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NONPARAMETRIC REGRESSION WITH ERRORS IN VARIABLES

By JianQING FaN AND Young K. TRUONG

University of North Carolina

The effect of errors in variables in nonparametric regression estima-
tion is examined. To account for errors in covariates, deconvolution is
involved in the construction of a new class of kernel estimators. It is shown
that optimal local and global rates of convergence of these kernel estima-
tors can be characterized by the tail behavior of the characteristic function
of the error distribution. In fact, there are two types of rates of convergence
according to whether the error is ordinary smooth or super smooth. It is
also shown that these results hold uniformly over a class of joint distribu-
tions of the response and the covariate, which is rich enough for many
practical applications. Furthermore, to achieve optimality, we show that
the convergence rates of all possible estimators have a lower bound pos-
sessed by the kernel estimators.

1. Introduction. A tremendous amount of attention has been focused on
the problem of nonparametric regression estimation. Most of this attention
has been directed to data with standard structure. On the other hand, regres-
sion analysis with errors in variables is evolving rapidly. See, for example,
Anderson (1984), Carroll, Spiegelman, Lan, Bailey and Abbott (1984),
Stefanski (1985), Stefanski and Carroll (1985, 1987), Fuller (1987), Prentice
(1986), Bickel and Ritov (1987), Schafer (1987), Whittemore and Keller (1988)
and Whittemore (1989). However, the latter has centered around the paramet-
ric approach in which the regression function is assumed to take on a
particular functional form. The desire to examine the effect of errors in
variables in nonparametric regression leads to the subject of this paper.
Recently, Stefanski and Carroll (1991) give an interesting account on nonpara-
metric calibration, which is also useful for errors-in-variables modeling.

Let (X, Z) denote a pair of random variables and consider the problem of
estimating the regression function m(x) = E(Z|X = x). Due to the measuring
mechanism or the nature of the environment, the variable X is measured with
error and is not directly observable [Fuller (1987), page 2]. Instead, X is
observed through Y = X + ¢, where ¢ is a random disturbance. To make this
nonparametric problem identifiable, it is assumed that ¢ has a known distribu-
tion, and is independent of (X, Z). Given a random sample (Y}, Z,), ...,(Y,, Z,)
from the distribution of (Y, Z), three interesting issues arise naturally:
(a) How can a nonparametric regression function estimator be constructed to
reflect the fact that there are errors in variables? (b) What can be said about its
sampling behaviors? (c) Does it possess any optimal properties? The discus-
sions of these issues form the core of the paper.
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The first issue is addressed by considering the following estimator:

m(x) = LW, (Y., Y,)Z,
J

with weights W,, (Y,...,Y,) constructed to account for measurement errors.
The basic idea is closely related to the deconvolution techniques, and details
about this construction are given in Section 2.

The second issue is addressed by examining to what extent the distribution
of ¢ affects the rates of convergence of the preceding nonparametric estimator,
both locally and globally. These results depend on the smoothness of the error
distribution. A distribution is called ordinary smooth if the tails of its charac-
teristic function decay to 0 at an algebraic rate. It is called super smooth if its
characteristic function has tails approaching 0 exponentially fast. For example,
distributions such as double exponential and gamma are ordinary smooth,
whereas normal and Cauchy are super smooth. Section 3 contains a formal
definition of the smoothness of distributions.

Depending on the type of error distribution, the rates of convergence of the
kernel estimators are quite different—the local and global rates are slower in
the super smooth model, whereas they are faster in the ordinary smooth
model. These results also hold uniformly over a class of joint distributions of
(X, Z) which is rich enough for theoretical and practical applications. A
detailed discussion is given in Section 3.

The third issue is rate optimality. This concerns the construction of mini-
max lower bounds for the rates of convergence. Indeed, Section 4 shows that
these provide lower bounds for all possible estimators when the covariates are
measured with errors. These results hold locally and globally, as well as
uniformly over the aforementioned class of joint distributions of (X, Z).
Moreover, the effects of the smoothness of the error distribution on rates of
convergence are clearly demonstrated.

The effect of error distribution on the sampling properties of the proposed
estimators is further examined by examples based on simulation. This is
discussed in detail in Section 5. Concluding remarks are given in Section 6,
and proofs are presented in Section 7.

2. Kernel estimators. Let (X,,Z)),...,(X,, Z,) denote a random sam-
ple from the distribution of (X, Z) and let K(:) denote a kernel function.
Recall that in the case that X is observable, the kernel estimator of the
regression function E(Z|X = x) is obtained by averaging the Z’s with weights
proportional to K((x — X j)/hn):

1

x—X; R
nhn ;K( hn )Zj/fn(x),

ZK

(%)
(2.1)
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where h, is a smoothing parameter and £,(x) = (nk,) 'L, K(x — X,)/h,) is
a kernel estimator of the density of covariate X.

Since the variables X,,..., X, are not observable, the kernel estimator
f (x) will be constructed from Y X; +¢;,j=1,...,n. Denote the densities
of Yand X by fy(-) and fx(-), respectlvely Let F(') denote the distribution
function of . Then

Fr(2) = [ fxly — ) dE(=).

This suggests that the marginal density function fx(-) can be estimated by the
deconvolution method. Using a kernel function K(-) with a bandwidth 4,
Stefanski and Carroll (1990) consider the following estimator:

(2 )
o.(1 )
where ¢x(+) is the Fourier transform of the kernel function K(-), ¢.(-) is the

characteristic function of the error variable ¢ and ¢ (+) is the empirical
characteristic function:

(2.2) f(x)—— [ exp(—itx) b (th,) oy

N 1x
(1) = - §exp(ith).

See also Carroll and Hall (1988), Fan (1991a, 1991b), Liu and Taylor (1989)
and Zhang (1990) for recent contributions in this area.
Note that (2.2) can be rewritten in the kernel form

. 1 =z x—-Y,
(23) o) - a2
with
ox(2)
(2.4) K, (x)= o f exp(—ztx)d) (t/h)

Appealing to (2.1), (2.3) and (2.4), we propose the following kernel regres-
sion function estimator involving errors in variables:

o onf 2

1
i (h )Z/f(x)

n

(%) ZK

(2.5)

where f,(x) and K, (x) are defined by (2.3) and (2.4). This estimator will be
shown to possess many interesting asymptotic properties, which are the topic
of the next two sections.
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3. Performance of kernel estimators. The sampling behaviors of the
kernel estimators (2.5) considered in the previous section will be treated here.
The rates of convergence of these estimators depend on the smoothness of
error distributions, which can be classified into the following:

1. Super smooth of order B: If the characteristic function of the error distribu-
tion ¢,(+) satisfies

(8.1) dyltl* exp(—1tlf/v) < 19, (£)l < dylt1* exp(— 11 /y) ast > o,

where d, d;, B and vy are positive constants and B, and 3, are constants.
2. Ordinary smooth of order B: If the characteristic function of the error
distribution ¢,(-) satisfies

(3.2) doltl ™ < 1¢ ()l <d,lt|™® ast— o,

for positive constants d, d; and B.

For example,

N(0,1), with g = 2,
Super smooth distributions: 1 .
— 5 Cauchy(0,1), with 8 =1.
T1+x
aP

xP~1e™* (gamma), with 8 =p,
Ordinary smooth distributions: { I'(p) (8 ) Fp

3e” "l (double exponential), with g8 = 2.

The rates of convergence depend on B, the order of smoothness of the error
distribution. They also depend on the smoothness of the regression function
m(x) and regularity conditions on the marginal distribution. Specifically, these
conditions are as follows.

ConpITION 1.

(i) The characteristic function of the error distribution ¢_.(-) does not vanish.
(ii) Let a < b. The marginal density fx(-) of the unobserved X is bounded
away from 0 on the interval [a, b], and has a bounded kth derivative.

(iii) The regression function m(-) has a continuous kth derivative on [a, b].
(iv) The conditional second moment E(Z2%X = x) is continuous on [a, b].
Moreover, EZ?2 < o,

Condition (i) ensures that the estimator (2.5) is well defined. Conditions
(ii)-(iv) are analogous to those required in the ordinary nonparametric regres-
sion. Moreover, the rates depend on the following condition of the kernel
function.
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ConpiTION 2. The kernel K(-) is a kth-order kernel. Namely,
| Eydy=1, [ y*K(y)dy=0,

[myjK(y)dy=0 forj=1,...,k — 1.

Each of the following subsections contains two sets of results. The first set
addresses the local and global rates of convergence. The second addresses the
uniform results.

The global rates are described in terms of weighted L,-norms which are
defined as follows. Let g(-) denote a real-valued function on the line and let
w(+) be a nonnegative weight function. Put

1/p
lgOllup = { fle@Pu@de} ", 1<p<o 18- = suplw(x)g().

To state the uniform results, we need to introduce a class of joint densities
of (X, Z). In this class, Condition 1 should hold uniformly in order to obtain
uniform results. More precisely, let B denote a positive constant and let [a, b]
be a compact interval. Denote the smallest integer exceeding p/2 by r,:
r, = p/2. Define

Fvmp = {[(%,2): MO < B, j =1,k If()] < B,
3.3
) E(Z/"X = ) < B, min fx(x)>B""}.

Note that this class &, p , rephrases the standard condltlons so that they
hold uniformly. The condltlon E(Z|"?|1X = -) < B is used only for the ordinary
smooth case, and can be replaced by assuming bounded conditional density of
X given Z.

3.1. Super smooth error distributions. The rates of convergence of kernel
estimators under super smooth error models will be considered in this section.
Let

(k) (k)
bk(x)E(—l)k [m(x)]g{(x)] _m(x ) ( )

fx 1(x)f _u*K(u)du,

where fy is the marginal density of X. The following result treats the local
and global rates.

THEOREM 1. Suppose that Conditions 1 and 2 hold and that the first half
inequality of (3.1) is satisfied. Assume that ¢ (¢) has a bounded support on
lt| < M. Then, for bandwidth h, = c(log n)~'/# with ¢ > My(2/y)"/?,

E|(rh,(x) = m(%)) fu(2) /Fx ()

(3.4) 2
= (ckbk(x)) (log n)_'%/ﬁ(1 +0o(1))
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and

E[|((x) = m(x)) Fol) /()] da
— [*le8,(2)]* dx(log n) " *P(1 + o(1)).

The factor f,(x)/fx(x)—p 1) is used to avoid the technical difficulty of
the possibility of having 0 in the denominator of M(x) — m(x). It does not
seriously affect the understanding of the statistical properties of the proposed
estimator. Indeed, the proof of Theorem 1 also shows that

E((fn(x) — m(x)AYy,..., Y,) = (c*by(x)) (log n) " *#(1 + 0p(1)).

ReEMARK 1. Estimating regression functions in the presence of super smooth
errors is extremely difficult, since the rates of convergence are very slow.
Nevertheless, the variance of a kernel estimator can be very large (even going
to infinity), if ¢ < M(2/y)'/P, where c is the constant factor of the band-
width. However, when ¢ > M(2/y)'/#, the variance converges to 0 much
faster than the bias does.

The preceding rates also hold uniformly over %, p ,.

THEOREM 2. Suppose that ¢.(-) and K(+) satisfy the conditions of Theorem
1. If the weight function w(x) has a support [a, b], then

lim limsup sup P{im,(x) — m(x)| = d(log n) %) =0

d—>x n—o fe'g;e,B,z
and

lim limsup sup Pp{ll#,(-) = m()llup = d(logn) *?} =0, 1<p<o.

d—>w
n—oo  feF, g

An interesting feature of Theorem 2 is that 7 ,(-) converges to m(-) with
the same rates for both weighted L ,-loss (1 < p < ») and L,-loss. The result
is not true for the ordinary nonparametric regression, where the global rates
of convergence under L_-loss are slower [see Stone (1982)].

3.2. Ordinary smooth error distributions. This section considers kernel
estimators under ordinary smooth error distributions. To compute the vari-
ance of the kernel density explicitly, we need the following condition on the tail
of ¢.(¢), which is a variation of (3.2):

(3.5) tPp (t) »c, 1tFYP(H) = O0(1) ast — o,

for some constants ¢ # 0.
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THEOREM 3. Suppose Conditions 1 and 2 hold and that

S 1 ok + Wiy di <, [Tl (1) de < .

Then, under the ordinary smooth error distribution (3.5) and h, =
dn~1/@R+2B+D yyith d > 0,

A 1
Bl( (%) = m(2)) fu(x) /Fx(x)* = [b%:(x)hik + —g50(2)|(1+ o(1))

= O(n—2k/R(k+p)+1))

and
E[(,(x) = m(2)) (%) /fx(x) dx = O(n~24/0+9)+1)

where v(x) is defined by

1B
C

1 2
v(x) = m[_m bk (£ dtf_wfz(x — ) fx(x —v) dF(v),
with 7%(-) = E(Z — m(x))?X = ).

A reason for computing the bias and variance explicitly in Theorem 3 is that
such a result will be useful for the bandwidth selection and the asymptotic
normality of kernel regression estimators. To justify rate optimality, we need
the preceding results to hold uniformly in a class of densities. Formally, we
have the following theorem.

THEOREM 4. Under the conditions of Theorem 3 on ¢.(-), h, and K(-), if
the weight function has a bounded support [a, b], then
(3.6) lim limsup sup P{l#,(x) — m(x)l > dn~*/BE+AHI} = 0

7% now fed, g,
and

Jim timsup sup P, () = m(-)lup > dnH/EESH) ~ 0,
(3.7) €% m.p
1<p <.

REMARK 2. For a regression function with a bounded kth derivative, Table
1 illustrates various rates (optimal local and global rates) of convergence
according to the error distribution. The rate optimality will be justified in the
next section. Note that the optimal rates are achieved by kernel estimators
whose kernel and bandwidth satisfy the conditions of Theorems 2 and 4.

4. Rate optimality. It appears that the rates of convergence in the
previous section are slower than the ordinary rates for nonparametric regres-
sion in the absence of errors. In particular, for super smooth error distribu-



ERRORS-IN-VARIABLES REGRESSION 1907

TABLE 1

Error distribution Rates of convergence Error distribution Rates of convergence

N, 1) (log n)~%/2 Gamma(a, p) =k /@k+2p+1)
Cauchy(0, 1) (log n)* Double exponential n~k/@k+5)

tions such as the normal, the rates of the proposed estimators are extremely
slow (see subsection 3.1). In this section we show that it is not possible to
improve their performance, as far as rates of convergence are concerned. In
other words, the rates of convergence presented in Section 3 are in fact an
intrinsic part of regression problems with errors in variables, and are not an
artifact of kernel estimators.

In order to justify the preceding claim, we need to make some restrictions
on the distribution of the error variable . Note that the distribution function
of ¢ is assumed known and the conditions we impose here can be easily
checked. A formal statement of these conditions is given in Theorem 5, which
deals with local and global lower rates for super smooth cases.

THEOREM 5. Suppose that the characteristic function ¢(-) of error variable
& satisfies the second half inequality of (3.1) and that

(4.1) Pfle — ul < |ul*} = O(Iul_(“_“")) asu — o,

for some 0 < ay<1anda > 1+ a, Then, for any fixed point x, there exists
a positive constant D, such that

(42) liminfinf sup P{T,(x) — m(x) > Dl(logn)'k/ﬁ} >0,
noe Th fe S e

where inf; denotes the infimum over all possible estimators T . Moreover,

(4.3) liminfinf sup (logn)**/® EAT,(x) — m(x)I”>> 0.

n—oo 7
T, fe %y 5,2

Furthermore, if the weight function w(-) is positive and continuous on an
interval, then

(4.4) liminfinf sup (logn)*? EAT,(-) — m()lwp>0,¥1 <p < w.

n—ooo
T, feF B2

The tail condition (4.1) is a technical condition used in the proof of the
theorem. Note that this condition holds if f,(y) = O(ly|™®), @ > 1, where £.(+)
is the density of ¢ and exists for all super smooth distributions. Theorem 5
includes the commonly used super smooth distributions such as normal,
Cauchy and their mixtures as an error variable. The ordinary smooth cases,
which include all gamma distributions and symmetric gamma distributions
(e.g., double exponential distributions), are treated in the following theorem.



1908 J. FAN AND Y. K. TRUONG

THEOREM 6. Suppose that the characteristic function ¢.(-) of error variable
€ satisfies

|t PpU(t)| <d forj=0,1,2.
Then, for any fixed point x, there exists a positive constant Dy such that

(45) liminfinf sup P {T,(x) — m(x)l > Dyn*/Ek+A+1} > 0,

n—o
T, f€Fs B2

Moreover,

(4.6) liminfinf sup n2*/EEA+T BT (x) — m(x)* > 0.
noe T, fe S p,

Furthermore, if the weight function w(-) is positive and continuous on an
interval, then

(4.7) liminfinf sup n*/REAUE T (2) = m()llwp > 0,V1<p <.

n-—o 7
T, fE'Z,B,p

ReEMARK 3. Statements (4.2) and (4.5) indicate that the rates obtained in
Section 3 are indeed optimal.

The idea of establishing the lower bound is interesting and can be high-
lighted as follows. A detailed proof is deferred to Section 7. We use pointwise
estimation (4.2) and (4.5) to illustrate the idea; the global lower bound can be
treated similarly by combining the argument on pointwise estimation with the
idea of the adaptively local one-dimensional subproblem of Fan (1993). Note
that (4.3) and (4.6) follow directly from (4.2) and (4.5) via Chebyshev’s
inequality. The key of the proof is to reduce the lower bound for the regression
problem to that of a density estimation problem so that the known results
[Fan (1991a)] can be applied there.

To simplify our discussion, suppose that we wish to estimate the regression
function at x = 0. Let f, and g, denote symmetric density functions such
that [see (3.3)]

(4.8) min fo(x) > B! and | Ielgy(2) dz < B.

Put fi(x,2) = fy(x)gy(2). Then f, € F, 5, Now let hy(x) be a function
satisfying

(4.9) [ #ho(2)dz=j, j=0,1,

and let {a,} denote a sequence of positive numbers with a, — 0 [a, is given
by (4.13)]. Put

(4.10) fa(x,2) = fo(%)8o(2) + af H(x/a,)ho(2),

where the function H(-) will be specified in the proofs of Theorems 5 and 6 so
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that f, € &, 3 ,. By (4.8)-(4.10),
m,(0) =E(ZIX=0)=0 and m,(0) = E,(ZIX=0) = a® H(0) /f,(0).
Thus

(4.11) A =1my(0) — my(0)l/2 = o}, H(0) /(2 /0(0)).
Next, let

[ Fi(3,2) = [f}(y —x,2) dF(x), j = 1,2,

where F, is the cdf of the error distribution. If the y2-distance satisfies

o o (fixF,—foxF)" =k} ( « [H(/a,)*F]’
f_wf_w ) dydz = a?| —dz f_w For F dy

-= 89

or, equivalently,

. E3 2
(4.12) a2t (" LH( ;a; i dy=0(%),
—o0 0* e

then liminf, ,_ d, > 0 [see Donoho and Liu (1991)], where

d,- i (B b+ E1-4,))

with ¢ being a test statistic based on the random sample. Therefore,
inf sup P{|T,(0) — m(0) > A)

T, €% 5,2

> %i;lf(Pfl{ITn(O) = my(0) = A} + P[I1,(0) — my(0)l < A})

1
2 ﬁdn’

which is bounded away from 0. Hence a® is the lower rate given in (4.3) or
(4.5). It remains to determine a, from (4.12).

If we use the same argument for estimating a density fy at point 0 from the
convolution model Y = X + ¢, we will end up with the same problem of finding
the largest (in rate) a, from (4.12). The solution is found in Fan (1991a) and is
given by

y~YB(log n + ¢, loglogn) " for the super smooth case,
(4.13) a,= ¢ =1/ @h+2B+D)

where ¢, and c, are constants. This together with (4.11) gives the result on
the lower rate.

One final remark: Our method of perturbation is quite different from those
in the literature of nonparametric regression [see, e.g., Stone (1980, 1982)

for the ordinary smooth case,
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among others], where perturbation is applied directly to the regression func-
tion for some famous submodel (e.g., normal submodel). Our idea is to reduce
explicitly the problem to a related density estimation problem so that some
known facts from density estimation can be used. Indeed, the traditional
construction cannot easily handle our more sophisticated errors-in-variables
problems.

5. Simulations. In this section the sampling behavior of the deconvo-
luted kernel estimate (2.5) is examined by two simulated examples. In these
examples X is a normal random variable and is observed through Y = X + ¢,
where the variance of of the error ¢ is chosen so that the reliability ratio

[Fuller (1987)]:
3 Var( X) 070
C g+ Var(X)

Moreover, to study the effect of error distributions on the mean squared error
of the estimator (2.5), ¢ is taken to be a normal and a double exponential
random variable, respectively, in the following examples. Also, two different
regression models are considered:

my(x) =x3(1-x)> and m,(x) =1 + 4x.
ExampLE 1 (Normal errors). Let (Yy,Z)),...,(Y,,Z,) denote a random
sample from the distribution of (Y, Z), where
Y=X+e¢, X ~ N(0.5,0.25%), 8~N(O,0'02),

and Z is the response variable defined by

Z=m(X)+e, e€~N(0,0.00152)
or

Z=my(X)+e, e~N(0,0.252).

In this case, ¢,(¢) = exp(— 302t?). Suppose the kernel function K(-) has a
Fourier transform given by ¢4(¢) = (1 — ¢2)3. By (2.4),

(5.1) K, (x) = %folcos(tx)(l - t2)3exp(;0hti ) dt.

ExampLE 2 (Double exponential errors). We use the same model as in
Example 1 except ¢ now has a double exponential distribution:

f.(2) = (00/2) " exp(~ V22l /),

with the characteristic function

£ = ————.
*0) = T
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From (2.4),
1 = ) oot?
K, (x) = %[_wexp(—ux)gb,{(t) 1+ 2h dt
oit? 1 ) .
=K(x) + ﬁggf_mexp(—ztx)t b (t) dt
0-02 ”n
=K(x) - ZhiK (x).

If K(-) is further chosen to be the Gaussian kernel

K(x) = (\/_2?)_1 exp(—x2/2),
then

1 1
(5.2) K, (x)= Eexp(—gxz)[l -

For each model, we use three different kernels: (5.1), (56.2) and the Gaussian
(naive estimate by ignoring error). This is designed to test how much can be
gained by using deconvolution and to examine the robustness of the deconvo-
luted kernel (e.g., normal deconvoluted kernel for double exponential error).
Surprisingly, the deconvolution method is robust to the error assumption and
is significantly better than the naive estimate, as illustrated in Tables 2 and 3.
Note that as n increases, the ASE for the double exponential error decreases
faster than that for the normal error. Moreover, the ASE for the double
exponential error is smaller than the normal error. These are consistent with
our theory.

For each simulation, we compute the average squared error (ASE) at 101
grid points from 0.1 to 0.9 using a geometric sequence of 21 bandwidths
ranging in [0.1,0.15] for m,(-) and [0.02,0.2] for m,(-). The optimal band-
width is selected to minimize the ASE among these 21 candidates. In a sense,
this optimal bandwidth is the finite-sample optimal bandwidth. Notice that the
preceding intervals are chosen wide enough so that the optimal bandwidth is

0.2
2’;)2 (xz - 1)]‘

TABLE 2
SE (X107°) for estimating the model: m(x) = x3(1 — x)3

Error distributions

Double exponential error Normal error
Kernel n = 200 n = 400 n = 800 n = 200 n = 400 n = 800

(5.1) 4.0775 29173 2.3013 7.9870 6.7166 5.8625
(5.2) 4.4131 2.9248 2.5739 7.4348 7.0934 6.5009
Gaussian 8.1306 7.4412 7.1230 11.8280 11.2378 10.8662
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TABLE 3
SE for estimating the model: m(x) = 1 + 4x

Error distributions

Double exponential error Normal error

Kernel n = 200 n = 400 n = 800 n =200 n = 400 n = 800

(5.1) 0.04630 0.03075 0.02224 0.06292 0.05146 0.03920
(5.2 0.05052 0.04222 0.02785 0.07004 0.05578 0.04573
Gaussian 0.08244 0.07165 0.06582 0.10339 0.09272 0.08717

contained in the interior of these intervals. Tables 2 and 3 report the average
of these optimal ASE’s in 100 replications.

6. Concluding remarks. To enhance the applicability of nonparametric
regression, the present paper considers a new class of kernel estimators on
which an examination of the effect of measurement errors is based. This new
estimator is constructed by combining the ordinary kernel estimator and the
idea of deconvolution in density estimation. The estimator is shown to possess
various optimal properties that are characterized by the type of error distribu-
tions. Some insights have been gained in this investigation and are highlighted
as follows:

1. The difficulty of nonparametric regression with errors in variables depends
strongly on the smoothness of the error distribution: the smoother, the
harder. This provides a new understanding of the intrinsic features of the
problems in errors in variables.

2. As opposed to the approach to regression analysis with errors in variables
based on normal error distributions, our study shows that this popular
model suffers the drawback that the kernel estimators have extremely slow
rates of convergence. We also show that this is an intrinsic part of the
problem and is not an artifact of the kernel method.

3. For error distributions such as gamma or double exponential, the conver-
gent rates of the modified kernel estimators are reasonable and behave very
similarly to the usual kernel method. In fact, these results show that the
usual kernel approach is a special case of our method.

4. Traditional arguments for establishing lower bounds for nonparametric
regression estimators are difficult to generalize to the context of errors in
variables. The current approach develops these bounds by reducing the
regression problem to the corresponding density estimation problem via a
new line of arguments.

7. Proofs. Let f(x,z)and g(y, z) denote the joint densities of (X, Z) and
(Y, Z), respectively. By the independence of ¢ and (X, Z) and Y = X + ¢,

(7.1) £(0.2) = [ f(y—x,2) dF(x),
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where F,(-) is the cdf of . We always denote the marginal density of X by
fx(x).

7.1. Proof of Theorem 1. The proof of this theorem depends on the
following lemma.

LemMA 1. If ¢x(-) vanishes outside the interval [ — M,, M,], then

Ba,(x) = 5 [ [m(w) = m(@] K[ 52w a,

where
(7.2) A(x) = (nh,) " LK, ( )[z — m(x)].
ProoF. According to (7.1) and (2.4),
h,EA,(x) = EK, ((x - Yl)/hn)[Z1 - m(x)]
= [ El(x = 9)/h,)z = m()] (5, 2) dyds

P ()
- L) ?exp(—lt(x“y)/h )5t/

X[z —m(x)] f(y —u,z)dtdF.(u) dydz.

Note that the Fourier transform of convolution is equal to the product of the
transforms:

(7.3)

I exntity /) ([ £ = . 2) dE ()|

= du(t/h,) [~ exp(ity/h,) f(3,2) dy.

Using this, we obtain

27[ [ exn(=it(x = 5y /m, )ﬂ’jﬁh))f(y—u,z) dF,(u) dyadt
- . k(1)
B %f-wexp(_“x/ PO
(14) x ([“ exp(ity/hn)[j f(y - u,2) dF.(u) dy) dt

1

= ﬂf exp(—itx/h, )(d’x(t)[ exp(ity/h,) f(y, 2) dy)

- [ x5

| @,
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where the last equality follows from the inversion of the Fourier transform:

The inversion of the products of two Fourier transforms equals the convolu-
tion. By (7.3) and (7. 4)

Ba ) = 1 [ o= mNK (52 100, 2) dyae

[ ) - m1k( 52 e v 0

ProoF oF THEOREM 1. First of all,

fulz) A=)
fx(x) fx(x)

(75) (5(x) = m(2))

By Lemma 1, the “bias” is given by

BA(0) = - | Im(w) - m(a)] K[ “1
= Fe(2) by ()AL + o(1)).

Since X and ¢ are independent,

(7.6) )fX(u) du

n

1 x-Y
h? Var(A,(x)) = ;Var(Kn( 5 )[Z - m(x)])

1 x-Y\[? )
(7.7 < ;E Kn( Z ) [Z — m(x)]
_ 12X E)
- ;EKn( hn )T (X):

where 7%(X) = E(Z — m(x))?|X). Next let us evaluate the first factor in (7.7).
By the first half of (3.1), there exists a constant M such that

lp.(t)] > (do/2)tlP exp(— ¢l /y) for |t] > M.
Therefore, by the bounded support of ¢ (2),

o |pg(t)l
sgpIKn(x)I < [_wl(jz—;{/(h)—idt
mh, 16x(2)l
< 2[0

PO

(7.8)
4 M, =Bo 5
Y thnwK(t)l | exo(ie/h,Pry) de

= O(h,) + O(h;* exp(Mo/h, /7).
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It follows from (7.7) and h, = c(log n)~1/# that
1
(7.9) Var(A,(x))=0 Wexp(ZlMo/th/y) Er*(X) = o(h%).

Equation (3.4) now follows from the usual bias and variance decomposition.
Since (7.6) and (7.9) hold uniformly in x € (a, b), the second conclusion is also
valid. O

The proof of Theorem 2 depends on the follow lemma.

LEMMA 2. Under the conditions of Theorem 2,

sup Esuplf,(x) — fx(x)F =o(1), p=1,

fe b2 x

where £, is defined by (2.3).

Proor. It follows from (2.2) that

Bf() = [ ft) K[ 5

u
)du.

Thus
(7.10) sup suplEf,(x) — fx(x)l = o(1).

kB2 *

Next (2.2) leads to
2 © o, (t)l

It is easy to verify that there exists a constant ¢, such that
E[|d;n(t) - ng(t)I"] <c,n7P/2
Using this and Hélder’s inequality, we have

|px (th,)l
|.(2)]

= log(th,)l \*7
S(f_,w 6.(0) dt)

o | (th,)l
ey

() \"
( f w16, (t/1,)] t)

The conclusion follows from (7.8), (7.10) and (7.11). O

suplf,(x) — Ef,(x)l < ————$,(2) — by(2)lde.

(2m)" Esuplf, (x) ~ Ef,(x)F < E( | () - ¢Y(t>ldt)

(7.11)
E[ld,(t) — dy(t)P] dt
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7.2. Proof of Theorem 2. By (7.5) and Lemma 2, we need to show
sup EsuplA,(x)?<2 sup suplEA,(x)?

f€F B,2 x f€Fh 52 =
(7.12) +2 sup EsuplA,(x) — EA, (x)
f€ % b2 x

= O((log n)_zk/ﬁ).
By (7.6),
sup supl|EA,(x)I* = O(h%).

feFp2 x

Thus we need only to argue that the second term in (7.12) has the right order.
Set

Uj(¢) = exp(itY;)Z; - Eexp(itY,)Z,
and
Vi(¢) = exp(itY;) — E exp(itY;).
Note that
Im(x)l < (E(1ZI"|X = x))"’» < BY/™ = B,.
It follows from this together with (2.4) and (7.2) that
A0

o |1
f‘“(;J Jt‘

By Holder’s inequality, the last display is bounded by

(27 supld, (x) - EAn(x)I)z

d)K( n)
X0

IA

dt] .

= | (th,) o (th)I[|1 2 B, » ?
[ Tewr 4L l L UG+ 71.2"1‘(”] @
lpg(th, )| lpg(th )l i 2
7.13 <2 U.
1) =2 Sl Sear|ls oo
n 2
+ B Y Vi(p)| |dt.
n o
Note that
Elij(t) <1Ez* and B ZV(t) <L
n j=1 n n
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1] o lgie(th,)l  °

2N Bl ).

n|/_w lo.(t)

By (7.8) and the choice of %, the last expression has order o((log n)™*) for
any A > 0. This completes the proof of Theorem 2. O

By (7.13),

sup EsuplA,(x) — EA (x)?=0
fe€ P b2 x

7.3. Proof of Theorem 3. By (7.5), it suffices to compute the bias and the
variance of A, (x) defined by (7.2). According to (7.6),

(7.14) EA,(x) = fx(x)by(x)h5(1 + 0(1)).

The variance is given by

1 x —
Var(A,(x)) = ;Var(h;lKn(

Y Z
W )[ —m(x)])

n

2

1 x—-Y 1
- -1 _ 2 -
= nE h, Kn( R ) [Z — m(x)] +o(n)
uw—uv\|? 1
(7.15) = h,'K (————n ) %(u) fx(u) dF,(v) du +o(—r;)
1 o o
== f KX u)r®(x — v — uh,) fx(x — v — uh,) dF,(v) du

1
+o[)-
n
Note that by (3.5) and the dominated convergence theorem,

5 1 = N def
REK,(y) = o= [ exp(—ity) — by () dt =J(3).

By Lemma 3 (to be given at the end of this section),

WK, (y)l < ———,

for some positive constant C. According to (7.15) and Lemma 2.1 of Fan
(1991b),

) ,
Var(A,(x)) = Wf 2(u)du/ 7%(x — v) fx(x — v) dF,(v)[1 + o(1)].
By Parseval’s identity,

2
[_O;J2(u) du = 51; f:, t: dt.
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Hence
2

|¢K(t)|2 dt

1 tB

Var(A,(x)) = PRI 2 f

x [ 72(x = v) fu(x — v) dF,(v)[1 + o(1)].
The conclusion follows from bias and the variance decomposition.

LemMma 3. Under the conditions of Theorem 3,

Ith,, < —,
@) 1+ [yl

for some constant C.

ProoF. According to (3.5), there are positive constants M and c, such that
I (2)l = c,ltl™® for |¢| > M.

Therefore,
€] Mh, log(t)l “ lpg()] ¢ |°
| ey TR ST e ] Wi k.
(7.16) maxlbu(t)l  2hg? e
< 2Mh, .5 e f0|¢>K(t)lt dt
= 0(h,*).
This together with (2.4) yields
bk (2)l
B TR df =
(7.17) REKL() < 5= f Yo )ld o(1).
Next, integration by parts and a similar argument in (7.16) lead to
¢K(t) ! ~1
B
(7.18) REK ()] < 5 |y|f (%(t/hn)) dt < Dlyl ™,

where D is a positive constant. The desired conclusion follows from (7.17) and
(7.18). O

7.4. Proof of Theorem 4. We start the proof with a lemma.

LEMMA 4. Under the conditions of Theorem 4,
sup  Esuplf,(x) — fx(x)F = o(1).

€, 8.2 x

Proor. This follows easily from (7.10), (7.11) and (7.16). O
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Proor oF THEOREM 4. The local rate (3.6) follows the similar argument
given in Theorem 3. We focus on proving the global results (3.7). By Lemma 4
and (7.2), it suffices to show

sup Ef A, (x)Pw(x) dx = O(n Ph/2E+R+1.
fe%, % B, p a
By Lemma 1 and (7.14),
sup supEA, (x)l = O(RE).
ng;e,B,p x
Thus
sup Ej A, (x)Pw(x) dx

f€ %, B,p

(7.19) < 2P sup Ef A, (x) — EA,(x)Pw(x) dx
f€ % n,p

+ O( n—Pk/2k+B)+ 1y,

Hence we need only to justify that the first term of (7.19) is of the right order
O(n ~Pr/2k+B)+1])

Recall that r = r, = the smallest integer exceeding p/2 and put
Tj(x) =T, j(x) = h;'K,((x = Y;)/h,)[Z; — m(x)]
- h;lEKn((x - YJ-)/hn)[Zj - m(x)].

2r)P/2’

Then

1 i
(7.20) ElAn(x)—EAn(x)lp=E’; Y Ti(x)| <
=1

1 n
E\— 5 1)
n =

Moreover,
1 n 2r 1 r
(7.21) sup sup E|— Y T(x)| =0 (_hln—z(1+3)) .
fe€Fi 5., xcla,b] \T j=1 n

[The proof of (7.21) will be given shortly.] The conclusion of the theorem
follows from (7.19)-(7.21). O

We now prove (7.21) by a pair of lemmas, which hold uniformly in f<
%,B,p'

LEmMA 5. Under the conditions of Theorem 4,

sup E|Ty(x)" = O(RLIE*D)  forl=2,...,r
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Proor. Let v,(x) = E(ZNX = x) Then v,(x) < B, by (3.3). It follows from
the inequality |la + bl < 2!(lal* + |6|") that

KL EIT(x) < 2 EIK,((x ~ Y) /R,)[Z — m(2)]
= 227U BIK,((x — Y) /R, )'vi( X)
+BIEK,((x — Y)/h,)]
< 22*Y(B + BY)EK,((x - Y)/h,).
Recall that fy(y) is the density of Y = X + ¢. Then, by Lemma 4,

EIK,((x = Y)/k,)' = b, f_wwIKn(y)I’fy(x ~yh,) dy

(7.22)

(7.23) 1 1-1p 1
sCh’n —00(1 + Iyl)lfY( yhn)dy
— O(hL),

The desired result follows from (7.22) and (7.23). O

LEMMA 6. Under the conditions of Theorem 4,
1 n 2r 1 r
sup E|— Z Tj(x) =0 (_hln—2(1+/3)) )
xela,b] \j=1 n

Proor. Write T; = T;(x). By the multinominal formula,

» oo (2r) 1
(L] - Lo o
j=1 !
where L' sums over k-tuples of positive integers (ry,...,r,) satisfying r; +
* +r, = 2r and X" extends over k-tuples of distinct integers (j,,..., j,) in

the range 1 <j < n.
By independence and that T; has mean 0,

n oo, (2r) 1 ) )
E\ET()| = EX; ,k,EE(Tl)- E(T;),
Jj=1
where X" sums over k-tuples of pos1t1ve integers (ry,..., r,) satisfying r; +

“+r,=2randr; 22, j=1,...,k Thus k£ < r. By Lemma 5,
TB(Ty) - B(T}) < n"E(TJ-:I) e BT
< nko(h;—rl(/su)) O(h];L_"k(ﬁ+1))

= O(n’(hﬁl-2(l3+1))'( hl)r_k
n n

- O(w (e +vY),
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since nh, — «. The desired result follows. This completes the proof of Lemma
6.0

7.5. Proofs of Theorems 5 and 6. We first justify the local lower rates of
Theorems 5 and 6, that is, (4.2) and (4.5). The basic idea is outlined in Section
4. For simplicity, we prove only the case x = 0 in (4.2) and (4.5).

We now specify the functions f,, g4, #, and H in the heuristic argument of
Section 4. Define

2
(7.24) fo(x)=C,(1+2% ", r>05, goz)= (Jz_wb)‘lexp(_ Ezb_2)

and

(7.25) ho(2) =

1 2
= (ew(=(2 = 1)%/2) - exp(~2/2)),

where C, = [ (1 + x?)""dx, and b and r will be chosen later. Note that 4,
satisfies (4.9). We now construct the function H(-) as follows. Take a nonnega-
tive symmetric function ¢(¢), which vanishes when |¢| & [1, 2] and has continu-
ous mth derivatives, for some given m,. Moreover,

f2¢(t)dt £0.
1

Let H(-) be the Fourier inversion of ¢(¢):

H(x) = = [cos(tx)b(2) dt

= — | cos .
™71

Then H(-) has the following properties:

1. H(0) # 0.

2. H(x) has all bounded derivatives.

3. |[H(x)| < cy(1 + x2)~™0/2 for some constant ¢, > 0.

4. ¢5(¢) = 0, when |¢| € [1, 2], where ¢ is the Fourier transform of H.

By the proper choice of r and b, the pair of densities f; and f, defined by
(4.10) will be members of F, g ,. By the argument in Section 4, a* would be
the lower rates if a, satisfies (4.12). According to Fan (1991a) and the
conditions of Theorem 5, there is a positive constant ¢, such that the solution
of a, to (4.12) is given by

(7.26) a, = (logn + ¢, log(log n)) ™ "/#y~1/8,
Similarly, for Theorem 6, the solution is given by
(7.27) a, = c2n—1/(2k+2ﬂ+1)’

where ¢, is a positive constant. Thus the conclusion of (4.2) and (4.6) follows.

Now we turn to the global rates (4.4) and (4.7). We use the idea of the
adaptively local one-dimensional subproblem of Fan (1993). Specifically, see
Theorem 1 of that paper. In the following discussion, we may assume that



1922 J.FAN AND Y. K. TRUONG

w(x) > 0 on [0,1]. Let m, denote a sequence of positive integers tending to
w and let x;=j/m,, j=1,2,...,m,, be a grid point of [0,1]. Let 6 =
(0,...,0,,) €{0,1}™ be a vector of 0 and 1. Construct a sequence of func-
tions:

my(x) =m* Y BjH(mn(x - xj))
j=1
Define a family of densities:
fo(x,2) = fo(x)8o(2) + dme(x)ho(2),

where f,, g, and &, are defined by (7.24) and (7.25).

For suitable choice of 4 >0, r> 0.5 and & > 0, we now show that
folx,2) € &, p ,, which is a subset of F; p ,. It is easy to see that |h(2)| <
¢s80(2) for all z, and, by Lemma 7 (to be given shortly), |my(x)| < c,(1 +

x2)~mo/2_ Thus, for sufficiently small 8 and r, f, is a density function
satisfying

(7.28) fo(x,2) = 0.5f,(x)go(2) VOe€{0,1)"".
Now the conditional mean is given by
E;(ZIX = x) = omy(x)/fo(x).

By Lemma 7 again, the kth derivative of the conditional expectation is
bounded by the constant B for small § > 0. Similarly, other conditions in (3.3)
are satisfied with a suitable choice of r and 8. Hence fy(x,2) € %, p , for all
0 {0, 1}™~,

Denote

ejO = (0]_, . .-,0j_1, 0, 0j+1" cey an)
and

ejl = (01, cen , Bj_l, 1, 0j+1’ ceey omn).
Then there is a positive constant c5 so that the difference
'Efojo(ZlX =x) ~ E;, (ZIX = x)| = dmHH(m(x = x;))l /fo( %)
2 cslH(m , (x — x;))lm,* forx € [0,1].
Put

fo, F(3:2) = [ fo (v = %,2) dF.(x),

fo* F(3,2) = [ fo (¥ —x,2) dF.(x).
By Theorem 1 of Fan (1993), if
(7.29) max max x*(fy *F, fo *F.) <ce/n,

1<j<m, §{0, 1)
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then

inf  sup Eff 1T (%) — m(x)Pw(x) dx

T(x) € 8,
1—‘/1—exp(—ce) 1 1 _\P
> gr fow(x) dxfo |H(%)IP dx(csm;*)".

Thus m,* is the global lower rate.
Now we determine m, from (7.29). By (7.28), we have

2
max max * F * F
12jam, oe(o,l)"'nX (fojo ) fojl e)

(7.30) k)

f*Fe

s2m‘2kf h%(z)/go(z) dzf [ ] dy.

Note that there exists a positive constant ¢, such that fy(x) > ¢, fo(x — x,)
for all x; € [0, 1]. Using this fact in (7.30) with a change of variable, we have

2
max max * F * F
1sjom, 06{0,1),""/\’ (fejo £ fojl e)

fo( —x)*F d

<2c;'m 2kf h%(z)/go(z)dzf Eill

I o * F
= 2c7_1m;2kf_wh%(2)/go(2) dzf_oo [# (mf,;(*)F)' ]

In other words, we need to determine m, from

aa ey PO ()

Problem (7.31) is exactly the same as problem (4.12), by thinking of @, = m 1.
The conclusion follows again from Fan (1991a) [see also (7.26) and (7 27). o

LEmMA 7. Suppose that the function G(x) satisfies

IG(x)l <C(1+x®)" ", m>05.

Then there exists a positive constant C, such that, for any sequence m, — w,

Y IG(m,x —j)l <Cy(1+x2) ",

Jj=1
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Proor. If |x| > 2, then |[m,x —j| = m (x| — 1) and

m

mE" IG(m,x —j)l <C ¥ (1 +mi(lxl — 1)2)_'"

n
J=1 j=1

= Cmi 2™ (x| — 1) 7"

<C(1+x%) ",

for some constant C;. When [x| < 2,

Y 1G(max =) <C Y (1+ (mpx—j)?) " = 0(1),
j=1 j=1

as was to be shown. O
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