a). By (2.12), (5.4a) and Proposition 5.5d, for large n,
(5.19) w0, ,>w exp[2"H(p) +T,— B(n—1)2" - 2¢(n - l)2l].

By Proposition 5.5f, theories with n — K < k < n — 1 have negligible posterior
weight. By Proposition 5.5g, theories with £ > n have posterior weight

(5.20) kgnu”)k,n = (kgnwk)exp@"H(p) +T)

<exp(2"H(p) + T, — Bn2' - 8n2') for n large.

Now use the fact that ¢ in Proposition 5.5d is arbitrary: Choose it so small
that 2¢ < 8. Compare (5.19) and (5.20) to see that theories with 2 > n are
negligible. Indeed, Ij_,, , < W, , because —52' < —2¢2". The index ! is
fixed and the term (B + 2¢£)12' does not affect the reasoning. Posterior weight

concentrates on theories with 2 < n — K, and 7, , piles up around f, = f, by
Lemma 4.41a.

Cramv (b). This is the reverse side of (a). Consider only n with X} _,w, >
exp(—Bn2! + 6n2). As in (5.20),

ki Wy, , = (ki wk)exp[2"H(p) +T,]

> exp[2"H(p) +T,—Bn2' + 8n2l].

(5.21)
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Fix K > 1+ 2. For theories with £ < n — K, by Proposition 5.5d, 5.5¢ and
Lemma 5.17b,

n—K n—K
Y W, < X w,exp[2"H(p) + T, — B(n — k)2* + 2¢(n — k)2F]
k=0 k=1

(5.22)

< ( f wk)exp[z"H(p) + T, — B(n — 1)2' + 2¢(n — 1)2].
k=1

Since E, , < 0, it was dropped on the right-hand side of (5.22): see (5.4b).
Compare (5.21) and (5.22): L;2¢W, , < L3_,W, ,. Theories with n — K <
k < n — 1 are also negligible. It is theories with £ > n which dominate, and
7, is close in variation distance to

0

0
E:I”ﬁﬁhn E:ZDM
k=n k=n

by Lemma 3.10. Lemma 5.18 completes the proof: The posterior mass in a
basic neighborhood of f tends to 0. O
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