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ASPECTS OF ROBUST LINEAR REGRESSION*

By P. L. Davies

University of Essen

Section 1 of the paper contains a general discussion of robustness. In
Section 2 the influence function of the Hampel-Rousseeuw least median of
squares estimator is derived. Linearly invariant weak metrics are con-
structed in Section 3. It is shown in Section 4 that S-estimators satisfy an
exact Holder condition of order 1/2 at models with normal errors. In
Section 5 the breakdown points of the Hampel-Krasker dispersion and
regression functionals are shown to be 0. The exact breakdown point of the
Krasker—-Welsch dispersion functional is obtained as well as bounds for the
corresponding regression functional. Section 6 contains the construction of
a linearly equivariant, high breakdown and locally Lipschitz dispersion
functional for any design distribution. In Section 7 it is shown that there is
no inherent contradiction between efficiency and a high breakdown point.
Section 8 contains a linearly equivariant, high breakdown regression func-
tional which is Lipschitz continuous at models with normal errors.

1. A long introduction.

1.1. Contents. Subsections 1.2 to 1.6 contain some general and also critical
remarks on robustness and optimality, on the properties of influence func-
tions, on the calculation of breakdown points, on the use of metrics and on the
inherent instability of S-estimators. They are intended to motivate the re-
mainder of the paper. The general thrust of the paper is that stability of
inference is to be obtained by the construction of functionals with specified
properties rather than by the derivation of functionals which are optimal in
some sense. Stability of inference is taken to include insensitivity to minor
changes in the data, insensitivity to minor changes in the model, uniform
asymptotic behaviour and resistance to outliers. The word ‘“minor” will be
quantified in terms of metrics. One result of the paper is that the existence
and boundedness of the influence function will not guarantee stability. This is
done in Section 2 where the influence functions of the middle of the shortest
half and the Hampel-Rousseeuw least median of squares estimators are
derived. This is of some interest as it has been generally assumed that they do
not exist. It turns out that the influence function of the middle of the shortest
half is bounded but that of the least median of squares estimator is not. The
rather surprising reason for this latter result is the effect of inliers. This may
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go some way in explaining some results of Hettmansperger and Sheather
(1992) regarding the effect of inlying observations on the least median of
squares functional. This section also contains a criticism of the derivation of
optimal bounded influence regression functionals. It is argued that such
functionals are not GM-estimators as the effect of alterations in the dispersion
matrix are not considered.

In Section 3 linearly invariant weak metrics are constructed and used to
calculate breakdown points. The metrics are defined in terms of
Vapnik-Cervonenkis classes and permit, for example, direct comparisons of
theoretical and empirical distributions. The linear invariance of the metrics
reflects the invariance of the regression problem under certain linear transfor-
mations. The metrics can be related to the gross error model. The use of
metrics for one-dimensional data is well established; in particular, Huber
(1981) makes considerable use of them. It seems that metrics have not been
applied to higher-dimensional problems, perhaps because of the lack of suit-
able candidates. It is hoped that the metrics introduced in Section 3 and other
parts of the paper will go some way to redressing this situation.

Section 4 is devoted to the properties of S-estimators such as existence,
uniqueness, continuity and breakdown points. It is shown that they are Holder
continuous of exact order 1/2 at normal models but that uniqueness can only
be obtained by imposing conditions on the distribution under consideration.
Furthermore, these conditions are such that, given any distribution for which
they hold, there are other distributions arbitrarily close for which they do not
hold. This reflects an inherent instability of S-estimators. Although S-estima-
tors are shown to be capable of obtaining the highest possible breakdown point
of 1/2, this can only be done by choosing the estimator according to the
distribution. If this is not done, then it is surmised that the highest breakdown
point is 1 /3.

In Section 5 the breakdown point of the Hampel-Krasker dispersion func-
tional is shown to be 0. The exact breakdown point of the Krasker—Welsch
dispersion functional is not 0 and is given by Theorem 5.2. All breakdown
points are calculated in terms of metrics as constructed in Section 3. The
breakdown point of the Hampel-Krasker regression functional is also shown
to be 0, whilst nontrivial bounds for the breakdown point of the Krasker—
Welsch regression functional are obtained, again using metrics constructed as
in Section 3.

The most important positive result of the paper is the construction in
Section 6 of a globally defined, high breakdown, linearly equivariant and
locally Lipschitz continuous dispersion functional. This is the first step in the
programme mentioned previously of constructing functionals with given prop-
erties.

In Section 7 the relationship between efficiency, high breakdown and
Lipchitz continuity is discussed. It is shown that there is no conflict between
efficiency and high breakdown but that there is such a conflict between
Lipschitz continuity and efficiency.
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Finally, Section 8 is devoted to the construction of a regression functional
which has a high breakdown point, is linearly equivariant and Lipschitz
continuous at models with normal errors. This again is intended as a part of
the programme of constructing functionals with given properties but the
problem is more difficult than that of construction dispersion functionals with
given properties. The solution is less satisfactory.

1.2. Huber’s approach to robustness. Huber (1981) has given a beautiful
minimax approach to the problem of estimating a location parameter for
one-dimensional data. He considered and solved the problem of minimizing the
maximum bias over a neighbourhood of the normal model. The problem of
minimizing the maximum asymptotic variance was not completely solved but
Huber showed that there are M-estimators which perform remarkably well in
this respect. Recently Riedel (1989a, 1989b, 1991) has extended the first part
of Huber’s theory by determining minimax bias estimators in some very
general situations. The problem of extending Huber’s partial result on asymp-
totic variance to more complex situations has proved intractable. Nevertheless,
the importance of obtaining exact optimality results should not be overstated.
Optimal estimators are not for applications to data; they are border posts
delimiting the possible. This is amply illustrated by the median which
is optimal in the sense of minimizing the maximum bias but whose asymptotic
variability in a full neighbourhood of any distribution exhibits the whole
gamut of possibilities. These range from almost sure convergence in a finite
number of steps to no convergence at all with asymptotic normality some-
where in between. Any estimator intended for use on data must be a compro-
mise; it would seem to me that this is always the case. A discussion may be
found on pages 44-47 of Hampel, Rousseeuw, Ronchetti and Stahel (1986).
Given this, the practical problem is that of producing an estimator which
behaves well, or at least not disastrously, in several different respects. In order
to do this, it is not necessary to know what the limits are for any particular
aspect. At the risk of labouring the point, we consider the location problem for
one-dimensional data with known scale. The M-estimator with psi-function
¢ = atan may well be judged to be satisfactory without knowing the minimum
obtainable values for the maximum bias and the maximum asymptotic vari-
ance. The bias and asymptotic variance of the atan-M-estimator may be
calculated, or at least upper bounds may be obtainable, and judged to be
sufficiently small for the purpose in mind.

At first sight the problem of producing a compromise estimator may not
seem particularly difficult, but no such estimator exists for the linear regres-
sion model. Huber’s problem may be stated as follows. We take a given model
Py, say the (0, 1)-distribution, and a full neighbourhood of this model defined
by some metric, say the Kolmogorov metric d. The neighbourhood is given
by

B,(Py,dg) = {P: dg(Py,P) < &}.
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The bias problem is to determine a translation equivariant functional T'; such
that

sup IT(P) — Ty(Py)l
PEBE(PO, dx)

=inf sup |T(P) — T(Py)l,
T peB(Py,dg)

where the infimum is taken over all translation equivariant functionals T.

The asymptotic variance problem is the following. We denote by P,(P) the
empirical distribution of n independently and identically distributed random
variables with common distribution P. We restrict attention to translation
equivariant functionals T such that Vn (T® (P)) — T(P)) is asymptotically
normally distributed with mean 0 and variance A(T,P). We now wish to
determine a functional T, with

sup A(T,,P) =inf sup A(T,P).
PeB(Py,dg) T peB, Py, dg)

A further important demand which should be placed on a functional T is
that the convergence of Vn (T(ﬂﬁ’n(P)) — T(P)) to N0, A(T, P)) be uniform for
P € B,(P,, d ). This is explicitly mentioned on page 51 of Huber (1981). In his
book Huber obtains the uniform convergence to the normal distribution by
placing smoothness conditions on the psi-function of the M-estimator. Essen-
tially these conditions are such as to cause the estimator to be Fréchet
differentiable at each point P of B.(P,,dx) [see Clarke (1983)] with an
influence function I(x,P,T) which is bounded with respect to x and P in
B,(P,, d). There are therefore good reasons for demanding of a functional
that it should be Fréchet differentiable at each point of the neighbourhood.

If we return to the M-estimator with psi-function atan, then it may be
checked that it behaves well in all respects. For any fixed ¢ < 1/2 we have the
following. The functional is uniquely defined at all P in B,(Py, dg), it is
translation equivariant, its bias remains bounded, it is Fréchet differentiable
at each P in B,(P,, d), Vn (T(®,(P)) — T(P)) converges to a normal distribu-
tion and its asymptotic variance is not too large. Furthermore, the convergence
to the normal distribution is uniform over the ball B, (P, d).

To state the corresponding problem for the linear regression model, we
require some notation. A regression distribution is a probability distribution
on the Borel sets B(R**1) of R**1. The first # components are the x’s and the
(k + 1)th component is the y. The marginal distribution Q, defined by Q,(B)
= Q(B X R) for B € B(R*) is the distribution of the design points and will be
called the design distribution. If the x’s in the linear regression model are
linearly dependent, it is clear that the problem of estimating the regression
coefficients has no unique solution. Attention is consequently restricted to the
regression distribution Q for which the design distribution Q, is nonsingular,
that is, the support of Q, is not contained in a plane of dimension less than £.
We denote the set of all such regression distributions by B(R**1). A regres-
sion functional T is a mapping of W(R**!) into R**!. The first £ components



ROBUST REGRESSION 1847

are estimates of the regression coefficients and the last component is an
estimate of the dispersion of the errors. The translation equivariance of the
functionals for the one-dimensional location problem is replaced by linear
equivariance. The regression problem is not invariant under all linear trans-
formations but only under a certain group of linear translations, essentially
those which leave the “y’’ on the correct side of the equation. We consider only
such functionals which are linearly equivariant in this sense. In place of P, we
take some regression distribution Q, with, for example, errors which are
normally distributed with mean 0 and variance o2 In order to define a full
neighbourhood of Q,, we require a metric d, the choice of which will be
discussed below. A direct translation of the properties of the atan-estimator for
the location problem would lead to the search for a functional T which has low
bias over B_(Q,, d), which is Fréchet differentiable at each Q in B,(Q,, d) and
whose influence function is uniformly bounded. In particular, it is necessary
for T to be well defined, that is, to exist and be uniquely defined at each Q@ in
B_(Q,, d). Indeed, if this is not the case Q cannot even be continuous let alone
Fréchet differentiable.

We are not yet able to produce a functional which satisfies these demands as
they stand. One reason is the fact that the linear regression model is only
partially parametric. In general, the design distribution Q,,; of Q, is regarded
as given, there does not exist a parametric model for it. Nevertheless, one is
interested in identifying leverage points and this leads to the stipulation that
T should be well defined for any Q within a neighbourhood of Q, with Q,
arbitrary. From this it is a short step to require that T be globally defined,
that is, T'(Q) should be well defined for all regression distributions Q. We note
that this requirement is not trivial. If we consider, for example, M-estimators,
it seems that conditions have to be placed on Q to guarantee the existence and
uniqueness of an M-estimator. Theorem 2.2 of Maronna and Yohai (1981)
gives sufficient conditions for the uniqueness of a general M-estimator, a
so-called GM-estimator. In particular, they assume that the error at the design
point x has a symmetric distribution for each x. In any neighbourhood of such
a regression distribution, there are other distributions where the errors are
not symmetric and where consequently the theorem is not applicable. It is
therefore not clear whether GM-estimators can be uniquely defined at all
regression distributions.

The demand that the bias of the estimator remain small requires the
calculation of bias. Although this may be possible we restrict ourselves to the
weaker stipulation that the estimator should have a large breakdown point.
The breakdown point ¢*(T,Q, d) of T at the distribution @ is defined by

e(T,Q,d,) = inf{a >0: sup [T(Q)I= 00}.
Q'eB.(Q,d)

The breakdown point depends on the distribution Q where it is evaluated and
is therefore a local property of T. We require that T' should have a high local
breakdown point at each Q.
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Finally, we require that T should be locally Fréchet differentiable at each Q
or, failing that, at least locally Lipschitz continuous. A functional which is
globally defined and locally Lipschitz continuous will have the following prop-
erties. Small changes in the distribution will cause only small changes in the
value of the functional. In particular, the functional will be well defined at any
empirical distribution and will react smoothly to small changes in the data.
These include large changes in a small number of data points, small changes in
a large number of data points or a combination of the two. It has been pointed
out by Hettmansperger and Sheather (1992) that the Hampel-Rousseuw least
median of squares estimator does not react smoothly to small changes in
centrally located data points. A possible explanation of this is offered in Section
2.3 where the influence function is shown to be unbounded with respect to
inlying design points. In a recent paper Simpson, Ruppert and Carroll (1992)
consider the problem of obtaining stable inferences in linear regression. The
idea is to combine high breakdown, efficiency and bounded influence. This has
some similarities with the approach adopted here although we shall argue
strongly that bounded influence alone is not sufficient to give stable inferences.

As already mentioned we are not able to exhibit a functional T with the
required properties. On the positive side we can construct a functional T
which fulfills the demands for those Q which have independent normal errors.
This is done in Section 7 and corresponds to the construction given in Davies
(1992b) for multivariate location and dispersion functionals. Another and more
important positive result is the construction of a dispersion function T? on
the space of design distributions B ,(R*) = {Q,;: Q@ € WR**1)}. A dispersion
functional T? associates with each Q, in 8 ,(R*) a positive definite symmet-
ric £ X k matrix T2(Q,). The problem of dispersion functionals is somewhat
easier, and we construct one in Section 6 with the following properties: (i)
global definability, (i) linear equivariance, (iii) high local breakdown point and
(iv) local Lipschitz continuity. It turns out that the local breakdown point is at
most 1/3 in contrast to the figure of 1/2 which is the highest local breakdown
point for linearly equivariant functionals. The reason for the difference is the
global definability of the functional, discussed in more detail in subsection 1.4.

1.3. The approach based on influence functions. Another approach to
robustness is that based on the concept of influence functions. It is associated
with Hampel [(1968), (1971), (1974)] and expounded in Hampel, Rousseeuw,
Ronchetti and Stahel (1986). The idea is to place an upper bound on the
supremum of the influence function and then to maximize the efficiency
subject to this bound. An extension is to consider the change of variance
function, to place an upper bound on its supremum and again to maximize the
efficiency subject to this bound. The influence function measures the effect of
an infinitesimal one-point contamination which, from the point of view of
robustness, is somewhat problematic. The analysis is therefore augmented by
an investigation of the breakdown point of the functional. The idea is that the
local bias will be reflected by the influence function and the global bias by the
breakdown point. We refer to Figure 2 on page 42 of Hampel, Rousseeuw,
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Ronchetti and Stahel (1986). In Section 2 we give an example where this does
not hold, namely, the middle of the shortest half sample. We show that at the
normal distribution the influence function exists and is bounded. In spite of
this the influence function does not reflect the local behaviour of the func-
tional.

The approach based on influence functions has the advantage of leading to
optimal functionals in situations where Huber’s minimax approach is not
possible. In the case of a one-dimensional location parameter and the model of
a normal distribution, the influence function approach and the change of
variance approach both lead to the median as the most robust functional or to
M-estimators with Huber’s psi-function which maximize the efficiency subject
to the respective bounds. The breakdown point of these functionals is 1/2. In
k dimensions the optimal location and dispersion estimators are M-estimators
which are known to have a breakdown point of at most 1/(k + 1). Similarly in
the linear regression model the approach leads to general M-estimators,
GM-estimators, such as the Krasker—-Welsch estimator with low breakdown
points in high dimensions. In Section 2 we criticize the usual derivation of the
influence function for such estimators. Given the low breakdown points of the
optimal estimators, the statistician is once again forced to look for estimators
which are not optimal, but which have given properties.

In the influence function approach the model plays a much more important
role than it does in Huber’s minimax approach. The concept of “efficiency at
the model” is not a robust concept in the following sense. Given any location
model such as the normal distribution, there exist other location models which
are empirically indistinguishable from the normal model and for which no
likelihood function exists. Such models permit a super efficient estimator of
the location parameter. The very concept of ‘“‘efficiency’ is seen to be nonro-
bust and the influence function approach is presumably restricted to *“sensible”
models. Huber’s approach does not suffer from this defect. If the normal model
is replaced by an empirically indistinguishable model, then the resulting
optimal estimators are hardly altered. In this sense Huber’s approach is
““model robust,” whereas the influence function approach is not.

It is clear that for regression problems with normal errors there is a tradeoff
between gross error sensitivity and efficiency. The example of S-estimators,
whose influence function is unbounded in the factor space, shows that there
can be a tradeoff between breakdown point and efficiency. This fact caused a
search for regression functionals which do not have this deficiency. Juretkova
and Portnoy (1987), Yohai (1987) and Yohai and Zamar (1988) succeeded in
showing how to combine high breakdown point and efficiency in certain
situations. These situations effectively exclude large leverage points. It has
recently been suggested by Morgenthaler (1989) and Stefanski (1991) that in
general there is a conflict between breakdown point and efficiency, namely any
high breakdown estimator can have arbitrarily low efficiency with respect to
least squares. In Section 7 we discuss this problem and show that the claim
is not justified. We do, however, show that the idea of Morgenthaler and
Stefanski can be made precise for locally uniformly Lipschitz regression func-
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tionals. This shows that in the regression problem the efficiency of an estima- .
tor is related to its continuity and not to its breakdown point. This point can
not be stressed too greatly; an efficiency deriving from extreme leverage points
is to be treated with the utmost caution.

1.4. Breakdown points. One of the desirable properties of an estimator is
that it should have a high breakdown point. Breakdown points are calculated
in three ways. The easiest and, for nonstatisticians, most understandable
definition is that of the finite sample breakdown point due to Donoho and
Huber (1983). It has, however, disadvantages. It does not allow for any
“wobbling”’ of the data, and it is not defined at the model describing the data.
Furthermore, it cannot be related in a natural way to the continuity of the
functional. For these reasons we consider it only when comparing the results
of this paper with those in the literature.

The second method of calculating the breakdown point at a distribution Q is
to consider the “gross error neighbourhood” (1 — ¢)Q + ¢Q' of Q. This also
violates the spirit of robustness as it implies that a proportion (1 — &) of the
data actually are distributed exactly according to Q. One reason why it is
possible to calculate breakdown points using the gross error neighbourhood is
that the neighbourhood is affinely equivariant. Indeed, if this were not the
case, the breakdown point of a functional T would depend on the parameteri-
zation and it is clear that such a dependence would greatly complicate any
calculation of the breakdown point.

Finally, breakdown points can be calculated using metrics. This is in
keeping with the spirit of robustness as it allows a full topological neighbour-
hood of any distribution Q. In Huber (1981) breakdown points are defined in
terms of metrics (pages 11-13) and those of the one-dimensional location and
scale estimators in the Lévy, Kolmogorov and Prohorov metrics are calculated
(pages 52-54 and 109-110). As far as I am aware there are no corresponding
results for location and dispersion functionals in higher dimensions. One
reason for this may be the lack of appropriate metrics. The Prohorov metric
topologizes weak convergence and has been treated favourably in the literature
on robustness as it formalizes the idea of measurement error. It is, however,
not linearly invariant in the following sense.

Let A: R* - R* be a nonsingular linear transformation and let Q and P be
two distributions over R*. The transformed distribution Q4 is defined by

QA(B) = Q(AY(B)), B e B(R").

A metric d is called affinely invariant if d(P4,Q4) = d(P, Q) for all P and Q
and all nonsingular affine transformations A. The Prohorov metric, being
based as it is on the Euclidean norm, is not linearly invariant. To show the
effect of this in the linear regression model, we consider the following example.
Let @, denote a design distribution where all measurements are made at the
point x7 = (1,0)7. This distribution is singular and it is clear that it is not
possible to obtain consistent estimates of the regression coefficients. The
second design distribution Q, is such that half the observations are performed
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at x; and the other half at xI = (1,1)”. This design distribution is not
singular and consistent estimates of the regression coefficients can be ob-
tained. Assume that the second component is measured in inches and the units
are now changed to miles. The transformed design points are x = (1,0)” and
xI=Q,1/ 63360)7. In terms of the Prohorov metric, the transformed distri-
bution is now closer to the singular distribution than it is to the nonsingular
one from which it is derived. This is at odds with the fact that the regression
problem has not been altered by the linear transformation indicating that the
Prohorov metric is not appropriate for the linear regression model. What are
required are linearly invariant metrics. In Section 3 we introduce such metrics
and give one which formalizes the idea of proportional measurement error.

Consider the finite sample breakdown point £55(T') [Donoho and Huber
(1983)] of a linearly equivariant regression functional T'. It follows from the
arguments given in Rousseeuw and Leroy (1987), page 125 [see also Davies
(1987) and Lopuhai and Rousseeuw (1991)], that

(1.1) e3s(T) < [(n —p)/2 + 1] /n,

where p is the maximum number of points on some %2 — 1-dimensional plane.
The upper bound [(n — p)/2 + 1]/n can be obtained by an appropriate change
in the definition of the Hampel-Rousseeuw least median of square estimator,
namely by minimizing the k ,th-order statistic of the absolute residuals where
h,=I[n/2]1+[(p + 1)/2]. It is clear, however, that p is a function of the
distribution and that altering the definition of the Hampel-Rousseeuw estima-
tor in the manner described above is effectively choosing the functional in a
manner which depends on the distribution being considered. If global function-
als are considered, this is no longer possible. In Section 6 we give a global
dispersion measure for design distribution. The factor 1/2 which is usually
associated with optimal breakdown points is replaced by 1/3. We conjecture
that this is best possible for global functionals.

1.5. Metrics. As argued in subsection 1.2 we are interested in functionals
which are locally Lipschitz. As the very definition of Lipschitz continuity
requires a metric, we see that metrics are an essential part of the paper.
Furthermore, as argued in subsection 1.4, the notion of a breakdown point can
be most satisfactorily formulated using metrics and these should be linearly
invariant. This is at odds with part of the folklore of robustness, namely, that
part which emphasizes the importance of the weak topology and the corre-
sponding weak continuity of the functionals. It is easily proved that no linearly
invariant metric can topologize weak convergence, giving rise to a conflict
between the emphasis on linear equivariance and the use of the weak topology.

Besides being linearly invariant, we claim that a metric should be weak. No
formal definition of ‘“‘weakness” is given, but the following discussion should
make it clear what is meant. The total deviation metric d g is defined by

(1.2) deo(P,0) = sup |P(B)— Q(B).
BeB(R*)
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It is clear that dgq is linearly invariant, but it is so strong as to be useless for
robustness purposes. To see this, we note that the total variation distance
between any continuous model and a derived empirical distribution is always
1. Furthermore, if we have an empirical distribution P and move all points
slightly to give another distribution P’, then d 4@, ) = 1.

The total deviation is obtained by taking the supremum in (1.2) over all
Borel sets. Replacing B(R*) by a subset £ of Borel sets gives rise to a metric
d 4o defined by

(1.3) dze(P, Q) = sup|P(B) ~ Q(B)l.

In general, d4, is a pseudometric but this will be of no relevance for our
present purposes. The smaller the set 2 in (1.3) the weaker is the metric. It
seems to be the case that all useful metrics derive from classes & which are
Vapnik-Cervonenkis classes (classes with polynomial discrimination). We refer
to Pollard (1984) for details. .

If { is a Vapnik-Cervonenkis class and P, is the empirical distribution of n
i.i.d. random variables with distribution P, it follows from general results to be
found in Pollard (1984) that

. 1
(1.4) do(P,,P) = op(Tn—).

One consequence of this is the following. If a function T is Fréchet differen-
tiable at P with respect to dg, and the metric dy, satisfies (1.4), then,
following the arguments of Huber (1981), pages 38 and 39, we immediately
obtain a central limit theorem for T(,). We note that this does not hold for
the Prohorov metric [Kersting (1978), and Huber (1981)].

In subsection 1.4 we argued that metrics should be linearly invariant to
reflect the linear invariance of the linear model. Metrics defined by (1.3) are
linearly invariant if £ U £¢ is linearly invariant, where ¢ denotes the class of
complements of sets in £.

Not all useful metrics are of the form given by (1.3). We shall introduce a
metric below which is based on a Vapnik-Cervonenkis class & and which is
linearly invariant but is not of this form. It can be regarded as a variant of the
Prohorov metric with the absolute error being replaced by a proportional
error. A similar metric was introduced in Davies (1992a) to study the be-
haviour of Rousseeuw’s minimum volume ellipsoid.

We take the point of view that a metric should also reflect the structure of
the problem. In Davies (1992a) one metric was based on ellipsoids and used to
study Rousseeuw’s minimum volume ellipsoid. We shall introduce a metric d
in Section 3 in order to study the Krasker—Welsch regression functional. This
has the advantage of indicating which properties of distribution have an
influence on the metric. Thus, if a breakdown point with respect to some
metric d is obtained, it will indicate what sort of deviation from the model will
cause the estimate to fail. Similarly, if Fréchet differentiability or Lipschitz
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continuity is proved, this will show in what sense distributions have to be close
together to give rise to functional values which are also close together.

1.6. S-estimators. The first high breakdown linearly equivariant func-
tional for the regression problem was the least median of square proposed by
Hampel (1975) and further developed by Rousseeuw (1984). Since then, sev-
eral other such estimators have been proposed but all suffer from the defect of
requiring regularity conditions for their uniqueness and continuity. The au-
thor has not yet succeeded in obtaining a global smooth high breakdown
regression functional and therefore has to rely on existing estimators. S-esti-
mators were introduced by Rousseeuw and Yohai (1984) in the context of
linear regression and have since been investigated in more detail [Kim and
Pollard (1990) and Davies (1990).] S-estimators can also be used for elliptical
multivariate distributions [Rousseeuw (1986), Davies (1987) and Lopuhai
(1989)]. In Section 4 we study problems of existence, uniqueness and Holder
continuity. In Section 8 we show how k-step M-estimators can be used to
obtain a high breakdown regression functional which is Lipschitz continuous
at models with normal errors. Such an approach was taken in Davies (1992b)
to construct a multivariate location and dispersion functional with the same
properties. In spite of this last result, the author is convinced that a globally
defined functional will have to be obtained by other means. S-estimators suffer
from a serious flaw which probably cannot be removed, namely that unique-
ness and continuity can only be proved under certain conditions.
Hettmansperger and Sheather (1992) have shown that the least median of
squares functional is not stable, a fact which can be deduced from its lack of
continuity. The lack of continuity will persist even if an S-estimator with a
smooth rho-function is used. The situation is similar to that for dispersion
functionals. Section 6 contains an example where no S-estimator of dispersion
can possibly be uniquely defined. This will cause all S-estimators to be
unstable in the neighbourhood of such a distribution. Because of this we take a
different approach to construct a dispersion functional for the design distribu-
tion.

1.7. Notation. A generic point of a linear regression will be denoted by
(x7, )T with y € R and the design point x € R*. A regression problem is
defined in terms of a probability measure Q on the Borel sets B(R** 1 of R**1,
giving the joint distribution of y and x. The empirical regression problem
based on n data points (x7, y,)7, 1 <i =n, is described by the measure

ln
=;"-le & F,y)7

where 8, here and in the following denotes the Dirac measure at the point x.
We shall refer to probability measures as regression distributions, although it
is to be emphasized that no linear relationship between y and the x’s is
intended, nor that the errors are independent of the x’s. Given a measure Q



1854 P. L. DAVIES

on B(R**1), we shall require the marginal distribution @, of the design
points, Q4(B) = Q(B X R), B € B(R*). Such a measure will be called a design
measure. We shall restrict attention to nonsingular designs for which

(1.5) A(Q) = A(Q,) = sup Qu(x76 = 0) < 1.
lloll=1

It is clear that this condition is necessary in order to be able to obtain a
uniquely defined regression functional. The set of regression distributions
which satisfies (1.5) will be denoted by T(R**1) and the set of design distribu-
tions by B ,(R*).

The functional A: B(R**1) — [0, 1] plays an important role in this paper. It
will turn out that the maximal attainable breakdown point of any linearly
equivariant regression or dispersion functional T at the regression distribu-
tion Q is essentially determined by A(Q). It is immediately clear that the
breakdown point is at most 1 — A(Q) as by moving 1 — A(Q) of mass to a plane
of measure A(Q) we can obtain a Q" with A(Q') = 1. For this Q' all the design
points lie on a plane of dimension at most 2 — 1. This implies that the set of
solutions of the regression problem lies on a plane of dimension at least 1 and
so can be arbitrarily large. If we consider a data sample of size n in & + 1
dimensions and with linearly independent design points, then A(Q) > k/n.
This is because any % design points are linearly dependent and hence lie on a
plane of dimension at least 1. In regression problems it is not unusual for
several measurements to be made at some or all design points. If m measure-
ments are made at some design point, then we can find & — 1 further design
points so that the resulting m + 2 — 1 design points lie on a plane. This gives
A(Q) = (m + kB — 1)/n. In the metrics we consider, A is Lipschitz continuous
but not differentiable and it is partly this which forces a choice between global
definability and high breakdown point on the one hand and differentiability on
the other.

The usual linear regression models specify

(1.6) y=xT8 +e,

where e is the error whose distribution Q, is independent of x and belongs to
some scale family of distributions on R. Such a model corresponds to a
regression measure Q of the form

(L.7) Q(By X By) = [ Qu(By — 27B) dQu(x)

and will be written Q = Q, *Q,.
As we do not always obtain a functional which is uniquely defined at all
points of W(R**1), we consider set valued functionals
T %(R’H’l) - %(Rk-‘—l),

where B(R**1) denotes the set of subsets of R¥**1, If T is not defined for some
regression distribution Q, we set T(Q) = .
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The unit sphere in R* will be denoted by S* = {6: 6 € R*, ||6]| = 1} and
Lebesgue measure in R* by m,. The set of all strictly positive definite
symmetric k£ X k-matrices will be denoted by PDS(%). For any positive definite
matrix 3, the smallest and largest eigenvalues will be denoted by A_; (3) and

A ax(2).
2. The influence function.

2.1. Generalities. Let T be a functional well defined at a distribution P
and at all distributions of the form (1 — ¢)P + £§,. The influence function
IF(-: T,P) is defined by Hampel, Rousseeuw, Ronchetti and Stahel (1986),
page 84:

(2.1) IF(z: T,P) - lim T(d - )P + e8,) -~ T(P)

if the limit exists.
T is said to have bounded influence if the gross error sensitivity y*(T,P)
defined by

(2.2) y*(T,P) = sup|IF(x: T, P)|

is finite.

The heuristics of the influence function are heuristics and not theorems.
Nevertheless, the failure of the heuristics for the Hampel-Rousseuw least
median of squares estimator has led to statements about the nonexistence of
the influence function of this estimator [see, e.g., Rousseeuw and Leroy (1987)
page 188].

The first heuristic conclusion for a bounded influence functional is that the
effect of a small amount ¢ of point contamination is bounded by e. More
exactly, we expect for ¢ sufficiently small

(2.3) sup|T((1 — &)P + €5,) — T(P)l < 2ey*(T,P).

The constant 2 can be replaced by any constant greater than 1 at the possible
cost of having to make the s-values smaller. )

If T is well defined at all empirical distributions P, deriving from n
independently and identically distributed random variables (X;)} with com-
mon distribution P, then we expect [Hampel, Rousseeuw, Ronchetti and Stahel
(1986), page 85]

(2.4) n2(T(P,) - T(P)) = n~1/2 fIF(XJ.: T,P) + 0,(1).
1

In particular, we obtain a central limit theorem for T'(,) if T has bounded
influence or, more generally, [IF(x: T,P)?dP < .
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Finally, if we consider one-dimensional data, the stylized sensitivity curve
SC,, may be defined by

(2.5) SC,(x) = n(T((l —nThPE L+ %a) = T(P:_l)),

where

1 no1 i
P:_l=m gb‘xl Wlthxi=FU;1(;), l<i<n-1,
and Fp denotes the distribution function associated with P. In general, one
expects

(2.6) lim SC,(x) = IF(x: T,P).

In going from (2.1) and (2.2) to (2.3), there has been an interchange of limits
which is not always valid. The same holds for (2.1) and (2.5). In general, there
is no relationship between (2.1) and (2.4) at least not without further condi-
tions [Bednarski, Clarke and Kolkiewicz (1991)]. We show below that (2.1) and
(2.2) hold for the middle of the shortest half estimator but that none of (2.3),
(2.4) or (2.5) holds.

2.2. Middle of the shortest half. Let P be a distribution on B(R). The
middle of the shortest half functional Ty is defined as 3(a + b), where a
and b are such as to minimize b — a subject to P((a, b]) > 3. For the %2(0, 1)
distribution, we have a = ®~(1/4), b = &~ %3 /4), giving Tysu(N(0, 1)) = 0.
Consider now x with |x| > ®~1(3 /4). Then it is not difficult to show that for
sufficiently small ¢, depending on x, the shortest half interval for the distribu-

tion (1 — &)N(0,1) + &5, is
3 — 2¢ 3 — 2¢
_ Y —
4(1—8))’ (4(1—e>)

giving Tysp((1 — £)N(0,1) + £8,) = 0. Similarly, if |x| < ®~1(0.75), then for
sufficiently small ¢ the shortest half interval is

3 — 4¢ 3 — 4¢
oY, —
[ (4(1—8)) (4(1—8))]
and again we deduce Ty ((1 — £)R(0, 1) + £8,) = 0. Finally, if x = ®~(3/4),
then the smallest half interval is now
o (3)
’ 4

o

-1

K

1+e¢
4(1 -¢)
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and we may deduce

IF(x: Ty, R(0, 1))

(2.7) —(m/8)" exp(®71(3/4)°/2), x=-®7Y(8/4),
= | (7/8)" exp(®71(3/4)%/2),  x =D Y (3/4),
0, otherwise.

It follows that the middle of the shortest half sample estimator has a bounded
influence function. Nevertheless, none of (2.3), (2.4) or (2.6) holds. To start
with (2.6), it can be shown that

(2.8) lim SC,(x) = 4IF(x: Tygu, 8(0, 1)).

This conflicts with a statement in Rousseeuw and Leroy (1987), page 189,
where it is claimed that lim,_,SC,(x) = for x = +® %3/4), a result
suggested by Figure 4 on page 190 of Rousseeuw and Leroy (1987). However,
(2.8) can be made plausible by computer calculation or, for the doubting, it can
be proved analytically. Figure 4 on page 190 of Rousseeuw and Leroy (1987)
shows very dramatically that the pointwise convergence in (2.8) is not uniform.
The factor 4 in (2.8) follows from the definition of the x; as Fy '(i/n) in the
definition of the stylized sensitivity curve. Another factor would be obtained if
the x, were to be defined for example as Fy; (i/(n — 1/2)),1 <i<n — 1.

To show that (2.4) does not hold, we refer to the cube root convergence of
Tusu proved in Kim and Pollard (1990) and Davies (1990). Finally, to show
that (2.3) does not hold, it is sufficient to set x = x(¢) = ®~1(3/4) + a(e),
where a(e) satisfies

1 - 2¢
2(1—-¢)°
The shortest half interval is seen to be [®~X(1/4) + a(e), ® 4(3/4) + ale)],
giving Tysu((1 — £)N(0, 1) + £8,,)) = ale). From a Taylor expansion we de-

duce a(e) = (27)/2 exp(®~1(3/4)?/2) /(2013 /4)))e'/2, from which we con-
clude

(2.9) SuplTMSH((]. - 8)%(0, 1) + 85x(e)) - TMSH(W(O, 1))| > 0181/2,

O(P~1(3/4) + a(e)) — o(dY(1/4) + a(e)) =

for some constant ¢; > 0, in contrast to (2.3). If we specialize Theorem 6 of
Davies (1992a) to the case p = 1 and the Kolmogorov metric on R, we obtain

I Twsi(Q) — Thsu(R(0, 1)) < epd (@, R(0,1)) .

This in conjunction with (2.9) shows that Tygy satisfies a local Holder
condition of order 1/2 at the normal distribution and that this cannot be
improved upon. One of the results of this paper is that the Hampel-
Rousseeuw least median of squares estimator also satisfies a local Holder
condition of order 1/2 in an appropriate metric. This result is perhaps
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somewhat surprising as the estimator does not depend on an explicit down-
weighting of leverage points.

2.3. Least median of squares. Let Q be a regression distribution. The
Hampel-Rousseeuw least median of squares functional Ty is defined to be
(7, 5T € R¥*1, where (7, 5)7 is the solution of the following problem. Choose
(b7, 5)T € R**! s0 as to minimize s subject to Q({(x7, y)T: |y — x7b| < s}) >
1/2.

We now specialize to the case of a finite number of design points x4,...,x,
and where the y’s are independently and identically distributed with common
distribution 9t(0, 1). Furthermore, we assume that the x;’s are not concen-
trated on a plane of dimension less than k. For this Q it follows from Theorem
4.7 [see also Davies (1990), Theorem 3] that T',(Q) = (07, ®~%(3/4))T. Con-
sider now a point contamination of mass ¢ of the point (x7, y,)7. Theorem 4.1
shows that for each ¢, 0 < & < 1, there exists a solution (&(¢)7, s(¢))T of the
minimization problem. From Theorem 4.7 we obtain

(2.10) lii%(b(s)T,s(s))T — (07, ®"1(3/4))".

Suppose now that |y,| > ®~1(3/4). We see from (2.10) that |y, — xTb(¢)| >
s(e) for all ¢ sufficiently small and hence

1r 1
(1- s); Zl‘,(d)(xin(s) +5(¢g)) — P(x[b(e) — s(e))) = 3

As each individual summand is maximized by setting b(¢) = 0, we see that
for & sufficiently small T ys((1 — €)Q + £8,7 ,,r) = (0, s(e)7. Similarly, if
lyol < ®718/4), (b(e)7, s(¢))T minimizes s(e) subject to

17 1
(1- 8); Y (®(x7b(e) +s(e)) — D(xb(e) — s(e))) + & = 3
1
Again s(¢) is minimized by setting b(¢) = 0. If y, # +®~%3/4) we obtain,
using a standard Taylor expansion,

lim TLMS((]' —e)Q+ 85(xoT,yo)T) — T'ums(Q@) _ o7 4 1 ’
€10 € T 4p(®"1(3/4))) °
with the + for |y,| > ®~(3/4) and the — for |y,| < ®~1(3/4).

It remains to consider the case y, = +® %(3/4). Suppose y = ®~X3/4).
Then it is easily seen that the solution (b(¢)7, s(¢))T satisfies

1>z 1
(2.11) (1 - e); lefb(xin(s) +s(e)) - qJ(xin(e) - s(e)) +e= 3

and
(2.12) Yo — x3b(e) = s(¢).
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Given s(¢), it is clear that b(e) maximizes (2.11) subject to (2.12). A Taylor
expansion of (2.11) shows that b(e) maximizes

Y (x7b(e))? + o(Ib(2)I2)
1

subject to (2.12). The solution is
(70 — s(¢)) - Vxo(1 + 0(1))

b(e) = 2TV 1, ’
with V = Yrx,xT. A short calculation shows
s(e) = q>-1(§) b o(s?)
4]~ 1p(071(3/4))
and this gives
r 1 (V'lxo)T !
(2.18) 1F((2f,50) : Toms, Q) = (4¢>(<I>‘1(3/4))) i —1) ,

for y, = +® %3/4). Thus we have shown that T;,g does indeed have an
influence function. As V is nonsingular the influence function is bounded for
xo with |lxyll > 8 > 0. It is not, however, bounded for small x,. Hettmansperger
and Sheather (1992) have noted that T’y is sensitive towards inliers. Equa-
tion (2.13) may help to explain this result.

2.4. Bounded influence regression. In this section we consider regression
distributions with known error dispersion so that the regression functional T
takes values in R*. A generalized M-estimator T, is defined by the implicit
equation

(2.14) Jn(x,y - T(@)"x)xda =0

[see Hampel, Rousseeuw, Ronchetti and Stahel (1986), page 315]. Under
certain regularity conditions 7, (Q) exists, is uniquely defined and has an
influence function given by

(2.15)  IF((27,5)": T,. (@) = (2,5 — T,(@)"x) M }(n, Q)x,
where ,
M(n,Q) = fn’(x,y - Tn(Q)Tx)xdeQ.

In the literature there seems to be a general assumption that standard
bounded regression functionals are generalized M-estimators [Hampel,
Rousseeuw, Ronchetti and Stahel (1986), Simpson, Ruppert and Carroll (1992),
and Maronna and Yohai (1991)]. As an example we mention the
Krasker—-Welsch [Krasker and Welsch (1982)] estimator which is given by
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(2.14) with
1
2.16 X, = TaA ¥ Ax )
(216) n(x,7) = b(rlAxl)
where ¢, is Huber’s ¢-function and A is determined implicitly by
(2.17) E(Il Axl™2p2(rll Axl)xxT) = (ATA)

The expectation in (2.16) is evaluated under the assumption of independently
distributed 9t(0, 1) errors. It is clear that A as defined is a dispersion func-
tional for the design distribution of the regression Q. It will depend on @ and it
is this dependency which means that the Krasker—-Welsch estimator is not a
generalized M-estimator as defined by (2.14). Given this, it is no longer
obvious that the influence function of the Krasker—Welsch functional is given
by (2.15). Huber (1983) claims that the bounded influence regression of
Krasker and Welsch (1982) is not concerned with errors in the independent
variables. In their comment on Huber (1983), Krasker and Welsch disputed
this. The argument given above supports Huber’s position. We examine this in
more detail.

Consider a point contamination of size ¢ at the point (x7, y)T. The implicit
definition of A given by (2.17) will give rise to a new dispersion matrix A(e). If
we now substitute this into (2.14) and go through the calculations, we obtain
the following. The influence function of the Krasker—Welsch estimator is
indeed given by (2.15) as long as the following two conditions hold:

(2.18) limA(e) = A
and
(2.19) fn(x,(y - x"B)A) dQ(x,y) =0,

for all A. In particular, (2.19) will hold if the errors have a symmetrical
distribution and n(x, r) is an odd function of r. The latter is indeed the case
for n given by (2.15).

Suppose now that (2.19) does not hold and that the dispersion part has an
influence function IF((x7, y)7: A,Q) =T so that A(e) = A + T + o(e). If we
now recalculate the influence function of the Krasker—Welsch estimator, we
obtain

IF((x7,%)": Tiew, @) = (¥ — Tiew (@) "x)ll Axll) /1l Ax|

zTATFZ T
- o Ue((v — Tiw(@)"2)ll Azl 2dQ( 2, v)

2TATTz

S P T \y®
+f( 1Az )( Tiew(@)2)0

%((v ~ Tw(@)72)l142l)” d(z, ).
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This again reduces to (2.15) if the errors are symmetrically distributed under
Q.
Maronna and Yohai (1991) calculated the breakdown point (gross error
model) of the generalized M-estimator with unknown scale. They state that
for a symmetrical design distribution the Krasker—Welsch functional is opti-
mal with respect to breakdown. However, they assumed that the dispersion
matrix A is known so that the possibility of a breakdown of the dispersion
functional as defined by (2.17) leading to a breakdown of the regression
functional does not arise.

Simpson, Ruppert and Carroll (1992) suggest using a high breakdown
dispersion functional in place of the matrix A of (2.17). In particular, they
suggest using Rousseeuw’s minimum volume estimator [Rousseeuw (1986),
Nolan (1991) and Davies (1992a)] or multivariate S-estimators of dispersion
[Davies (1987)]. The idea of using a high breakdown functional is surely
correct; the problem is that those suggested are strongly linked to a parametric
model, one of an elliptical distribution. The existence of solutions can be
proved quite generally, but all uniqueness theorems require that the distribu-
tion be elliptical [Davies (1987)]. Lopuhai (1989) has shown that smooth
S-estimators of dispersion have a well-defined influence function, but again
this has only been shown for elliptical distributions. One of the main problems
with linear regression is that the design distribution is given; I know of no
practical case where this is elliptical. We therefore have to deal with an
essentially nonparametric situation. The results of Simpson, Ruppert and
Carroll (1992) are therefore of limited value unless it is possible to obtain a
well-defined smooth high breakdown dispersion functional. It is exactly this
problem which is considered in Section 6.

3. Linear equivariance, metrics and breakdown points.

3.1. Linear equivariance for regression functionals. The regression prob-
lem remains invariant under the group % of linear transformations A: R**!
— R*¥*1 of the form A((x7, y)T) = (Tx)7, (ay — xTy))T, where a € R \ {0},
vy € R* and T: R* — R* is a nonsingular linear transformation. Let Q4 denote
the regression distribution of the transformed problem so that Q4(B) =
Q(A~YB)), B € B(R**!). We shall call an estimator T: B(R**1) —» RR**1)
linearly equivariant if, for all @ € W(R'**) and for all A € ¥,

(3.1) T(Q4) = A*(T(Q)),

where A*((b7,5)T) = ((ab — y)TT 7!, |als)?. It should be noted that this is a
rather weak sense of equivariance as, in the case of more than one solution,
there is no guarantee that the solution obtained by one method will transform
in an equivariant manner. If, however, T'(Q) is a one-point set, then so is the
T(Q4) for any A in %, and these estimators transform in an equivariant
manner.
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3.2. Linearly equivariant metrics for linear regression. Given that the
regression problem is invariant under ¥, it seems natural to make use of
metrics on the space of regression distributions which are metric invariant
with respect to 2. The most obvious invariant is the total variation metric d ¢y
of (1.2) but, as mentioned in subsection 1.5, this is too strong. To define a
weaker metric, we consider the family  of strips in R**! defined by 9 =
{H(c,vy):c >0,y € R¥*1}, where H(c,y) = {z: |2Ty| < ¢}. Forany H = H(c, y)
and any n > 0, we write H" = {z: |2Ty| < ce”}. The invariant pseudometric
d, on W(R**1) is defined by

ds(Qy,Q,) = inf{n > 0: Q(H) < Qy(H") + n and

(3.2)
Qu(H) < Q,(H") + 7 forall H € 9},

for all regression measures @, and Q, in W(R**1). It is easily checked that
do(Qf,Q8) = d(Qy, Qy) for all Q;, Q, in WER**') and for all A € UA.

It is perhaps worth making a few comments on the pseudometric d . If H"
is replaced by {z: |z2Ty| < ¢ + 1}, then we obtain a form of Prohorov pseudo-
metric and n has the interpretation of an inaccuracy in the measurements of
z. The definition of H" may be interpreted as a proportional error correspond-
ing to the absolute error of the Prohorov metric.

Although the pseudometric d, is sufficient for much of the analysis, we
shall require a more complicated metric when dealing with the Krasker—Welsch
bounded influence functional. The reasons for this were discussed in subsec-
tion 1.5. We define the metric d q4(Q;, Q,) by

(3.3) dag(Q;,Q,) = Su§|@1(c) — Qx(C)l,
cE
where € is the family of sets of the form C; U C, with

(3.4) C, = {(xT,y)T: 07x > a;, (a;y — vfx)ITx|l < ci>,
with a;, @;,¢; € R,6;, v, € R* and T a nonsingular £ X k-matrix. The class €
is invariant under the group % and hence dq(Q7, Q%) = dqx(Q;, Q,) for all
A € U. The metric d gy is weak as the class € is a Vapnik-Cervonenkis class.
This follows from Lemma 18 on page 20 of Pollard (1984).

The gross error model Q' = (1 — £)Q + Q" is popular in robust statistics
and the ¢ may be related to d and d g4 by noting

(3.5) supd(Q,Q") =&,
Qll

fOI‘ d = d@ or d@g’g
3.3. Breakdown points of regression functionals. We now define the

breakdown point £*(T,Q, d) of a regression estimator T at the point Q of
W(R**+1) and with respect to the metric d as follows:

(3.6) e*(T,Q,d) = inf{e > 0: sup(/lb(Q)]l + s(Q')) = =},
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where the supremum is taken over all @ with d(Q,Q) <e and all
(BT@), s(@)T in T(Q') with the convention [|6(Q")] = « if T(Q') = &.

THEOREM 3.1. Let T be any linearly equivariant functional and d any
linearly invariant metric with d < dyg. Then for all Q and A € A we have .
e*(T,Q,d) = ¢*(T,Q4, d) < (1 - AQ)/2.

Proor. Let H = {x: x76 = 0} with [|6]| = 1 be such that Q(H) = §(Q) and
consider the linear transformation A(r) given by A(r)(x7,y)T) = (xT,y —
7x76)T. We define the measures W;, W, and Q, by Wi(B) = Q(B N (R X H)),
W,(B) = Q(B) — W,(B) and Q.(B) = (W, + WA™)/2 + W,. As WA® =
WACD — W, and (WAD)ACD = W, we obtain QA" = (WA + W,)/2 +
W,. As T is linearly equivariant we have (b7 + 767, s)” € T(Q/ ") for some
(7, 5)T € T(Q,) and hence not both of the sets T(QA™) and T(Q/") can be
bounded. It remains to show that d(Q, Q,) and d(Q, Q") are both at most
(1 — A(Q))/2. Because of the symmetry of the situation and the fact that d is
linearly invariant, it is sufficient to consider Q.. The claim follows on noting
10.(B) — Q(B)| < [Wy(B) — WATD(B)I/2 < (1 — WyR**1)/2 = (1 -
A@)/2. O

We point out that the finite sample breakdown point version of this result is
(1.1) and may be found in Rousseeuw and Leroy (1987), Theorem 4, page 125.
The “p” in their theorem is the dimension of the design space. A close
examination of the proof shows, however, that it remains valid if p is the
largest number design points on some lower-dimensional plane. In our nota-
tion we then have A(Q) = p/n. The slight difference between (1.1) and Theo-
rem 3.1 is due to the fact that the finite sample breakdown point definition
allows one only to move whole points of measure 1/n. In the metric definition
a point of mass 1/n may be split into two ‘points,” each of measure 1/(2n).
Similar results are to be found in Davies (1987) and Lopuhaa and Rousseeuw
(1991).

3.4. Linear equivariance for dispersion functionals. In order to determine
the leverage points of a design distribution, it would seem to be necessary to
obtain a robust dispersion measure. We therefore consider dispersion function-
als T2, T?: 8 _(R*) - R(PDS(k)) with the convention that T?(Q,) = @ if
TP is not defined at the point Q,. A dispersion functional T° will be called
linearly equivariant if, with the obvious convention, T b@$) = GTP(@,)G™
for all G in the group ® of nonsingular & X k-matrices. Again, this is a weak
definition of linear equivariance as, unless T2(Q,) consists of just one point,
there is no guarantee that actual versions of TP(Q,) will transform in a
linearly equivariant manner.

As for the regression problem it seems natural to use metrics on B PG
which reflect the linear invariance of the dispersion problem. A metric d” on
28 ,(R*) will be called linearly invariant if d?(Q%;, QF)) = d”(Q,,4, Qy,) for all
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nonsingular G. Corresponding to the pseudometric dg on W(R**1), we define
the pseudometric d on the space of design distributions by (3.2) but on R*.

3.5. Breakdown points of dispersion functionals. We define the break-
down point &*(T'2, Q,, d?) of the dispersion functional TP at the point Q, of
B ,(R*) with respect to the metric d” as follows:

E*(TD’ @d, dD) = inf{€ > 0: sup(AmaX(D) + Amin(D)_l) N 00}’

where the supremum is taken over all Q) with d?(Q,, Q) <& and all D in
T2(Q),) with the convention A, (D) = « if T2(Q,) = &

THEOREM 3.2. Let TP be any linearly equivariant dispersion functional
and d® any linearly invariant metric which satisfies d° < d 4. Then for all
Qg and G € & we have

8*(TD, Qd’ dD) = 8*(TD, Qg’dl)) < (1 - A(Qd))/2‘

Proor. Let H = {x: xT0 = 0} with 6 € S* be such that Q. (H) = A@Q)).
Without loss of generality we may assume that H = {x: x; = 0}. We consider
the linear transformation G(7) given by G(7Xx) = (rx,, %5, ..., x,)T with
7 # 0. We define the measures W,;, W,; and Q_, by W,,(B) = Q,(B N H),
W,u(B) = Qu(B) — W,4(B) and Q_,(B) = (W, + WS™)/2 + W,,.

As WED = WEC™ = W,, and (WE™)SC™D = W,,, we obtain

Qg = (Wz?i(T_l) + Waq)/2 + Wiy

The llnear equivariance of TP implies det(I') = =2 det(I") for some I €
TP(DE ) and for some I € T2(@,,). Thus, as 7 > 0, it is not possible for
the eigenvalues in the sets T'2(Q%" ) and 75 (Q,,) to be bounded away from
0 and «. That d(Q,,4, Q,) < (1 — A(Q,))/2 follows as in the proof of Theorem
3.1. O

4. S-estimators.

4.1. Existence. S-estimators for the linear regression model were intro-
duced by Rousseeuw and Yohai (1984). To define S-estimators, we consider a
function p, p: R — [0, 1], with the followlng properties [Rousseeuw and Yohai
(1984) and Davies (1990)]:

R1. p is symmetric.

R2. p: R,— [0,1] is nonincreasing.

R3. p(0) = 1.

R4. p is continuous at 0.

R5. p: R,— [0, 1] is continuous on the left.

R6. p(u)>0if 0 <u <c, and p(x) = 0 if u > ¢, for some ¢, > 0.
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We note that R1, R2 and R5 imply
(4.1) limsupp(u') <p(u).
u'-u
Let £, 0 < ¢ < 1, be fixed and suppose the function p satisfies R1-R6. For
any distribution Q we define an S-estimator Ts(Q) to be the set of solutions
(b7, s)T of the following problem.
Choose (b7, s)T, s > 0, so as to minimize s subject to

T
y—xb
4.2 -
(4.2) [Rmp( - )d@(y,x)zl e
[Rousseeuw and Yohai (1984) and Davies (1990)].
We denote this problem by B(Q).
THEOREM 4.1. T (Q) # & for any distribution Q.

Proor. It follows from R1-R4 that lim,,[p(y/s)dQ = 1 > 1 — ¢ so that
the set

st

y—xTh

Sy(Q) = {(bT,s)T: kaﬂp( )d@(y,x) >1- s}

is nonempty. We define s* = inf{s: (b7, 5)T € ©,(Q)} and consider a sequence
(BT, 5,)7); in ©,(Q) with lim s, = s*. If there exists a convergent subse-
quence (b, 5,)7)7 with lim b, = b*, then it follows from (3.1) that

- xTh, —xTh,
1-¢< limsupfp(y———‘) do < flimsupp(;) dQ
i—o sn, i—® sni
Tpx
y—x'b
< fp(s—*) dQ,

from which we see that (6*T, s*)T is a solution of B(Q).

If ||5,l tends to « we consider first the case
(4.3) lim |x7b,| = o,
for all x # 0. We obtain

- xTb
l1-¢x< limsupfp(y——'i) dQ
. y—x"b, y—x"b,
< lim p| — | dQ+ lim sup pl — 1 dQ

(44) n—o My =0} S, now “{x+0} S,

lim p(—y—) dQ
n—oody=0} \ S

n

< fp(:’—*) dQ.

This implies (07, s*)7 is a solution.
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If (4.3) does not hold, then there exists an x; with liminf, , |xTb,| < .
We choose a subsequence of (b,)7 which we continue to denote by (b,)7 such
that lim, ,, x7b, = a,. Let L, denote the linear subspace spanned by x, and
L{ its orthogonal complement. If lim, _ |xTd,| =  for all x € L}, we set
L = L,. Otherwise there exists an x, € L{- with liminf, __[x7b,| < » and we
may find a further subsequence of (b,)7 such that lim, _,, xJb, = a,. Let L,
denote the linear space spanned by x; and x, and Ly its orthogonal comple-
ment. If lim, _, [x7b,| = » for all x € Ly, x # 0, we set L = L,. Otherwise
we choose x3 € Ly and continue as above. Eventually, we obtain a linear
subspace L spanned by x,,..., x, such that

lim x7b, = a, 1<i<l,

n-—o v

and lim, _ lx7b,| = © for all x € L*, x # 0. The linearity of limits shows
that there exists a b € R* such that

lim x76, = x7b,

n-—ow
for all x € L. We have, for any x € R* \ L, lim, _, .|x7b,| = » as may be seen
by writing x =x' +x” with ¥’ € L and x" € L*, x” # 0. The argument
leading to (4.4) now gives

1—-¢<

T T
y—x'b y—x"b
(xem”(s—*)d@ﬁf”(s—*)d@’

which shows that (b7, s*)T is a solution. O

4.2. Bounded solutions. It is not difficult to construct examples where the
set of solutions T5(Q) is unbounded. The following theorem gives a sufficient
condition for the solution set to be compact.

THEOREM 4.2. If A(Q) < 1 — ¢, then Ts(Q) is compact.

Proor. We give a proof for 2 = 1. If there exists a sequence ((b,,, s*)7)7 in
Ts(Q) with liml|b,| = », then the proof of Theorem 4.1 shows that 1 — ¢ <
Q(f{x = 0}) < A(Q), contradicting the assumption placed on A(Q). The general
case follows on writing 6, = b, /1b, || and choosing a convergent subsequence,
which we continue to denote by 6,, for which lim 6, = 6. The same argument
now gives 1 — ¢ < Q({x78 = 0}) < A(Q), proving the theorem. O

If A(@Q) > 1 —¢, then the following example shows that T(Q) may be
unbounded.

ExampLE 4.1. We take k& = 2 and a distribution Q such that Q({(x7, y):
y=x, =x,}) =1 —¢. Then Ty = {(67,0)7: b, + b, = 1} and is unbounded.

4.3. Breakdown points. We now calculate the breakdown points of Tg. We
require the following lemma.
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LEMMa 4.1.  Let p satisfy R1-R6. Then, forany b € R*, s > 0 and Q, and
Q, in W(R**1), we have
T T
y—x'b y—x'b
aQ, < dQ, +d , .
fol =) 205 ”( exp(ds@(@l,@z))s) Bt dol0 @)

Proor. For u > 0 it follows from R1, R2, R5 and R6 that p(x) = — flu <
v < »} dp(v). The claim can now be proved using Fubini and

j{‘y_:% sv<oo}d@15j{

for any n > d4(Q;, Q). O

y—xTb

5 sve"<oo}dQ2+n,

The next theorem gives a lower bound for ¢*(Ts, Q, d ).

THEOREM 4.3.
e*(T,,Q,dg) = min(e,1 — & — A(Q)).

Proor. If A(Q) > 1 — ¢, then the claim is trivial. We therefore suppose
that A(Q) <1 — ¢, choose 1 < min{e, 1 — ¢ — A(Q)} and consider the set of
distributions @ with d4(Q, @) < n. From R2, R3 and R4 it follows that there
exists an s(n) > 0 such that 1 — ¢ + n < [p(y/s(n)) dQ and hence, on using
Lemma 4.1, we obtain

Yy
l1-eg—-7n< ———— | dQ + 7,
K f”(s(n)exp(m) "
which implies
(4.5) s*(Q') < s(m)exp(n),
for all @ with d4(Q, Q) <7 and where (B*(@)7T, s*(@)T € Tx(Q') for some
b*(Q).
Suppose now that there exists a sequence (Q,)7 with d4(Q,Q,) <7 and a

corresponding sequence of solutions ((b7,s,)T)7 of the problems (B(Q,)7
with lim,, _,_|[b,[| = . Then

; T T
y —xTb, y—xb,
- i y x5, . sz = +
o= e o 170 tmen o 5 0+
T
’ y—x bn )
Ll Fars Jaa+,

where we have used (4.5) and Lemma 4.1. The argument of the proof of
Theorem 4.2 now gives 1 — ¢ < A(Q) + 7, contradicting the choice of n. Thus
for all n < min{e,1 — ¢ — A(Q)} there exists a bounded subset C(n) of Re+1
such that T4(Q') c C(n) for all Q' with d(Q, Q") <, proving the theorem.

O
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The expression minfe,1 — ¢ — A(Q)} is maximized by setting ¢ = (1 —
A(@)/2 and in this case we obtain £*(Tg,Q, dy) > (1 — A(@))/2. This to-
gether with Theorem 3.1 gives the following result.

TueorEM 4.4. If ¢ = (1 — A(Q))/2, then £*(Tg,Q,dg) = (1 — A@))/2.

Theorem 4.4 is a sleight of hand as the choice of ¢ now depends on Q. A
similar sleight of hand in the calculation of finite sample breakdown points
was commented upon in subsection 1.4. We therefore define a new functional
T with ¢ in (4.2) given by (1 — A(Q))/2. We have the following result.

TueOREM 4.5. The breakdown point of TE is &*(T§, Q,dgy) =01 -
A(Q)/3.

Proor. Let @ be such that d(Q,Q") <n. Then AQ) < A@) + 7 and
the proof of Theorem 4.4 may be repeated to give £*(TE, Q,d o) =1 -
A(@)/3. Let Q, be a distribution of the form

Q,(B) =78,(B) + Q(B N {x: 276, = 0})
+(1-1/(1 - A(Q))Q(B n {x: 65x # 0}),

where 27 = (67, y), 6, and 6, are in S*, 79, = 0 and A(Q) = Q ({x: 6Tx = O}).
Then A(Q,) = A(@) + 7 and for any (b7, 5)" € T£(Q,) we have

T

(1+A(@n))/25np(y +1-7.

If £*(T¢,Q,dg) > (1 — A(Q))/3, then we can choose 1 so that (1 — A(Q))/3
<n <e¥T&Q,d o) and the set T (@Q,) is bounded. It is therefore possible to
choose y so that p((y — 67b)/s) =0 and this implies (1 + A(Q) + 1)/2
<1-mn, giving n <(1 — A(@))/3. This is a contradiction and therefore
e*(T¢,Q, dg) < (1 — A(Q))/3, proving the theorem. O

The expression (1 — A(Q))/3 recurs several times in this article. It raises
the question as to whether this is the best possible breakdown point for
globally defined linearly equivariant functionals in the sense that a higher
breakdown point can only be obtained at the expense of reducing the break-
down point below (1 — A(Q))/3 at some points or not having the functional
defined at all points.

4.4. Uniqueness and continuity of S-estimators. We now give sufficient
conditions for the S-estimator Tg to be uniquely defined. We restrict attention
to distributions of the form (1.7) which arise from the usual linear model (1.6).
We require the following conditions to be placed on the density function of the



ROBUST REGRESSION 1869

errors [Davies (1990)]:

F1. f:R - R, is bounded.
F2. f is symmetric.
F3. f:R,— R, is nonincreasing.
FR1. For some u > 0 and for all 7,
0<n<u,(flu+m)—flu—nXp(u +n)—plu —n)>0.
FR2. [p(u)f(uw)du =1 —&.

We note here that the slightly weaker condition FR1 of Davies (1990) is not
quite sufficient and should be replaced by the FR1 above. The condition FR1 is
automatically satisfied if f: R, — R, is strictly nonincreasing as is the case for
the normal distribution. The condition FR2 is a normalization to ensure
Fisher consistency at the assumed model. Given any p satisfying R1-R6, one
may define p, by p(u) =p(u/c) and then choose ¢ > 0 so that FR2 is
satisfied. This is always possible as the integral in FR2 is a continuous
function of c. The function p, also satisfies R1-R6.

THEOREM 4.6. Suppose that Q is of the form (1.7) and that Q, has a
density f, of the form f (u) = f(u/0)/0o, where f satisfies F1-F3, FR1 and
FR2. Then Ty = {(BT, )T}

Proor. We have

f( —be)d@ f(f (:M)fu(u)du)d@d(x)

< [(fo(%) fu(w) du) day(),

because of R1, R2, F2 and F3 [see Lemma 1(ii) of Davies (1990)]. The integral
in (4.6) is a strictly increasing function of s and it therefore follows from FR2
that s = o minimizes s subject to the constraint (4.2). For s = ¢ we obtain
strict inequality in (4.2) because of FR1. This implies that x7(b — B) =0
Qg -a.e. x and hence, as A(Q,) < 1, we must have b = B, proving the theorem.

0O

(4.6)

We now turn to the continuity of Ty and introduce the conditions

1
FR3 lim — (p(
v—->0 U

) - ,p(y))f(y) dy =c¢3>0,

1+v

FR4 1 1 yru 4 d 0

We have the following result.

THEOREM 4.7. Suppose that Q is as in Theorem 4.6 with Ty (Q) =
{(BT, )T}, that FR3 and FR4 hold and that min{e, 1 — ¢ — A(Q)} > 0. Then,
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for all my, 0 <my <minfe,1 — & — A(Q)}, there exists a constant cg = c5(n)
such that

Ts(@) < {(67,9) s b = I + Is — ol < c3do(Q, @)},
for all Q' with d4(Q, Q") < n,.

Proor. As the functional Tg is linearly equivariant, it is sufficient to
consider the case B = 0 and o = 1. We note first that by Theorem 4.2 there
exists a compact subset K(n,) of R**! such that T4(Q') c K for all Q' with
d (@, Q) < mq. If (b7, 5)T € Tg(Q') we have, on writing 1 = d(Q, @),

t-es o[PS 4w fo o KR Eron RS

Y
= _ dy +
fp( oxp(m)s ) f(y)dy +m
by Lemma 4.1 and the argument leading to (4.6). Thus

Jo| stz ) f) dy 2 1= =

and hence, by FR2 and FR3, c4(exp(n)s — 1) > —n for some constant cg
which implies
(4.7) s—1> —¢qm,

for some constant c¢; > 0. In the other direction FR3 gives

f(y)dy,

1—e+77$fp(exp(ym)

for some ¢y and hence

1—e+nsfp(ﬁ;ﬁ)d@sfp(m)d@%n,

which yields s < exp(cgm) for some constant cg > 0. This together with (4.7)
yields

(4.8) Is — 1] < ¢;0d(Q,Q").
We now turn to the location part. Using (4.8), we have

—xTb y—xTb y—xTb
l-e¢x< dd’ < — | dQ < — | dQ +
fp( ) fp( exp(cyym) ) fp( exp(c12m) "

b
- /(.[ (exp(c 277))f(y) dy) dQu(x) + 7.
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On using FR2 and FR3 we obtain

ff(P( - )—p(y_be ))f(y)dy)d@d(x)2c13n,

exp(¢ym) exp(cy15m)
with c¢;3 > 0. From FR4 we may deduce

bTxxTh
J T+ ey 902 S cun

with ¢, > 0. As A(Q) < 1 there exists a c;5 such that [{llx|l < ¢,5}xxT dQ, is
strictly positive definite and this is seen to imply [6l|® < c,4m, proving the
theorem. O

Theorems 4.6 and 4.7 also hold for the functional TE.
The following example shows that in general we cannot improve on a Holder
condition of order 1/2 even for smooth p.

ExampLE 4.2. For simplicity, we assume that & = 1, that Q has compact
support and that the conditions of Theorem 4.7 are satisfied. Without loss of
generality we may take T4(Q) = (0,1)T. Let p have a continuous second
derivative and choose ¢ with p™(c) > 0. We now consider the effect of a point
contamination at (u,c)”. Let Q, = (1 — £)Q + &, ,r and write T,(Q,) =
(b(e), s(e))T. From Theorem 4.7 it follows that

(4.9) (&)l + 1 — s(&)l = O(Ve)

uniformly in u. Now b(¢) maximizes

(1_8)/p(y—xb d@+gp(c—ub(e)),

s(e) s(e)
with respect to b so that, on differentiating,
x y — xb(¢) cu ¢ —ub(e)
1-— %) 6N -0.
a-a/55r ( @ )T sE? ( @ ) 7°
Because of F2 we have
y
O ~— =
o0 5 ) a2 =0
and a Taylor expansion gives '
x? y — 0xb(&) c — ub(e)
— _ (2) D —— 7| =
(1 8)b(8)fs(e)p ( (@) )d@+£up ( 5() ) 0,

for some 6, 0 < 6 < 1. For small ¢ we have, on using (4.9),
c — ub(e) )

(4.10) c'b(e)(1 +o(1)) = eup(l)( (o)



1872 P. L. DAVIES

with ¢’ # 0. We now set u = 1/ Ve and write b(¢) = y(e)Ve . This gives

6—7(8))
s(e) |

As lim, ,,s(e) = 1 and p™(c) # 0, we see that liminfly(¢)|/ Ve > 0 which
shows that the result of Theorem 4.7 cannot be improved upon.

We note that the continuity of Ty was proved only for theoretical distribu-
tions which have density and for which FR3 and FR4 hold. Theorem 4.7
applies to the Hampel-Rousseeuw least median of squares functional Tims-
The fact that one needs strong conditions to obtain continuity indicates that
the functional will not in general be continuous at any given regression
distribution Q. Indeed it is easy to construct distributions where T}, is not
continuous and the work of Hettmansperger and Sheather (1992) suggests
that this is not only a theoretical possibility.

c'y(e)(1 +o(1)) = p‘l’(

5. Bounded influence regression.

5.1. Definition. Assuming the scale parameter to be known, M-estimators
T, of the form

[xv(y - *"T,(@)da =0
have an influence function given by
(5.1) IF(x",5;T,,Q) = ¢(y — x"T,(Q)) M (¢, Q)x,

where
M($,Q) = [xxTyD(y — 27T,(Q)) dQ

[Hampel, Rousseeuw, Ronchetti and Stahel (1986), page 316]. Assuming
M(¢, Q) to be finite, it is clear from (5.1) that the influence function is bounded
in the residual space but not in the factor space. Moreover, it may be shown
that the breakdown point is 0.

Proposals to modify M-estimators so as to obtain bounded influence func-
tions have been made by several authors [Hampel (1978), Krasker (1980),
Krasker and Welsch (1982) and Ronchetti and Rousseeuw (1985)]. Some of
these proposals have certain optimality properties such as minimizing the
trace of the asymptotic covariance of the estimator of the regression coeffi-
cients subject to a bound on the maximal influence. All proposals are based on
robust measures of dispersion for the design distribution Q,, permitting a
downweighting of infinitesimal contamination at the leverage points. This
leads to estimators of the form

fxw(TD(@d)x)a,b((y - x"T,(Q))/w(T?(Q,)x)) dQ = 0,
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where w is some weight function and TP is a dispersion functional. An
example is w(x) = 1/||x||.

5.2. Breakdown points of dispersion functionals. Both the Hampel-
Krasker and Krasker—Welsch dispersion functionals are M-estimators and as
such have a breakdown point of at most 1/(k + 1) [Maronna (1976)]. As far as
I am aware the actual breakdown points have not been published, at least not
for full metric neighbourhoods.

The Hampel-Krasker dispersion estimator Tk is DD?, where D is a
symmetric positive definite 2 X k-matrix which is a solution of

(5.2) J(2®(c/IDxll) - 1) Dx(Dx)" dQ, = D,

where ® denotes the (0, 1)-distribution function. If [|lx[|dQ,; < » it is
known that a solution exists for ¢ sufficiently large and we shall assume that
this is the case.

THEOREM 5.1. Let T be the Hampel—-Krasker estimator and Q, a design
distribution with A(Q,) = 0 and [llx||dQ, < ». Then &*(THx, Q,, dP) =0

for any linearly invariant metric d? which satisfies (3.5).

Proor. For 7,0 <m <1, we set

k
@nd = @T/d(n’ R’el’“ "ek) = (1 - n)@d t nZﬁRoj/k,
1

where 6,,...,6, are orthogonal vectors in R* with [|6; =1, 1 <j < k. Let
D = D(n, R,0,,...,8,) be the solution of (5.2) with Q,, in place of Q;. On
multiplying on the left by OJT and on the right by 6;, we obtain

nR2||Dej||2(2q>( ) - 1) < klDo,l.

C
RIDO,|

This is only possible if lim _,, R||D6,|| = 0, implying that the estimator has
broken down. O

For the proof of the theorem it is only necessary to consider (1 — n)Q, +
1ndpy for some fixed 6. However, the contamination we have chosen implies

(5.3) I%im || Dx|| = 0,
for all x as may be seen by noting lim, _,., RI/D6;|| = 0 for all ;.

The next theorem covers the Krasker—Welsch dispersion estimator T2y
which is defined as DD7, where D is the solution of

(5.4) ](fdfc(ullell)2 dN(0,1) | Dx(Dx)" /IIDx|?dQ, = I,

where ¢, denotes the Huber -function with cutoff point c. Using the results
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of Maronna (1976), it can be shown that a solution of (5.4) exists if ¢2 > %k and
A(@d) = 0

THEOREM 5.2. Let T2y be the Krasker—Welsch dispersion estimator with
tuning constant ¢, ¢® > k, and Q, a design distribution with A(Q,) = 0. Then

e*(TRw>Qq, d3) = min{1/¢?1 - k/c?} < 1/(k + 1).

PROOF Let 1, c™2 <7 <1, be fixed and consider the distribution Q, 45
Qg =Q, 4, R,0) =1 - n)@d + 18ge. On multiplying (5.4) on the left by
(DH)T/IIDOII and on the right by D8 /|| D4l|, we obtain 7y (R D8I)? dN(0, 1))
< 1 which is only possible if R||D6|| remains bounded as R — o, implying that
the estimator has broken down. We have therefore shown

(5.5) e*(TRw, Qq, dg) < 1/¢>.

If now 7 > 1 — k/c? we have, on taking traces in (5.4), letting B — 0 and
assuming that the eigenvalues of D remain bounded,

k= lim (1- n)f(fzpc(ullell)szR(O, 1| da, < (1 - n)e,

which contradicts the choice of n. This shows e*(T2y,Q,,d3) <1 —k/c?
which together with (5.5) implies

(5.6) e*(TRw,Qq, dg) < min{1/c? 1 — k/c?}.

In the other direction we argue as follows. Let (Q,,)7 be a sequence of
design distributions with corresponding matrices (D,)7. Let (A ;,(n))7 denote
the smallest eigenvalues of the (D,); with eigenvectors (,)7 in S*. Suppose
that lim, ,, A_;.(n) = 0. Then

[(/¢c(u||D xll)* d (0, 1))(—TD—T|2)d@dn

(Amin(n) 07 x)
<<f,

IID, x||2 dQqy, + ch()‘min(n)fo)z daQy,,,

where B, = {x: [0Tx| > A,
On noting that | D, x|l > A

(n)~'2?} and B¢ denotes the complement of B,,.
(n)llx|l, we obtain

1< ¢®Qy,(B,) + Ain(n) < (Q({x: 1672l = Ain(n) ™" exp(—m)}) + n)

+ /\min(n)'

On letting n tend to © and remembering 8(Q,) = 0, we deduce 1 < ¢?n. This
shows that if n <c~2, then TRy cannot break down in that the smallest
eigenvalues tend to 0. It remains to show that if < 1 — k/c?, then it cannot
break down in that the largest eigenvalues tend to .
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Let (Q,,,)7 be as above but with the maximum eigenvalues A, (n) tending
to . With 6, € S* as the corresponding eigenvectors, we obtain on taking
traces

- r}i_:}:gf(ft/tc(ulanxll)zdm(O, 1))d@dn

> lim /(/wc(umm(n)ogxbzdm(o, 1)) dQy,
> czliminf@dn({x: 10Tx| > /\max(n)_l/z})
> czliminf(@d({x: 107x| > A, (n) ? exp(n)}) - n)

=c%(1 - ).
This is only possible if 7 > 1 - k/c* and hence &*(TZy, Q,, dg) >
min{1/¢% 1 — k/c? which together with (5.6) proves the theorem. O

5.3. Breakdown points of regression functionals. Maronna and Yohai
(1991) calculate the breakdown points of general M-estimators in the linear
regression model. [See also Maronna, Bustos and Yohai (1979)]. However, their
calculations do not take into account a possible breakdown of the dispersion
functional which we considered in subsection 5.1. They do not define break-
down in terms of metrics but use the gross error model. Their results are
therefore not directly comparable with those obtained here.

The Hampel-Krasker regression functional is defined to be the solution b of

(5.7) [ x.((y — ™)l Dxll) /Il Dxl dQ = 0,
where DD” = TZ.(Q,). We have the following result.

THEOREM 5.3. Let Tyy be the Hampel-Krasker estimator and Q a regres-
sion distribution with A(Q) = 0. Then &*(Tygk,Q,d) =0 for any metric d
which satisfies (3.5).

Proor. Let
n k
@n(ﬂ,y1w~,yk, R,0.,...,0,) =(1-1n)Q+ ;ZS(ROJT’J’J)T
1

and consider now the defining equation (5.7) for Tuk(Q,) = b. We have

(1- n)fDxtpc((y — ")l Dxll) /I Dx|l dQ
(5.8) .
= & LD6;u((y; — Ro"0;) RIDg, ) /1D,

and as ||b]| remains bounded we can choose the y; so that ¢.((y; -
RbT0)RIID,|) = +c, 1 <j < k. By an appropriate choice of the + signs, we
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can arrange that the right-hand side of (5.8) has modulus at least nk~'/2. As
| Dx|| tends to O for all x as R tends to «, by (5.3) the left-hand side of (5.8)
tends to 0 by dominated convergence. Thus ||b|| cannot remain bounded and
the estimator has broken down, proving the theorem. O

We now turn to the Krasker—Welsch estimator Ty, which is defined by
(6.7) with DDT = T2,(Q,). We prove the following result.

THEOREM 5.4. Let Tyy be the Krasker—-Welsch estimator with tuning
constant ¢, ¢ >k, and Q a regression design distribution with A(Q) = 0.
Then always

1 k
— <" (Tgw,Q,dgg) < min{—z,max{l -
c

E c2—-k+1 1
2¢?

22k —k+1)] 2
If [llxllzll + [y]) dQ < w, then

1 c2+1-k% 2

- - .
¢’ 2% +1-k| " k+1+VE2-2k+5

8*(TKW7 @’ d@%) =< mln{

Proor. Let (Q,)7 be a sequence of regression distributions for which
deaw(Q,Q,) < 7n < 1/2c% We denote the corresponding Krasker—Welsch dis-
persion estimates by (D, DT)7 and the corresponding regression estimates by
(b,)] and suppose that |5, tends to « with n. From the definition of the
Krasker—Welsch estimator with 6, = D 16, /1D b, ||, we have

J6ID,xu.((y - R,67D,x)I|D,xll) /ID,xll dQ, =0,
where R, = ||D, ', . We define the sets (B, )7 by
B, = {(«7,5)":67D,x > 0, (y - R,67D,z)ID, x| < —c}
U{(#7,5)": 67D, x < 0, (y - R,67D,x)ID,xll > c}.

This implies [ 107D, x|/IID, x| dQ, < Q,(Bg), where B¢ denotes the comple-
ment of B,. On noting that dg4(Q, Q,) < 7, we obtain

lim sup[ 107D, x| /| D, xl dQ,, < Q(BS) + .
B,

n—ooo

The eigenvalues of D, are bounded away from 0 (Theorem 5.2), giving
lim, ., R, = . From this and A(Q) = 0, it follows that lim sup,, _,,, @(B¢) = 0
and hence

limsupf 167D, x| /IID, x|l dQ, < 7.
Bn

n—>ow
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This implies

lim supf 107D, xI?/ID,xI? dQ, <

n—o n

from which we may deduce

llmsupf (fcpc(uIID xII) dan(o, 1))|0TD x?/ID, x|? dQ,

n—-o

The definition of the Krasker—Welsch dispersion estimator gives

n—o

(1 - hmmf[ (fl//c(uIID xl)* dR(o, 1)) 167D, x1?/ID,xII> dQ, | < c?y

and we therefore obtain (1 — ¢? lim inf, ,, Q,(B¢)) < c?5. As
liminf, |, Q,(B:) <n by the argument given above, we may deduce (1 —
¢®n) < ¢, contradicting the choice of n. We have therefore proved
3*(TKW’ Q, d@gg) > 1/202.

We now consider the opposite inequality. Let n > k/c? and Q, be a
regression distribution of the form

(5.9) Q,=(1-m7)Q+ z‘, BRaf, 5

J

where 0, € S* for 1 <j <k and the 6; are orthogonal. Let b =
b(n, R,0,,...,6,) denote the corresponding regressmn estimate and DD with
D = D(n, R, 01, .., 0,) the Krasker—Welsch dispersion estimate. We note that

(5.10) lim Dx = 0,

R— o

for all x. Indeed, the proof of Theorem 5.2 shows lim D6; = 0 for all j from
which (5.10) follows. Suppose that the ||5|| remain bounded as R tends to . As

(1 = n) [ Dxu((y — bTx)|I Dxll) /I Dxll dQ
(5.11)

— — = L D0u.((; - B6"6,)RIID,l) /106,

we can arrange, as in the proof of Theorem 5.3, that the right-hand side of

(5.11) has modulus at least n&~1/2, The left-hand side tends to 0 as R tends to

o« by (5.10) and dominated convergence so that ||6|| cannot be bounded and the
Krasker—Welsch estimator has broken down.

Consider now the case
) E c2—-Fk+1
> B —
- max ¢’ 22 -k +1

We set ,
@n =(1-7)0Q+ 173(3,0’}307‘)1',
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for some § € S* and y, € R and write DD” = T%,(Q, ;). The proof of Theo-
rem 5.2 shows lim 5 _, (/|D6|| = « which together with §(Q) = 0 implies
(5.12) lim || Dx|| = oo,
R—-0

for all x. On writing b = Tyw(Q,), we have

(5.13) (1 = ) [ Dxw((y — 6%)IDxll) /I Dl d@

= —nD6y,((y, — RbT0) RIDOIl) /I Dl.

If now ||6]| remains bounded as R tends to 0, we can choose y, so that
¥.(y, — RTO)RIIDO|) = —c. We write ¢ = D8 /|| D8]l and, on multiplying both
sides of (5.13) by ¢, we obtain

1- n)UOTwac((y — b"x)||IDxll) /Il Dxl dQ| = ¢n.

On squaring this, using (5.12) and the Cauchy-Schwarz inequality, we may
deduce

n2? < lim (1 - n)? [ c¢2loDx|?/|| Dx|? dQ

—a- n)(l ~ lim 7 [y (uRIDol)* dR(0, 1) |,

where we have used the definition of D and again (5.12). On taking traces in
(5.4) we have, once again using (5.12),

(1 —mn)c®+ I%imonfnﬁc(uRIIDOII)szR(O, 1)=F

and hence %2 < (1 — 7)1 — k& + (1 — n)c?) which contradicts n > (¢2 — & +
1)/(2¢? — k + 1). Thus the |5/ cannot remain bounded and the Krasker—
Welsch estimator has broken down. This proves the first set of inequalities.

We now turn to the case [|lx|[(|lx|l + |y]) dQ < ~ and consider the measure
Q, = 1 - 7Q + 18, geryr- Arguing as before, we obtain

(5.14) lim [IDo] = 0,

where DD” = T (Q, ). If b = TI;W(@,,) remains bounded, we may choose y,
so that

(1- n)fGTxdfc((y — b%x)|| Dxll) /Il Dx |l dQ = me /I D6l
From this and the assumption of the theorem, we have (1 — n)K/|lx|l(llx|l +

ly]) dQ = n/IID@|| for some constant K. This, however, conflicts with (5.14)
and hence Tk has broken down. O '
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6. Global dispersion measures.

6.1. The problem. A dispersion functional T'? is defined on the set B ,(R*)
of all nondegenerate design distributions over B(R*) and takes values in the
space PDS(%) of symmetric, strictly positive definite £ X k-matrices. In sub-
section 1.2 it was argued that such a functional 72 should have the following
‘““desirable properties:”’

DP1: TP: ®,(R*) - PDS(k) should be well defined.

DP2: T? should be linearly equivariant, T2(Q%) = LT?(Q,)L” for all non-
singular linear transformations L: R* — R,

DP3: T? should have a high breakdown point at each Q, € B ,(R*).

DP4: TP should be Fréchet differentiable at each point Q,; € B ,(R*).

We shall not be able to exhibit a functional T'? satisfying DP1-DP4. If,
however, we weaken DP4 to

DP4: TP should be locally Lipschitz at every Q,; € B (R?),

then we shall be able to exhibit a functional satisfying DP1, DP2, DP3 and
DP4'. This section is devoted to the construction of such a functional.

It is perhaps worth making a comment as to why DP2 is restricted to
nonsingular linear mappings. First, if nonsingular mappings L are allowed,
then we must replace PDS(%) by the set of symmetric nonnegative definite
k X k-matrices. If this is done and TP is any globally defined dispersion
functional which is linearly equivariant for all linear mappings L, the follow-
ing hold. If Q; = (1/n)X}8, is an empirical distribution, then T2@,) is a
quadratic polynomial in the components of the x;. This corresponds to a result
of Donoho (1982), Obenchain (1971) and Rousseeuw (1986) for the case of
linearly equivariant location functionals. Furthermore, for any such 77 we
have TP(Q,) = 0 for any Q, with either a Cauchy or a Gaussian marginal
distribution. These partial results are sufficient to indicate that demanding
linear equivariance for singular linear transformations is unreasonable; it is
simply too strong.

One ad hoc method of obtaining a functional which satisfies DP1 and DP2 is
to consider equivalence classes of distributions which may be transformed into
each other by nonsingular linear mappings. The functional 72 may then be
defined in an arbitrary way for one member of each equivalence class and then
by linear equivariance for the remaining members of the class. Such a method
would not in general fulfill DP3 or DP4'.

One use of high breakdown dispersion functionals is in detecting outliers in
the factor space. Rousseeuw and van Zomeren (1990) proposed using
Rousseeuw’s minimum volume ellipsoid functional [Rousseeuw (1986)].
Simpson, Ruppert and Carroll (1992) proposed using S-functionals as defined
in Davies (1987) in order to obtain a high breakdown. From the present point
of view, the problem with such dispersion functionals is that they require
regularity conditions on the design distributions Q, [Davies (1987), (1992a)].
S-functionals are also proposed because they have an influence function at the
model. The reader is referred to Davies (1987) and Lopuhia (1989). However,
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both these papers place restrictive conditions on the design distribution Q, in
order to obtain a uniquely defined functional with an influence function. In
particular, Q, is assumed to have an elliptical distribution with a unimodal
density f. This condition is only a sufficient one, but the fact that it has to be
imposed for the proof of uniqueness does indicate that some condition is
required. This is confirmed by Example 6.1 which gives a design distribution at
which no S-estimator can be uniquely defined in a linearly equivariant man-
ner.

ExampLE 6.1. We set & = 2 and let Q, = 0.4Q,4(0,7) + 0.1551Q,4(x;, ),
where Q,4(x, r) denotes the uniform distribution over the ball with centre x
and radius r. The points x; are given by x, = (1,0)7, x, = (0, D7, x; = (- 1,0)7
and x, = (0, —1)”. Without going into details it is clear that for sufficiently
small r any minimum volume ellipsoid will concentrate on the component of
Q, located at the origin and two diametrically opposed components of the
remaining four. There will therefore be two solutions and, depending on which
one is chosen, there will be two different sets of leverage points. Because of the
nature of Q; any uniquely defined linearly equivariant dispersion functional
evaluated at Q; must be a multiple of the unit matrix I,.

It is easy, of course, to produce a discrete design distribution where an
S-functional is uniquely defined and even Fréchet differentiable. However,
Example 6.1 shows that it is not possible to obtain a general result for all
design distributions. In practice, this will mean that for any given data set it is
not known whether the functional is well defined or not. This would seem to
be a fundamental difficulty with S-functionals. In order to construct a disper-
sion functional which satisfies DP1, DP2, DP3 and DP4’, we therefore take
another approach.

6.2. The Donoho-Stahel dispersion functional. Independently of each
other Donoho (1982) and Stahel (1981) proposed the first affine equivariant
dispersion functional for empirical distributions. It has an asymptotic break-
down point of 1/2 for distributions with zero measure on all lower-dimen-
sional hyperplanes. This is the best possible result for affinely equivariant
functionals [Theorem 3.2 above, Davies (1987), and Lopuhai and Rousseeuw
(1991)]. We now show that a suitable modification of the Donoho—Stahel
functional will lead to a solution of the problem discussed in the previous
section. ‘

Let R, =[0,%) and x: R, — [0, 1] be a strictly increasing twice continuously
differentiable function with

(6.1) x(0) =0 and x(») =1,

(6.2) supry®P(r) <«

r=0
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and
(6.3) supriy®@(r)l < o,
r=0

where x and x® denote, respectively, the first and second derivatives of y.
For any Q, € B ,(R*) and for any 6 € S*, we define the function y(Q,, 6)

by
|6Tx| 1-A(Q,)
—|dQ, = ———.
/X(ﬂ@d,e)) Qe >
As
|67x]
i =
slTnolofX( S )d@d 0
and

167x|

llilg[,\/( s ) d@d(x) = Qd({xI xTO * 0}) >1- A(@d)’

it follows that y(Q, 0) is uniquely defined and strictly positive for all Q,
and 6.
If we metricize B (R*) with the metric d,, we have the following result.

LEMMA 6.1. For all Q, € B, R*) and 7, 0 <n < (1 — AQ,))/3, there
exists a constant c¢,;; = ¢1,(Q4,m) > 0 and a continuous nondecreasing func-
tion h depending on Q, with h(0) = 0 such that

(8, @4) — v(8,Q)l < cyr(R(lI0" = 6ll) + de(Qy, Qg)),
for all 9 and 6 in S* and all Q) with d o(Q);, Qy) < 7.
Proor. It follows from dominated convergence and the continuity of y
that y(-,Q,): S* — [0, »] is continuous and that
(6.4) 0< il;f‘y(@,@d) < supy(0,Qy) < .
0

On differentiating [x(167x|/s)dQ,(x) twice with respect to s and using (6.2)
and (6.3), we obtain

|67x| 16Tx|

(6.5) fX( 5 eXP(—a)) dQy(x) - fx( - )d@d(x) ~ £(5,0,Q,)a
= O(a2)’

where

(6.6) 0 <inf &(s,0,Q,) < supé(s,0,Qy) < =,

the infinum and supremum being taken over all # € S* and all s bounded
away from 0 and «. The term O(«?) is uniform in 8 and s for such values of 8
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and s. As in the proof of Lemma 4.1, we have
Tyl

|67x| o
fx( exp(—do(Qy, a>))d@d<x>s fx( -

which implies

) dQy(x) + dg(Qq, Qy),

67| )
fx(m exp(—dg(Qg, d))) dQqy(x)
< (1-A(QY))/2 +dg(Qq, Q)
< (1-4(Qp))/2 + 3dg(Qg,Qy) /2.
<1-AQy).
From this, (6.4), (6.5) and (6.6) it follows that, for some c,g, ¢;9 > 0,
¥(Qy, 0) 2 ¥(Qq, 0) exp(—c15d 5(Qy, Qy))
2 7(Qg, 0) — c19d o(Qg, Q)

uniformly in 6 and Q;, do(Q,, Q) <7 <1 - AQ,))/3.
In the opposite direction we choose ¢y = ¢57(Q4, 1) <  so that

(6.7)

fx(y(@ exp(—C30d5(Qy, :i))) dQg(x)
<(1- A(@d))/2 = 3dy(Qq4,Q5) /2,
for all 6 € §* and Q) with do(Qy, @,) <7 < (1 — A(Q,))/3. This gives

fX 67|

GI) exp(—(cg + 1)d(Qq, ﬁi))) dQ(x)

< fx(y(@d’o) exp(-cmd@(@d,@ﬁi))) dQu(x) + dg(Qq, Q)

<(1-A(Q0))/2 - d(Qq, Q) /2 < (1 - A(QY))/2,
which implies

(6.8) v(Q,0) = y(Qgy,0) exp(— (¢ + 1)d o(Qy, AY)).
This and (6.7) yield
(6.9) ly(Q%,0) — ¥(Qq, 0)] < c3,do(Qy, Q)

uniformly in 6 € S¢ and Q, d,(Q,, Q) <1 < (1 — AQ,))/3.
Suppose s; = s,(Qy), i = 1,2, are such that s; < y(Q, 8) < s, for all §. We

M) {22

where the supremum is taken over all ¢,  and s with ¢’ — 6|l <« and

h(u) = sup
6,0,s

)
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§; < s < s,. Dominated convergence shows that [y(6Tx/s) dQ is, as a function
of 0 and s, continuous on S* X [s,, s,]. It is therefore uniformly continuous
on S* X [s, s,] from which it follows that A is continuous, non-decreasing
with £(0) = 0. It follows from (6.5) that

17(Qq,6") = ¥(Qq, 0)| < cyph (Nl = 0"1),
for some c,, and all #,0 in S*. On combining this with (6.9) we obtain the
claim of the lemma. O
For x € R* we define the outlyingness O(Q,, x) of x by

(6.10) O0(Qq,x) = sup 167x|/y(Q,, 0).
6eS*

We note that
(6.11) llxll/ supy(Qg, 0) < O(Q4,x) < IIxII/iI;fy(@d, 0).
0
The Donoho-Stahel estimator is now defined as a weighted average of the

matrices xx” with x in the support of Q,. To do this, we introduce a weight
function w: R, — (0, 1] which satisfies the following conditions:

W1: w: R,—[0,1] is continuous, strictly decreasing on its support and
w(0) = 1.
W2: w(u) <1/u? for all u.

For a function w which satisfies W1 and W2, the Donoho-Stahel dispersion
functional TZ; is defined by

(6.12)  TH(Qy) = 2 w(¢(Qu)O(Qq, x))axT dQu/ (1 + A(Qy)),

where {(Q,) is determined by

(6.13) Jw(2(@)0(Qy, %)) dQy = (1 + A(Qy))/2.
Condition W1 shows that {(Q,) is uniquely defined. From (6.4) and W2 it

follows that w(O(Qg, x)) < cy3/llx|I> for some constant c, so that T®, is
uniquely defined for all Q, € B ,(R*) and we have the following theorem.
THEOREM 6.1. Ty W, (R*) > PDS(k) is well defined and
(6-14) Tlgs(@ali) = LTgs(@d)LT,
for all nonsingular linear transformations L: R* — R*.
Proor. We prove only (6.14). The transformation formula for integrals
gives
|(L76)" x| /I L76)|
¥(Q%,6)/I1L70]

1-A(Q7) |07x|

2= | saray ) 2ok = J

d
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and as 1 — A@Q,) = 1 — AQ%) it follows that y(Q, LT6/lL76|) =
y(QZE, 0)/IIL76]|. This gives O(Q%, x) = O(Q,, L™ 'x), where we have used the
fact that L is nonsingular. Using the transformation formula again, we obtain
1+ A@E)/2 = [w((@50(@Q,, x)) dQ, which together implies ¢((Q%) =
£(Q,). One final application of the transformation formula gives

T8(QF) = 2 [w(£(QF)0(QF, x))xxT dQf/(1 + A(QF)) = LTH(QF) L7,
as was to be shown. O

In order to study the breakdown behaviour of Tk, we introduce the metric
d ¢ defined by

d (Q4, Q) = sup{n > 0: Q,(C) < Qy(exp(n)C) + 7,

(6.15)
(C) < Qy(exp(n)C) + nforall C e @},
where
@={C:C {x 167x| < c;, 1<LSk}
(6.16)

for some 6, € S* and ¢; > 0,1 <i < k}.

We note that € is a Vapnik-Cervonenkis class and that the following
theorem holds.

THEOREM 6.2.
(1) d@(@d, @:i) < dg(@d, 21)

(i) supg, do(Q,4, Q) = 1, where Q) = (1 — NQ, + nQY.
(i) If h: R, — [0, 1] is nondecreasing, then

fh(lriljai( I xl)d@d < fh( max |67 exp(d o(Qy, 'd))) dQ,
+do(Qq4, Q).

Proor. The proof follows the lines of the corresponding statements for the
metric dg. O

We require the following lemma.

LEmma 6.2. If n < (1 — A(Q,))/3, then 0 < inf {(Q,,) < sup(Q,,) < »,
where the infimum and supremum are taken over all Q, ; with d o(Q,, Q, ;) <
n.

Proor. Inequalities (6.4), (6.7) and (6.8) give 0 < inf ¥(Q, 4 ) <
sup y(@nd, 0) < », where the infimum and supremum are taken over all
0€S* and Q,, "with do(Q,4,Q,,) <. This together with W2 and (6.11)
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implies
(1+A(Q,4))/2 = [w((,2)0(Q,a, %)) dQyq
< f min{l, c24/(g(@"d)llxll)2} dQ,g

< [ min{l, c24/(g(@,,d)leTxl)2} dQ,,,
for all @ € S*. From this we deduce, with Theorem 6.2,
(1+A(Qy))/2-m/2< fmin{l, cos/ (£(Q@,q)107xl exp(n))z} dQ, +n
and hence
AM(@y) + a(n) < [min{1, cp/(2(Q,)6% exp(n))’} dQ,

with a(n) > 0. This is only possible if the {(Q,;) are bounded away from c.
In the other direction we argue as follows. From the definition of {(Q,;),

(1+A(Q0))/2 +1/2 > (1 +A(Qy0))/2 = [w(£(Q04)0(Qya, %)) dQyq

> [w(ca6d(Qpa)llxll) dDyq,
where we have used W2 and (6.11). This yields
(1+A(Qy))/2+n/2 = fw(c27((@nd)mfx|0fxl) dQ,,,
where the 6;’s are orthogonal elements in S*. Theorem 6.2 implies
(1+A(@,))/2+1/2 > [w(e(Qyq) mexlo]xl exp(m)) 4Oy =
and hence
fw(c%{(@nd) mjaxIOJTxI exp(n)) dQ, <1-a(n),

for some a(n) > 0. This is only possible if the {(Q, ;) are bounded away from
0, proving the lemma. O

THEOREM 6.3. For all Q, € B, (R*) we have *(Ths, Q4 dg) =1 -
AQ,)) /3.

Proor. Suppose d o(Q,,Q, ;) <7 < (1 — AQ,))/3. Then, for any 6 € Sk,

6TTE(Qya)0 = [w(£(Qy0)0(Qyq, %))07xI* dQyg < Jeaollxl™2lxl® d@,g < cg
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by (6.4), (6.7), (6.8), (6.11), W2 and Lemma 6.2 Thus
(6.17) SUP A o ( T55(Q,0) ) < 0.

nd

In the opposite direction we have

07T Es(Q0a)0 = [w(¢(Q0a)0(Qya, %))07xI” dQ, g

= rz'/l‘BTxl er({(@"d)o(@"d’ x)) dQ,q

> r2((1 + 8(Q,q))/2 — Qa({x: 167] <1}))

> r2((1+8(Qy))/2 — Qq({x: 167x] < re™}) — 8n/2).

As r tends to 0 the expression (1 + A(Q,))/2 — Q, ({x: 167x] < re™) — 3n/2
tends to a value of at least (1 — A(Q,))/2 — 3n7/2 > 0 and hence
infg A min(TBs(Q, 4)) > 0 which, in conjunction with (6.17), implies

(6.18) e*(Ths, Qu,dg) = (1 — A(Qy))/3.

To demonstrate the opposite inequality, we define a design distribution
Q,4(R, 6,) as in the proof of Theorem 4.6 by

Q,4(R,0,)(B) = ndpe(B) + Qy(B N {x: 67x = 0})

+(1-m/(1- A(@d)))@d(B n {x: 0%x + 0}),

where (1 — A(Q,))/3 <71 < 1, AWQ,) = Q,({x: 67x = 0}), 8, and 6, both be-
long to S* and 676, = 0. It is seen that

Q,4(R,6,)(B) — Qu(B) = ndge(B) —n/(1 - A(Qy))
X@d(B N {x: 0lx + O}),

which implies supglQ, (R, 6,)(B) — Qu(B)l < n and hence dg(Qg,
nd(R 6,) <. Furthermore we have Q,;(R, 0,)({x: 6Jx = 0) = n + Q ({x:
o7x = 0}) = n + A(Q,), giving &6(Q, (R, 01)) =n + A@Qp).
From the definition of {(Q, 4(R, 6,)), we obtain

(1+ AQy) +n)/2 = fw(((@nd(R,01))0(@nd(R,01),x)) dQ,,(R,8,)(x)

< nw(¢(Q,a(R, 6:1))0(Q,a( R, 6:), Ro,))
+A(Qg) + (1 - A(Qg) — ),
which implies
nw(¢(Qua(R,6,))0(Q,4(R,6,), RO;)) = (1 + AQy) +m)/2 — AQy)
—(1-A(Qy) —m)
=31/2 - (1 - A(Qy))/2 = a(m),
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with a(n) > 0 and independent of R. We deduce
07T E(Q,4(R, 6,))8, = nw({(Q,4(R,6,))0(Q,4(R,6,), R6,))R?,

which tends to » as R — ». Consequently, T35 has broken down giving
e*(T5s,Q,,d o) < (1 — A(Q,))/3 which together with (6.18) implies the state-
ment of the theorem. O

6.3. A Lipschitz dispersion functional. The functional TJ; satisfies DP1,
DP2 and DP3 of subsection 6.1. If one considers a sufficiently strong metric
such as that defined by (6.15) but with € replaced by the class of all symmetric
convex sets with centre at the origin, then T2 can be shown to satisfy a local
Lipschitz condition of order 1 at each point @ of B ,(R*). This class is not,
however, a Vapnik—Cervonenkis class and the resulting supremum metric is
strong in that empirical measures will not in general converge at the rate of
n~1/2 [Bolthausen (1978)]. We now show how the Donoho-Stahel functional
may be altered to obtain a dispersion functional which satisfies DP1, DP2, DP3
and DP4'.

For each Q, € B ,(R*) we define

(6.19) 0(Qy) = {x: 0(Qg, x) < 1}.

It is easily checked that O(Q,) is convex and bounded for each Q, € B ,(R*).
From (6.4) we see that ©(Q,) has a nonempty interior and hence has positive
k-dimensional Lebesgue measure. We define

(6.20) T(Q) = [ ax"dmy(x)/my(D(Qa)),
O(Qy)
where m, denotes k-dimensional Lebesgue measure.

THEOREM 6.4. TX: B ,(R*) > PDS(k) is well defined, linearly equivariant
and has breakdown point e*(T83,Q,,dg) = (1 — AQ,))/3. Furthermore, for
each Qg € W (R*) there exists an m, 0 <n < (1 — AQ,)/3 such that
IT2@,) — TE@QYI = 0(dy(Qy, Q) uniformly for all Q satisfying
d@(@d, @21) <n.

Proor. The first three claims of the theorem are easily checked. The fact
that e*(T3, Qg, dg) < (1 — A(Q,))/3 follows from (6.7) and (6.8) in the proof
of Lemma 6.1. In the opposite direction we suppose (1 — A(Q,))/3 <n <1 -
A(Q,) and consider the design distribution Q,,(R,8,) as in the proof of
Theorem 6.3. We have '

L]
fx( - ) dQ,4(R,6,) > nx(

which together with A(Q, ,(R, 6,)) = A(Q,) + n implies that
(6.21) I%im ¥(Q,q(R,0,),0) =

R|6%0|
S ’
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uniformly in all 8 satisfying |676| > a > 0 for each a > 0. On the other hand,
we have

lxTo| lxTo|

[x( - )d@ndw,el}s[x( - )d@d—n,

the right-hand side of which tends to at least 1 — A(Q,) — n > (1 — A(Q,) —
1n)/2 as s tends to 0. It therefore follows that

liminf inf y(Q,,(R,6,),0) >0
iminf inf ¥(Q,4(R, 6,),0)

which together with (6.21) implies
(6.22) {x:1x76l < c forall 6 € S* N 6;} c limsup O(Q,,(R,0,)),

R—oo»

for some ¢ > 0. We may deduce
tr(T8(D(@yu( R, 6))))

) ss><627,d(ze,oI»HxH2 dmy(x) /mi(D(Q,a( R, 6,)))

> r2(1 — my(O(Q,q(R,0)) N {x: llxll < "})))/mk(@(@nd(R,Ol)))

> r2(1 — cgir*/my(9(Q,q(R, 01))))
and as, by (6.22), lim, ,, m,(2(Q, 4,(R, 6,))) = =, we obtain

lim sup tr(Tg(L(@nd(R, 01)))) >r?
R—ox
for any r > 0. This implies that T2 has broken down at Q, and as this holds
for any n satisfying (1 — A(Q,))/3 <n <1 - A(Q,) we may deduce
8*(T.g, @d’ d@) =1 - A(@d))/3.

It remains to demonstrate that T2 satisfies a local Lipschitz condi-
tion of order 1. From (6.6), (6.7) and (6.8) it follows that for all Q) with
dy(Qg, Q) sufficiently small (1 — cg,d4(Qy, QNOQ,) € OW@)) c (1 +
€320 o(Qg, QO(Q,) for some constant cg, > 0. On using m ,(1B) = 7%m ,(B)
for any Borel set B and any 7 > 0, we obtain |m ,(0(Q,)) — m (O(Q))| =
0(d 4(Q,4, Q})) from which the claim follows by elementary calculations. O

7. Efficiency, breakdown point and Lipschitz continuity.

7.1. Efficiency and breakdown point. It follows from the asymptotics of
the Hampel-Rousseeuw least median of squares estimator [Kim and Pollard
(1990), Davies (1990), and Rousseeuw (1984)] that it has zero asymptotic
efficiency when the errors are normally distributed. This has led to a search for
estimators which combine efficiency with a high breakdown point. Such esti-
mators have been proposed by Jureckova and Portnoy (1987), Yohai (1987)
and Yohai and Zamar (1988). However, the authors restrict attention to
independently and identically distributed carriers with a finite second moment.



ROBUST REGRESSION 1889

This effectively excludes arbitrarily large leverage points. If, however, arbitrar-
ily large leverage points are allowed, Morgenthaler (1989) and Stefanski (1991)
have claimed that all high breakdown regression functionals can have an
arbitrarily small efficiency compared to the least squares estimator. The basic
idea is the following. A high breakdown estimator must by its very nature
ignore leverage points although it is such points which determine the efficiency
of the least squares estimator. The argument given by Stefanski (1991) is
restricted to regression functionals with a global breakdown point, that is, a
breakdown point which is independent of the underlying distribution. It
follows, however, from (1.1) for the finite sample breakdown point and from
Theorem 3.1 for breakdown points in terms of metrics that this is only
possible if the global breakdown point is respectively 1/n or 0. We are not able
to give a general theorem on the relationship between an arbitrarily high
breakdown estimator and its efficiency relative to that of the least squares
estimator. For one thing it is not clear what exactly is meant by a high
breakdown estimator. However, we can show that for empirical distributions
with normal errors there exists a high breakdown estimator with an arbitrarily
high efficiency compared with least squares. Our definition of efficiency is
based on coverage probabilities. In subsection 7.2 we show that the idea of
Morgenthaler and Stefanski can be made precise for locally uniformly
Lipschitz continuous regression functionals.

We show that if the concept of efficiency is based on covering probabilities
and not on variance, then it is possible to have high breakdown regression
estimates with arbitrarily high efficiency independently of the design distribu-
tion. We consider a distribution Q of the form Q = Q,; *Q,, where Q, is a
design distribution with finite support, that is,

1n
(7.1) Qy=—Y5,.
nT v
An empirical version of Q will be denoted by @, and is of the form
A 1 ikt
@n = ; gﬁ(x}"yj)T,

where y; = xJTB +e; and the (e;)] are independently and identically dis-
tributed random variables with common distribution Q, belonging to a scale
family.

Let T%, i = 1,2, be the location part of linearly equivariant regression
functionals and let «, 0 < a < 1, be fixed. Then, for any 6 € S*, we define
Afa, 8) by ‘

P(67(TE(Q,) - B) < Ai(a,0)) = a.
The relative efficiency efT, T4: a) of TL with respect to T is defined by

Ay(a,6)®
off(TE, TE: a) = inf 2220
0 Aya,b)
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We now specialize to the case where Q, is an (0, o?) distribution and T, is
the least squares estimator Tg. For any given a and 1, 0 <7 < 1, we now
construct a high breakdown estimator T, such that efTy, T, @) > 1 — 1
uniformly over all Q; of the form (7.1) with A(Q,;) = k/n. To do this, we
consider the Hampel-Rousseeuw least median of squares estimator TLMS We
denote the location part by B;s and the scale part by &y, We require the
following lemma.

LeEmMA 7.1. For any p, 0 < p < 1, there exists a { > 0 such that
P(dums < o) <p
uniformly for all Q, of the form (7.1) with A(Q,) = k/n and n > 2k + 2.
Proor. It is known that there exist £ + 1 design points x7,..., x5, ; and
an appropriate choice of + signs such that
(7.2) v — 2} Bims = 61y,

for j=1,...,k + 1 [Steele and Steiger (1986)]. Furthermore, the solution
(BTys, G1ms)” of the set of equations (7.2) is unique. Consider now all equa-
tions of the form (7.2) for all choices of & + 1 design points and all choices of
+ signs such that the solution is uniquely defined. If the design points

are Xj,..., %y, , We denote the solution by B(i,,...,i,,;). Then B =
By, ... i,.,) is a function of the errors e; , ... »€ipn only and hence indepen-
dent of the remaining n — k — 1 errors. For any glven de51gn points x;, ..., x;

with m =[n/2] -k and I; & {i,...,i;,,}, j=1,..., m, we have
Plly, - xfBl <to,j=1,...,1,)
< Plle, —x7(B-B) <o, j=1,...,1,)

(7.3) = [E(P(Iel — X (B B)l <{lo,j=1,. lm|ei1’---»eik+1))

- [E( ﬁ (Iel - xf T(B - B) < {ole,,,... LM))

< (®(0) - 2(-)"
By the very definition of TLMS there exist m design points apart from

x¥ ..., x¥,, such that ly — x78 sl < Fiys. If now & < o it follows that
there exist m design points such that Iy —x BLMSI < ¢o. On using (7.3) and
summing over all possible choices of xf,...,x},; and + signs, we see

(14)  Plows <o) <2, 7 ) (0(0) - @(-0)"

As m =[n/2] — k and n > 2k + 2 we may, by choosing ¢ sufficiently small,
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arrange that P(Jys < {o) < p for any given p and for all Q,; with §(Q,) =
k/n, n = 2k + 2. This last fact follows from the independence of the inequal-
ity (7.4) from Q,. This proves the lemma. O

We now consider the least squares functionals T ;5 with location part ,éLS
and scale part &;g. Given again any p, 0 < p < 1, there exists a K such that

(7.5) P(6.5 > Ko) < p,

independently of Q,. From Lemma 7.1 and from (7.5), we deduce that for any
p, 0 < p < 1, there exists a y such that

(7.6) P(6rs > voLus) < p-
We now define T}, by

T if 61 g < vyé
7 7. - |t LS LMS>»
(7.7) M Tims, otherwise.

We see that P(Ty, = T;s) > 1 — p and hence, by choosing p sufficiently
small, we have

off(T, T, ) = 1 —

and this holds uniformly for all models Q of the form described previously.

We now show that if Ty does not break down neither does T,,. Indeed,
suppose Ty, breaks down but not TLMS Then from the definition of T), it
follows that ||BLS|| — » but &g remains bounded. As this is clearly not
possible, we see that the breakdown point of T,, is at least that of T ..
Finally, as both T;g and T;yg are linearly equivariant and the switchover
(7.7) is linearly invariant, it follows that T, is linearly equivariant.

7.2. Efficiency and Lipschitz continuity. The example given in subsection
7.1 shows that high breakdown estimators may have an arbitrarily high
efficiency with respect to the least squares estimator. The following argument
shows that this is not the case for Lipschitz continuous functionals. We
restrict ourselves to the case 2 = 1 and consider the regression distribution
Q= Q,*Q, with Q,; = §;, Q, = N(0, 1) and, without loss of generality, loca-
tion part B = 0. We write

, 12
(7.8) Q, 2‘,5(1 )T

with (y,)f independently and identically distributed (0, 1) random variables.
We denote by Q(r) the regression distribution Q(r) = Q,(r)*Q, with Q,(r)
= §, and again with location part 8 = 0. We write

A n_]- 1

(7.9) Q, = — Q,_; + %0,y
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from which we may deduce

A A

1
(7.10) do(@,,Q, ) = =

It follows from standard empirical process theory that

. 1
(7.11) dy(Q,0,) = op(—ﬁ).

Let T be a regression functional which is locally uniformly Lipschitz at Q.
By this we mean there exists an ¢ > 0 and a constant c; > 0 such that

(7.12) IT(@) — T(Q")Il < ¢53d (Q,Q"),

for all Q" and Q" with dg(Q, Q) < ¢ and d4(Q, Q") <.

We write T(Q,) = (B, 6,)" and T(Q,) = (B, 6,)". Given a,0<a<l1,we
define L, (T, a) and L' (T, ) by P(I8,| < L (T, a)) = @ and P(IB,| < L' (T, @)
= a. We suppose that T' is not super efficient at Q so that

(7.13) L(T,a) = cs/Vn,

with cg, > 0.

It follows from (7.10) and (7.11) that du(@Q,Q,) = 0,(1/Vn) and
d,(@Q,Q,) =0,1/ Vn). Thus, with limiting probability 1, we deduce from
(7.10) that

||T(©n) - T(@’n)ll < cgs/n.
This together with (7.13) shows that
(7.14) L(T,a) = cy/Vn,

with limiting probability 1 independently of r. However, lim, _ BALS(@’,L) =0
for any fixed m which together with (7.14) shows that T has arbitrarily low
efficiency when compared with the least squares estimator.

8. A Lipschitz functional for normal errors. As mentioned several
times in this paper, the author has not succeeded in obtaining a global high
breakdown regression functional which is locally Lipschitz. However, it is
possible to obtain functionals which are Lipschitz at certain distributions. This
is done by taking a reasonably smooth functional such as an S-estimator and
then forming a k-step M-estimator to increase the smoothness. Such an
approach was used in Davies (1992b) to obtain a Fréchet differentiable location
and dispersion functional for certain elliptical distributions.

In order to obtain Lipschitz functionals, we require bounds for the differ-
ence of integrals of the form |[/AdQ — [hdQ'| in terms of a distance d(Q, Q).
We introduce the linearly invariant metric dy defined as in (6.15) but with

(8.1) €={C:C={x:l(x—a)"6| <c;,a; €R* 6,€S* c;eR,,1<i<k}}.
For any function h: R* > R, let D, ... ,h denote the partial derivative of order
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k with respect to x,,...,x,. We have, Theorem 3.3 of Davies (1992a), the
following result.

THEOREM 8.1. Let h: R* > R have continuous partial derivatives of order
k satisfying

(1) h(x) = a forall x with |x||> R

and
(ii) fIDl...kh(x +y) =D, . h(x)ldm, <Kllyl forallyin RE.

Then |[hdQ — [hdQ'| < c3;dx(Q, Q") for some constant c3; > 0 which de-
pends only on R and K.

The conditions on the function ~ can be weakened but only at the cost of
using a stronger metric. As we can choose the function s, we prefer to impose
stronger conditions on it rather than on the metric.

We consider M-estimators for 8 which are defined by a function ¢ which
satisfies the following conditions:

ML1: : R - [—1,1]is asymmetric.
ML2: ¢: R — [—1,1] has a continuous % + 2 derivative y**2,

Let Q = Q,; *Q,, where Q, has a density function f which satisfies F1-F3
and FR1-FR4 with p(u) = {lu| < ¢,}. This is the case if f has a continuous
derivative f® at ¢, with f®(c,) < 0. For such a Q the Hampel-Rousseeuw
least median of squares estimator TS5 is well defined and we have
T5s(@ = (BT, 0)".

Let w be a weight function which satisfies W1 and W2 as well as the
following:

W3: w: R, — [0,1] has a compact support.
W4: w: R, - [0,1] has a continuous % + 1 derivative w**D,

Let T8 be the global Lipschitz dispersion functional of Section 6. For any Q/
we define ¢(Q)) by [w(¢@)xTTE@,) %) dQ, = (1 + AQ,))/2. We con-
sider the M-estimator T, defined by

Ty (Q) = <(b§;, sM)T: (b3, sM)T satisfy (8.2) and (8.3) below},

T
1y [y —=xTb
(8.2) fxw(E(@ﬁi)xTTg(@:i) 1x)¢(s—M) dQ' =0,
M
(8.3) Sy = Sur, the dispersion part of T'§;.

The assumptions we have placed on ¢ guarantee that T, is defined in a
d g-neighbourhood of Q. From F2, ML1 and Theorem 4.7, we have BT, o) e
T,,(Q). To define the one-step M-estimator, we require the following condition
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on  and f:
FML E(y®) = [¢P(u) () du # 0.

Starting with the Hampel-Rousseeuw functional TG, with T5s(Q) =
(bT\1s> S1ms)T, we define the one-step M-estimator Tog(Q') = (b8g, sog)” by

bos = brms + "J'LMSE(Q')_1
(8.4)

-1 Yy _beHR
X [aw(£(@y)xTTE(Qy) )y —|da,

HR
Sos = SLms»
where

3(Q) = E(Y®) [aTw(MN@)xTTE(@y) %) d@,

with E(yP) as in FML. This is just one of many possibilities. In particular,
one could also perform a one-step M-estimator for the scale parameter . We
have not done this as we are mainly concerned with smoothness and the scale
part of the Hampel-Rousseeuw functional is already Lipschitz.

In order to study the breakdown and smoothness properties of T,g, we
require the following lemma.

LemMa 8.1. If n < (1 — A(Q))/3, then
(1) 0 <inf ¢(Q,) < sup ¢(Q;) < =,
(ii) 0 < inf A y,(2(Q,)) < 8up A (2(Q))) < o,

where in both cases the infimum and supremum are taken over all Q
satisfying d(Q, Q") < 7.

Proor. The proof of (i) follows the lines of the proof of Lemma 6.1. The
proof of (ii) follows the lines of the proof of Theorem 6.3. The only difference is
that in each case the function O(Q,,, x) is to be replaced by x"T3(Q, ;)" 'x. O

THEOREM 8.2. Tg is defined for all Q' satisfying d (Q, Q") < (1 — AQ))/3
and has breakdown point e*(Tpg,Q,d o) = (1 — A(Q))/3.

Proor. This follows from Lemma 8.1 and Theorem 4.6. O
The smoothness of T,g at Q is covered by the following result.
THEOREM 8.3. For all n, 0 <n < (1 — A(Q))/3, there exists a constant ¢

such that |6 — bl + |s' — s| < cdx(Q, Q") for all Q" with dy(Q, Q) <n and
all (87, )T € Tog(@).
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Proor. A Taylor expansion of (8.4) yields
y—x'B

SLMs

bos = brms + S1asZ(Q) fxw(g(@&)xTTg(@ﬁi)_lx)(//( ) aQ

_ T
—(2(@’)_1fxxTw(S(@ji)xTTg(@ﬁi)_lx)tlr‘”(y * B)d@’)
S1ms
X(brus — B) + 0(dx(Q,Q)),

where we have used Theorem 8.2, the fact that ¢ and w both have a compact
support and Theorem 4.7 to bound the quadratic term. As ¢ and w have
derivatives of order %2 + 2 and k + 1, respectively, we may deduce from
Theorem 8.1 that

y—x'B

SLMs

)d@’

/xw(g(@a)xTTg(@;)‘lx)w(

—]xw(g(@g)xTTg(@;)“lx)lp(y e ) d@'

SLMs
= O(dD(@s@'))
and as
_ T
[xw(g(@;,)xTTg(@;l)‘lx)w(y * P ) da =0
SLMs

because of the symmetry of f and the asymmetry of ¢, we obtain
y—x'B

SLMs

) d@" = 0(d(Q,Q))

/ xw(f(@b)xTTé’(@ii)'lx)w(
to give
bos = brms

i
- (2(@')‘1 ]xxTw(g(@;,)xTTg(@;,)‘1x)¢<1>(y—ﬂ) d@’)

SLMs
X (bpys — B) + 0(dy(Q,Q")).
As |s s — ol = 0(d(Q, Q")) we obtain
y—x"B

SLMs

/ xxTw(f(@&)xTTé’(@b)'1x)d/“)( ) dQ’

_ AT
—fxxTw(f(@:i)xTTg(@ﬁ,)_1x)zp(1)(y ;B)d@"

=0(do(Q,Q)),
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which, on using Theorem 8.1, the properties of ¢ and w and the Lipschitz
continuity of 7'J, implies

y—x"B

SHR

[ xxTw(g(@gl)xTTg(@;,)‘lx)¢<1>( ) g

—E(d/(l))fxxTw(§(@d)xTT£(@d) _lx) d@'

= 0(dg(Q,Q)).

The same argument gives [3(Q) — 3(Q)] = O(d x(Q, Q")) and hence finally
lbos — Bll = O(d (@, Q")) as was to be shown. O

Finally, we consider the empirical behaviour of the one-step M-estimator
T, defined previously. Let (Q,)7 be a sequence of regression distributions of
the form Q, = Q4 *Q,, where Q, 4 = (1/n)L18, (,), and let (@,)7 be a corre-
sponding sequence of empirical distributions with Q,=0 /n)Zfa(xJ(n)T’ yin )T
where the ((y;(n) — x j(n)TB)/o-){‘, n=12,..., are independently and identi-
cally distributed with common distribution Q,. We have the following result.

TueoreM 8.4. Let (Q,)7 and (Q,)7 be as above. Then dy(@,,Q,) =
0,(n~'/?), where O, denotes order in probability.

Proor. The class € of sets defined by (8.1) is a Vapnik—Cervonenkis class
and the reasoning of Lemma 3 of Davies (1990) shows that

lim supced@n(c) - @n(c)l =0

in probability. The maximal inequality [Kim and Pollard (1990) and Davies
(1990)] implies

sup|Q,(C) — Q,(C)l = 0,(n"1?).

ce@

As d‘B(Qn’@n) < suppesl@,(C) — Q,(C)l, we obtain the statement of the
theorem. O

Theorem 8.4 makes no assumptions about the design distribution apart
from its being a fixed sequence. This is due to the use of the maximal
inequality as given on page 1661 of Davies (1990). That it is applicable in the
present situation is due to the fact that the class

@n = {hb,s - hb',s': b, b e Rk,s,sl = 0},
where
hy o(e,x) = {le —xTb| <s},

is a uniformly manageable class of bounded functions. Details are contained on
pages 1661 and 1662 of Davies (1990).
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We now consider the one-step M-estimator Tg as described previously but
with Q' = @ We assume that Q, has a density function f which satisfies the
conditions of Theorem 4.7 where the S-functional Tg is the Hampel-
Rousseeuw functional T'pyg or T Gs. Although we shall not require it we note
that Tpus is almost certainly uniquely defined at each Q, [Rousseeuw and
Leroy (1987), page 206, and Steele and Steiger (1986)]. We have the following
result.

THEOREM 8.5. Suppose that there exists a design distribution Q, € B ,(R*)
such that

(8.5) do(Qy, Quy) = O(n"Y2).
Then
(8.6) ITos(@,) = (B, ) Il = 0,(n~1/2).

Proor. It follows from the assumptions placed on the ¢ and f that
(BT, 0)" € Ty(Q, #Q,). From Theorem 8.4 we have dy(Q,,Q,*Q,) =
0,(n~'/2) which together with Theorem 8.3 implies (8.6), as was to be proved

O

We note that (8.5) holds if the design points x,(r), 1 < i < n, are indepen-
dently and identically distributed with distribution Q,. This is because the
class of sets defined by (8.1) is a Vapnik-Cervonenkis class and the claim
follows as in the proof of Theorem 8.4. The rate of convergence of T'yg is
estimated as n~'/* by Theorems 4.7, 8.4 and 8.5. Under more stringent
conditions this can be improved to an exact order of n~!/2 [Kim and Pollard
(1990) and Davies (1990)], but in the present generality the rate n~/* is
probably the correct one.
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