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GENERALIZED PERMUTATION POLYTOPES AND
EXPLORATORY GRAPHICAL METHODS FOR
RANKED DATA!

By G. L. THOMPSON

Southern Methodist University

Exploratory graphical methods for fully and partially ranked data are
proposed. In fully ranked data, n items are ranked in order of preference by
a group of judges. In partially ranked data, the judges do not completely
specify their ranking of the n items. The resulting set of frequencies is a
function on the symmetric group of permutations if the data is fully
ranked, and a function on a coset space of the symmetric group if the data
is partially ranked. Because neither the symmetric. group nor its coset
spaces have a natural linear ordering, traditional graphical methods such as
histograms and bar graphs are inappropriate for displaying fully or par-
tially ranked data.

For fully ranked data, frequencies can be plotted naturally on the
vertices of a permutation polytope. A permutation polytope is the convex
hull of the n! points in R” whose coordinates are the permutations of n
distinct numbers. The metrics Spearman’s p and Kendall’s 7 are easily
interpreted on permutation polytopes. For partially ranked data, the con-
cept of a permutation polytope must be generalized to include permutations
of nondistinct values. Thus, a generalized permutation polytope is defined
as the convex hull of the points in R” whose coordinates are permutations
of n not necessarily distinct values. The frequencies with which partial
rankings are chosen can be plotted in a natural way on the vertices of a
generalized permutation polytope. Generalized permutation polytopes in-
duce a new extension of Kendall’s 7 for partially ranked data. Also, the
fixed vector version of Spearman’s p for partially ranked data is easily
interpreted on generalized permutation polytopes.

The problem of visualizing data plotted on polytopes in R” is addressed
by developing the theory needed to define all the faces, especially the three
and four dimensional faces, of any generalized permutation polytope. This
requires writing a generalized permutation polytope as the intersection of a
system of linear equations, and extending results for permutation polytopes
to generalized permutation polytopes. The proposed graphical methods is
illustrated on five different data sets.

1. Introduction. Exploratory graphical methods are needed to display
frequency distributions for fully and partially ranked data. Fully ranked data
occur, for example, when a set of judges are each asked to rank n items in
order of preference. Each observation is a permutation of rn distinct numbers.
The resulting set of frequencies is a function on S,, the symmetric group of n
elements. In partially ranked data, the judges are asked for an incomplete
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ranking of n items. A partial ranking can be represented as a permutation of
n nondistinct numbers. A set of frequencies of partial rankings is a function
on a coset space of S,. Because neither the elements of S,, nor the cosets of
S,, have a natural linear ordering, traditional graphical methods such as
histograms and bar graphs cannot be used in a reasonable manner to display
frequency distributions for full or partial rankings.

In this paper, graphical techniques are developed to display frequency
distributions of ranked data by using generalized permutation polytopes. A
polytope is the convex hull of a finite set of points in R”. Yemelichev, Kovalev
and Kravtsov (1984), henceforth referred to as YKK, define a permutation
polytope as the convex hull of the n! points in R” whose coordinates are the
permutations of n distinct numbers. We generalize this definition to accom-
modate partially ranked data and define a generalized permutation polytope to
be the convex hull of the points in R* whose coordinates are the permutations
of n (not necessarily distinct) numbers. Then, to display a set of full or partial
rankings, the frequencies with which each permutation is chosen are plotted,
not on a line as is done with histograms, but on the vertices of the generalized
permutation polytope.

The generalized permutation polytope on which the frequencies are dis-
played is inscribed in a sphere in an n — 1 dimensional subspace of R”". Hence,
for n > 4, the problem of visualization of points on a polytope in higher
dimensions must be addressed. The approach proposed in this paper is to
explore higher dimensional polytopes by examining the three dimensional
faces and portions of the four dimensional faces. Theorems are proved which
characterize all of the faces of any generalized permutation polytope. These
theorems depend on first defining a generalized permutation polytope as a
solution to a finite set of linear inequalities, and then extending the results of
YKK (which are only for permutation polytopes with distinct values) to
generalized permutation polytopes. In particular, for any full or partial rank-
ing it is shown that any two-dimensional face is combinatorially equivalent to
either a triangle, a square or a hexagon, and any three dimensional face is
combinatorially equivalent to one of the following eight Archimedean solids:
truncated tetrahedron, triangular prism, octahedron, tetrahedron, truncated
octahedron, cube, cuboctahedron or hexagonal prism. For fully ranked data, all
two-dimensional faces are combinatorially equivalent to either squares or
hexagons, and all three-dimensional faces to either truncated octahedrons,
cubes or hexagonal prisms.

The resulting graphical displays for fully ranked data are especially useful
as diagnostic tools because the two metrics most commonly used for modeling
ranked data, Kendall’s 7 and Spearman’s p, have natural geometric interpre-
tations on permutation polytopes. For fully ranked data Kendall’s 7 is the
minimum number of edges that must be traversed to get from one vertex of
the permutation polytope to another; and Spearman’s p is proportional to the
straight line distance between vertices. This is closely related to the observa-
tion by McCullagh (1993) that the n! elements of S, lie on the surface of a
sphere in R~ ! in such a way as to be compatible with both Kendall’s = and
Spearman’s p. For partial rankings, there are a variety of extensions of
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Kendall’s 7 and Spearman’s p that have been proposed [cf. Critchlow (1985) or
Diaconis (1988)]. On generalized permutation polytopes, the straight line
distance between two vertices is proportional to the fixed vector extension of
Spearman’s p. More significantly, the minimum number of edges that must be
traversed to get from one vertex to another induces a new and very reasonable
extension of Kendall’s = for partially ranked data.

Other graphical methods for representing rankings include multidimen-
sional scaling, minimal spanning trees and nearest neighbor graphs as dis-
cussed by Diaconis (1988) for fully ranked data and by Critchlow (1985) for
partially ranked data. Cohen (1990) presents additional exploratory data tech-
niques for both full and partial rankings, and Cohen and Mallows (1980)
propose graphical procedures based on multidimensional scaling and biplots.
Baba (1986, 1988) discusses graphical methods for ranked data that yield tests
for concordance.

In Section 2, the proposed graphical techniques are introduced and illus-
trated for n = 3 and n = 4 with ordinary full rankings. Section 3 develops the
theory needed for the proposed graphical method for n > 4 and for partially
ranked data with a common set of pseudoranks. This includes characterizing
all of the faces of generalized permutation polytopes, and defining the exten-
sion of Kendall’s 7 for partially ranked data as induced by the generalized
permutation polytopes. Section 4 illustrates the usefulness of the results in
Section 3 by applying them to three data sets with partial rankings and n > 4.
Section 5 concludes with proofs.

2. Permutation polytopes for fully ranked data with n = 3,4. Be-
fore developing the concepts in general, the proposed graphical technique is
illustrated with ordinary full rankings for n = 8 and n = 4. In fully ranked
data, a judge can express preferences for n items either as an ordering or as a
ranking. Orderings are denoted by permutations of the n item labels, and are
often bracketed by ( ). Items are frequently labeled with the integers 1
through n, but in this section, items will be labeled with letters to avoid
confusion between rankings and orderings. For example, { B, C, A, D) means
that item B is ranked first, item C second, item A third and item D is ranked
last. A ranking is a permutation of n values that are written as a vector
w = (my,...,m,), where m, is the rank of item A, 7, is the rank of item B
and so on. The ranking corresponding to the ordering (B, C, A, D) is (3, 1, 2, 4).

Figure 1 shows how the orderings corresponding to the six elements of S,
can be placed naturally-on a hexagon. Note that two points are adjacent and
connected by an edge if their orderings differ by a pairwise adjacent transposi-
tion, or equivalently, if their rankings differ by an inversion of two consecutive
values. Hence, the minimum number of edges that must be transversed on the
hexagon to get from one vertex to another is equal to Kendall’s 7. Formally, if
w and ¢ are two full rankings, then 7(r, o) is defined to be the number of
pairs (i, j) such that 7; <m; and o; > o0;. This is equivalent to the minimum
number of pairwise adjacent transpositions needed to change the ordering
corresponding to w into the ordering corresponding to o. The placement of the
vertices in Figure 1 is also related to Spearman’s p which is defined as
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Fic. 1. Orderings and rankings off 3 items on a hexagon.

p(w, o) = (Z7_(m; — 0,)®)'/% If the edges of the regular hexagon are all of
length V2, then Spearman’s p is the Euclidean distance between two vertices.
Also note that the two vertices of an edge of the hexagon either have the same
item ranked first or the same item ranked last.

To illustrate the proposed graphical techniques with n = 3, consider the
data in Table 1 from Duncan and Brody (1982) in which 1439 people were
asked to rank city, suburban and rural living in order of preference. The
respondent’s current residence is recorded as a classification factor, and within
each level, the relative frequencies of each permutation are calculated. In
Figures 2a, 2b and 2c these relative frequencies are plotted on the correspond-
ing vertices of three hexagons. The three hexagons correspond to the three
levels, and the sizes of the circles at the vertices indicate the relative frequen-

TABLE 1
Data set (n = 3 residence types with a classification factor; 1439 survey respondents)

Frequencies Relative frequencies
Orderings Rankings City Suburb Rural Total City Suburb Rural

(C,S,R) 1,2,3) 210 22 10 242 0.330 0.044 0.033
(C,R,S) 1,3,2) 23 4 1 28  0.036 0.008 0.003
(8,C,R) 2,1,3) 111 45 14 170  0.174 0.090 0.046
(S,R,C) 3,1,2) 204 299 125 628  0.320 0.598 0.414
(R,C, S) 2,3,1) 8 4 0 12 0.013 0.008 0.000
(R, S,C) 3,2,1) 81 126 152 359  0.127 0.252 0.503

637 500 302 1439  1.000  1.000 0.999
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Fic. 2a. Relative frequencies of city dwellers.
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Fi1G. 2¢.  Relative frequencies of rural dwellers.

cies. It is immediately obvious that rural and suburban residents have similar
preferences to each other, and both are different from city dwellers. Those who
prefer the city as their first choice seem to live in the city. A relatively small
percentage of rural and suburban dwellers prefer their current location least,
while a much larger percentage of city dwellers would rather be anyplace else.
In the case of n = 3, the proposed graphics are similar to the plots of Cohen
and Mallows (1980) in which circles with areas proportional to the frequencies
are placed at the ends of six vectors radiating from the origin.

#» These ideas [see, e.g., Knuth (1981), McCullagh (1993) and Thompson
(1993)] can be extended to n = 4 by placing the 24 permutations at the
vertices of a truncated octahedron, as shown in Figure 3. The truncated
octahedron is an Archimedean solid with eight hexagonal faces and six square
faces. In Figure 3, as in Figure 1, 7 is the minimum number of edges that
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Fi6. 3. Orderings and rankings of 4 items on a truncated octahedron.

must be traversed to get from one vertex to another, and p is the Euclidian
distance between two vertices if each edge is of length V2 [see Schulman
(1979) for a discussion]. Examination of the two-dimensional faces of the
truncated octahedron in Figure 3 shows that the four vertices of any square
have the same two items ranked in the first two positions and the remaining
two items ranked in the last two positions. Similarly, the six vertices on any
hexagon all have either the same item ranked first or the same item ranked
last. There are 86 one-dimensional faces which are edges. The two vertices of
any edge agree on the ranking of the first and last choice if the edge is between
two hexagons, and the vertices agree on either the first two choices or the last
two choices if the edge is between a square and a hexagon. This idea that each
face of a permutational polytope has a “defining property” is instrumental in
the development of the proposed graphical methods for n > 4.

To illustrate the effectiveness of plotting fully ranked data with n = 4 on
truncated octahedrons, consider the following example. At the beginning of a
course in literary criticism, 38 high school students read the short story by
Faulkner and ranked four different styles of literary criticism in order of their
preference. At the conclusion of the course, they read another short story by
Faulkner and again ranked the same four styles of literary criticism. The four
styles were authorial (@), comparative (c), personal ( p) and textural (¢); and
the ‘question of interest was whether or not the post-course rankings had
moved in the direction of the teacher’s own preferred ordering {p,c, a,t).
Table 2 contains the pre- and post-course rankings. The frequencies of the 38
pre-course rankings are shown in Figure 4a and the 38 post-course rankings
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TABLE 2
Data set (n = 4 types of literary criticism, 38 students)

‘Frequencies
Ordering Before After
ACPT 0 0
ACTP 0 1
ATCP 0 0
ATPC 0 1
APTC 4 1
APCT 1 0
CAPT 0 1
CATP 0 2
CTPA 2 3
CTAP 1 4
CPAT 1 5
CPTA 1 4
PCAT 3 2
PCTA 2 4
PTAC 2 0
PTCA 2 2
PATC 2 2
PACT 3 1
TACP 1 1
TAPC 0 0
TCPA 4 2
TCAP 2 0
TPAC 2 0
TPCA 5 2

Teacher’s preference: PCAT.

are shown in Figure 4b. Although the bivariate nature of the data is lost,
valuable insight into this data is gained from the plots. Most obviously, the
frequencies do change a great deal between the two sets of rankings. First,
there seems to be a notable increase in the frequencies at the vertices of the
hexagon corresponding to the six orderings that begin with c¢. The post-course
rankings do not seem to have moved toward the teacher’s preferred ranking,
{p,c,a,t), but as suggested by the conclusions of Critchlow and Verducci
(1989), they appear to be closer to {p,c, a,t) than are the pre-course rank-
ings. One might hypothesize that the orderings have moved toward {c, p, ¢, a)
because almost half of the post-rankings lie either on {c, p, ¢, a) or on one of
the three vertices within one edge (pairwise transposition) of {c, p,¢, a).
McCullagh and Ye (1993) reach a similar conclusion which they illustrate by
plotting the vectors of the average pre- and post-course ranking on a truncated
octahedron. Other observations that can be drawn from Figure 4 include the
following:

1. The frequencies at the six vertices corresponding to the ordering that end in
¢ decrease.
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2. Style a is rarely chosen as either a first or second choice after the course is
completed.
3. The incidence of style ¢ as a first choice decreases.

To make the plots perceptually accurate, the areas of the circles in Figures 2
and 4 are based on Steven’s law which says that a person’s perceived scale p of
the size of an area is

p o (area)’”’
[Cleveland (1985)]. Hence, the areas of the circles are calculated as
area o f19/7,

where f is the value of the frequency. If the area is proportional to the
frequency, area o f, then small circles appear too large and large circles
appear too small. Conversely, if the radius of the circle is proportional to the
frequency so that area o f?2, then large values are magnified and small values
are minimized.

3. Permutation polytopes with arbitrary pseudoranks. To most
easily extend the ideas in Section 2 to partially ranked data and to rankings of
more than four items, we will first define ranked data in terms of pseudoranks.
With pseudoranks, a full or partial ranking is a vector whose elements are a
permutation of n not necessarily distinct numbers, 0 <a; <a, < -+ <a,.
Ordinary ranks correspond to a; = i. In partially ranked data, the n items are
partitioned into r groups of sizes n,n,,...,n, such that X;_in, = n. The
judges’ preferences are then specified as rankings via the pseudoranks

0<a;= " =0, <@u 1= """ =0y up, < " <App1

O

Fully ranked data corresponds to r =n and ny =n,= --- =n,= 1. Note

=a,.

that there are'(n1 ny g n) distinct permutations of the pseudoranks.

It should be noted that the proposed graphical methods only apply to data sets
in which all of the partial rankings are permutations of the same set of
pseudoranks.

With pseudoranks, an ordering is a permutation of the item labels such that
the first item is assigned the smallest pseudorank and so on, and the last item
is assigned the largest pseudorank. To denote partial orderings we will adopt
the notation of Crichlow (1985) in which the n; items in the ith group are
enclosed in parentheses. Thus, {a, (b, ¢), d) means that a is ranked first, d is
ranked last and no distinction is made between b and c.

To plot fully or partially ranked data with arbitrary pseudoranks, first

: n
consider the | , ,. ,,

points in R". A generalized permutation polytope is defined as the convex hull
of these points. As in Section 2, a set of ranked data can be graphed on the
resulting polytope by placing circles whose radii are determined by

radius o 57

n, | Permutations of 0 <a; <a, < -~ <a, as
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at each appropriate vertices. The visual impact of other methods of displaying
the frequencies at the vertices merits further study. For example, the magni-
tude of the frequencies could be indicated, not by the size of the circles, but by
color, gray scale shading or pattern.

The resulting polytope in R” lies in the intersection of the sphere

n n
X (x; - 5)2 = 2 (a; - 5)2
i=1 i=1
and the n — 1 dimensional hyperplane
n
Z X, = n(_l,
i=1

where @ = n~'L?_,a;. The polytope can be mapped into R*~! by shifting
L?_1x; =na to L7_;x; = 0 and then mapping the hyperplane ¥?_,x; = 0 onto
x, = 0 via a transformation equivalent to the Helmert transformation. Be-
cause this transformation is orthonormal, Euclidian distances and angles are
preserved and the polytope is still inscribed in a sphere in R*~!. For example,
as shown in Figure 5, the permutation polytope generated by a;, = i,i = 1,2, 3,
is a regular hexagon (plus its interior). It is inscribed in a circle contained in
the plane x; + x, + x3 = 6. Figure 5 also shows that if a; = a, = 2.5 and
a; = 1, then the generalized permutation polytope is a triangle in the same
plane. Straightforward computations also show that the truncated octahedron
discussed in Section 2 is exactly the permutation polytope obtained for fully
ranked data with e, =i,i = 1,2, 3, 4.

Because the generalized permutation polytope is difficult to visualize for
n > 4, we will characterize all of the i-dimensional faces (i-faces) of the
polytope for 0 < i < n — 2, and then focus on the special characteristics of the
three- and four-dimensional faces. Characterization of all of the faces requires
writing a generalized permutation polytope as the solution to a system of
linear inequalities. Let N, be the set {1,2,...,n}. YKK [(1984), Chapter 5,
Theorem 3.1] show that a permutation polytope can be defined equivalently as
the intersection of the following system of linear inequalities:

o

(2) Yx< Ya,,,, foralwch,,
i€w i=1
(3) in= Zai.
i-1 i=1

Although YKK define permutation polytopes only for distinct values (.e.,
distinct pseudoranks), their proof of this equivalence does not require the
pseudoranks to be distinct. Also, YKK use decreasing values (i.e., 0 < a, <
a,_; < -+ <a,), but without loss of generality we will use nondecreasing
values because they are more natural in the context of rankings. The above
definition is illustrated in Figure 6. If a, =i, i = 1,2, 3, then (2) and (3) are
¥ <3, %<3, x3<3, % +x,<5, % +x3<5, x5 +x3<5, x; +x,+x3=
6. If ag=a,=25 and a; =1, then (2) and (3) are x, < 2.5, x, < 2.5,
X3 <25, x; +x, <5, x; +x3<5, x5 +x3 <5, x; + x5 + x5 = 6. Note that
not all of the equations are needed to define the triangle.
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(25,25,1).

X,

Fic. 5. Permutation polytopes in R®.

In Theorem 3.4 of Chapter 5 YKK characterize all of the faces of a
permutation polytope for distinct 0 <a; <a, <+ <@, To characterize
the faces of a generalized permutation polytope, we extend their results to
nondistinct pseudoranks. The proof of Theorem 1 is in Section 5.

TuroreM 1. - For 0 <i <n — 2, let wy,...,®,_;_, be nonempty subsets of
N, let vy = &, and let w,_; = N,,. Then any set of solutions to

|wl

(4) Y x; < Ya, ;1 forallw CN,,
JEw Jj=1
|"~’k|
(5) Yx= Ya, ;. fork=12,...,n—1

3

JEw, Jj=1
is an i-face of the permutation polytope if and only if

() w,Cwy,C ** Cw,_; 4 Cw,_;=N,, and
(i) if lw;jAw;_{| =2, then a, i, ;> Cn_jo+1-
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Fic. 6. Linear constraints for permutation polytopes in R3.

The major difference between Theorem 1 and the corresponding Theorem
3.4 in Chapter 5 of YKK is the inclusion of the second condition, namely, if
lw; Aw;_4| > 2, then a,, |, > @, .1 This condition is satisfied trivially if
all the pseudoranks are distinct. If this condition is omitted with nondistinct
pseudoranks, then the resulting set of solutions is a face of the polytope,
but its dimension may be less than i. By defining @, = w, \ w,_; and j, =
lw,_4l+ 1 for 1 <k <n —1i, Theorem 1 can be rephrased more usefully as
follows.

THEOREM 1A. Under the assumptions of Theorem 1 it follows that any set
of solutions to (4) and to

jk+1_1
(6) Yx;= Y a, ;4 fork=1,2,...,n—1i

JEQ, J=Jk
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is an i-face of a generalized permutation polytope if and only if:
() Q1 Qy,-..,Q,_; are disjoint with U}-{Q,; = N,, and
(i) if 1Q;1 > 2, then @y, 1,141 <@y,

_11|

Using the sets @,, 1 < k < n, Corollary 2 characterizes i-faces in terms of
orderings instead of rankings. The proof is in Section 5.

COROLLARY 2. The set of vertices of an i-face corresponding to a partition

Q, Qs ...,Q,_; of {1,2,...,n} correspond exactly to the orderings
{1y, Ty_1,---,71> (with parentheses inserted in the required places) such that
Q, = {wjk,wkﬂ,...,wjkﬂ_l},k=1,...,n—i.

Theorem 1A and Corollary 2 can be used to determine all of the 0-faces (i.e.,
vertices) of a polytope. For any O-face, each of the n sets @,, 1 <k <n,
contains exactly one element which induces a permutation w = (7, 7y, ..., m,)
defined by @, = {7,}. Then, (4) and (6) reduce to x, = @kt 1o and the
corresponding ordering, with items labeled with numbers is obtained by
inserting parentheses into {w,, m,_,...,m;) as dictated by the values of n,,
1 < i < r. And the vertices of the generalized permutation polytope are exactly

the |, n, n, - nr) points whose elements are the distinct permutations

of the pseudoranks.

For any 1-face, Theorem 1 implies that there is an integer j € {1,2,..., n}
and a permutation w such that @, ={m,}, 1 <k <j; Q; ={m;, .1}, @ =
{myedy j<k<n-1; and a,_;,; >a,_; Note that |w;,_;/=;j—1 and
lw;l =j + 1. By Corollary 2, it follows that two vertices of a permutation poly-
tope are adjacent (on the same 1-face) if and only if the orderings,
(Ms Mo+ o o> Tn—ji2s Tnjp Tnjils Tp_j—1s Tnj—25 - - - » T1) and
(Tpyy 1y v e o s ML) (w1th parentheses inserted as needed) differ only by the
transposition of items m,_; and m,_;,; which do not have the same pseudo-
rank. Equivalently, they are adjacent if they differ by a single inversion of a,
and a,,, for some 1 <k <r — 1, where a, < a,,,. This characterization of
adjacent points extends Corollary 3.9, Section 5 of YKK to nondistinct values.

Next, Corollary 2 is used to characterize all of the possible the 2-faces of
permutation polytopes, as well as identifying all of the possible generalized
permutation polytopes for n = 3. For any 2-face, there exists a permutation
of the n item labels such that one of the three cases in Table 3 holds. Case 1 is
combinatorially equivalent to a hexagon because n — 3 of the pseudoranks are
assigned to n — 3 of the items, and the other three pseudoranks, which are
distinct, are permuted among the remaining three items. Case 2 is combinato-
rially equlvalent to a triangle because n — 3 of the pseudoranks are fixed, and
the remaining three pseudoranks, two of which are equal, are permuted among
the remaining three items. And case 3 is combinatorially equivalent to a
square: n — 4 of the pseudoranks are fixed, and of the remaining four pseudo-
ranks, the two smaller are permuted and the two larger are permuted. With
squares, it is allowable that j =i — 1, and also that a,_; = a,_;. Note that
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TABLE 3
2-Faces of permutation polytopes

1. @,={m}l1l<k<y Qp ji1>Qp ;> 0apy Hexagon
Q = {1-rj,7rj+1., 1rj+2}
Q,=1{mp, 0, j<k<n-2
2. Q,={m ), 1#k<j @y j41=Qu_;>Q,_j ;0T Triangle
Q; =1{mjs mj 1,712} Cpnj+1>Cpj=Cp_jy
Qk={ﬁk+2},1<k5n_2
3. Q={m}hl1<k<j @,_jr1>a, janda, ;>a, ; Square
Q= (ﬂj»7j+l}
Qr="A{mp 1}, j<k<i
Q ={m 1, Tito)
Qk=(ﬂ'k+3},i<k5n—2
TaBLE 4
3-Faces of permutation polytopes
1. Qp={m}1<k<j @pjs1<8, <A, ; 1<Q, ;4 Truncated
Qj = (7Tj,77'j+1,77j+2,77j+3} octahedron
Q,={mp.3j<k=<n-3
2.Q,={m},1<k<j @, js1=a, j<a, ; ;1<a, ; yor Truncated
=T, T, T T g) Q,_i1<@,_i<@Q,_i =0, :_ tetrahedron
J S+ 421543 n—j+1 n—j n—j—1 n—j—2
Qp={mp 3hj<k<n-3
3. Q,={m}1<k<j Ay ji1<Cp_ =0, ; 1<Q, ; Cuboctahedron
Qj = (17']‘, 7Tj+1.y 7Tj+2’77'j+3}
Qk=(ﬁk+3},l<k5n_3
4. Q,={m},1<k<j @, j41=Q,_j=a, ;1 <a, ;j gor Tetrahedron
Q= {m,mj 1,712,743} Can—j+1<Qn_j=0Cp_j_1=Cp_j_»
Q,={mp, 3 j<k<n-3
5. Q,=1{m,}, 1<k <y @, jr1=@, j<a,_j_1=a,_; jor Octahedron

Qj = (7Tj’77j+1’77j+2r77j+3}

Qr={mp,3, j<k<n-3
6. Q,={m}, 1 <k<j

Q; ={mj,m;.1}

Qp="Amp 1), j <k <i

Q ={mi 1, T 9, Tiys)

Qk={7rk+4},i<ksn—3
7. Qp={m), 1<k <j

Q; = {mj,m;. 1}

Qp={mpsih j <k <i

Q ={mi 1,0, miss)

Q,=1{mp,3i<k<n-3
8. Qk={7Tk},1Sk<j

Q= {mj, m;4 1}

Qr={mps1}, j<k<i

Q =1{m 1,729

Qr={mp o, i<k<m

Q= {7 s 2, T 1 3}

Q,={mp, 3 j<k<n-3

Cp_j+1=Cp_j<a,_; 1=a

@, _js1<a,_;and

Ay i<Au_; 1<Qp_; o

a,_j.1<a,_jand
@, ;<Qu_j1=a,_; gor
Gp_;=a 1<Cp_j_2

n—i n—i—

a,_j.1<a,_;and
a,_;<a,_,_;and

Cpm-1<C8p_m_2

n—j—2

Hexagonal prism

Triangular prism

Cube
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squares require that n > 4. If n = 3 and if the three pseudoranks are distinct,
then the permutation polytope is combinatorially equivalent to a hexagon.
Unless it is a regular hexagon, the three short sides alternate with three long
sides. If n = 3 and two of the pseudoranks are equal (i.e., either just the first
choice or just the last choice is specified), then the polytope is an equilateral
triangle.

All of the 3-faces of any generalized permutation polytope can be similarly
characterized. Clearly, any 3-face is combinatorially equivalent to an
Archimedean solid whose 2-faces are triangles, squares, and/or hexagons. For
any 3-face, there exists a permutation  of the n item labels such that one of
the eight cases shown in Table 4 holds. If the data is fully ranked, then the
only possible 3-faces are combinatorially equivalent to truncated octahedrons,
hexagonal prisms or cubes. Triangular prisms and- hexagonal prisms require
that n > 5, and cubes require that n > 6. Triangular prisms and hexagonal
prisms can also occur when @; has two elements and @; has three elements
with i > j.

When n = 4 and the four pseudoranks are distinct, that is, when the data is
fully ranked, then the polytope is combinatorially equivalent to a truncated
octahedron. If a; =i (ie., ordinary ranks), the resulting polytope, when
mapped into R3, is the regular truncated octahedron shown in Figure 2. In
addition to the truncated octahedron, there are four generalized permutation
polytopes for n = 4 which correspond to the partial rankings. If a; <a, <
a;=a, or a; =a, <agz < a, then the generalized permutation polytope is
combinatorially equivalent to the truncated tetrahedron shown in Figure 7.
Each of the four triangular faces corresponds to the partial rankings in which
the same item is ranked first; each of the four hexagonal faces correspond to
the partial rankings in which the same item is ranked last. Next, suppose that

<AB(CD)>
]
]

<AC,BD)> ; <AD,B,C)>

|
1
'k<B.A.(c.D)>

<CA®D) / DABO)>

<Bomap>.” \<BD(AC)>
<C,B,(AD)> <DB(AC)>
<C,D,(A,B)> <D,C,(AB)>

Fic. 7. Truncated tetrahedron.
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<A,(C,D)B>
<C,(A,D),B>

A,(B,C),D>

N

~<C,(AB),D> *\

~<D,(AC)B>
RN
\

1

A,(B,D)C>

<C,(B.D)A

<D,B,C)A>
<B,(AD),C>

<B,(C,D)A>

Fic. 8. Cuboctahedron.

the only first and last choices are specified so that the pseudoranks are
a; < ay = az < a,. The resulting polytope has 12 vertices and is combinatori-
ally equivalent to the cuboctahedron in Figure 8. If only the first choice or the
last choice is specified so that three of the four pseudoranks are equal, then
the resulting polytope is a regular tetrahedron (see Figure 9). And lastly, if
n;=ny,=2so that a; = a, <aj = a,, then the permutation polytope is a
regular octahedron shown in Figure 10.

Having characterized all of the 0-, 1-, 2- and 3-faces of generalized permuta-
tion polytopes, it is of interest to examine the extensions of the metrics
Kendall’s 7 and Spearman’s p to pseudoranks. First, to extend Spearman’s p
to pseudoranks, denote any two rankings by @, and a, where = = (i, ..., m,)

<A(B,C.D)>

<B,ACD)>

<D,(AB.C)>

<C,ABD)>

F16. 9. Tetrahedron.
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<(AB),(C,D)>

<(B,D),(A,C)> <(AC),(B.D)>
<(C,D)(AB)>
F1G. 10. Octahedron.
and ¢ = (oy,...,0,) are permutations of N,. Then, define

1/2
p(amaa)=(2(a -a, ) :

Critchlow (1985) shows that this extension of Spearman’s p to partially
ranked data is equivalent to the fixed vector metric F},, which he discusses in
detail. The p-distance between any two points that differ by the inversion of
two consecutive pseudoranks a; and a;,; is p = V2la; — a,,,. Recall that
it is assumed that all observations in the data set are ranked with the same
set of pseudoranks. If the pseudoranks are the integers 1 through r, G.e.,
@ 4 4n;, =i, 1 <1 <) then the p-distance reduces to p = V2. In thls case,
the p-dlstance between all ““adjacent” points is constant, and all of the 3-faces
are regular Archimedean solids. On the other hand, if the pseudoranks are tied
ranks, then the distance between adjacent points is not constant, but it does
follow that X7 ,a, = N(N + 1)/2. The resulting 3-faces are not necessarily
regular, but they can be inscribed in a truncated octahedron by placing the
vertex corresponding to a partial ranking at the centroid of the set of compati-
ble full rankings. This offers a promising method for visually examining data
sets, such as the APA voting data [Diaconis (1989)], that contain both full and
partial rankings.

Turning now to Kendall’s 7, it follows immediately from the above proper-
ties of 1-faces and adjacent vertices that for ordinary full rankings, Kendall’s 7
is equal to the minimum number of edges (1-faces) that must be traversed to
get from one vertex to another. This induces a natural extension of Kendall’s 7
to pseudoranked data. We define this extension of Kendall’s 7 to be the
minimum number of edges that must be traversed to get from one point to
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TaABLE 5
Hausdorff metric T* vs proposed extension of Kendall’s : Distance from {a, (b, c),d)

a

Ordering T*

{a,(d,c),d)
(a,(b,d),c)
{a,(d,c), b)
(b,(a,c),d)
(b,(a,d),c)
(b,(d,0),b)
{c,(a,d), b)
{c,(a,b),d)
{c,(b,d),a)
(d,(b,e),a)
(d,(a,c),b)
(d,(b,a),c)

AR TR DNDWR WNDNDNO
DN WNHNNNRERRO

another. This extension trivially satisfies all of the properties of a metric. From
Corollary 2 it follows that it is also right invariant; that is, it is invariant under
the permutation of item labels. Note that this extension of Kendall’s r depends
only on n,,ny,...,n,, and not on the actual values of the pseudoranks.

Because it has such appealing graphical properties, this extension of
Kendall’s 7 merits further study, particularly in the context of partially
ranked data. As shown in Table 5 for a; < a, = a5 < a,, this graphically
induced version of Kendall’s 7 for partially ranked data is different from the
Hausdorff extension of Kendall’s 7, T'*, that is discussed in detail by Critchlow
(1985). It also differs from the “metric”’ I(ar, o) proposed by Diaconis [(1988),
page 127] for partial rankings. Although I(ar, o) has beautiful combinatoric
properties, it is not a metric because it is not symmetric in its two arguments.
To obtain a counterexample to the symmetry, consider the simplest partial
ranking in which n = 3, n; = 1, and n, = 2; and denote the identity rankings
as id = (1,2, 2). By Theorem 2 of Diaconis [(1988), page 127], it follows that
L,q7¢%™ = g% + g + 1 where 7 takes the values (1,2,2), (2,1, 2) and (2,2, 1).
This means that there is exactly one point =, such that I(id,w) = 1, and one
other point ¢, such that I(id, o) = 2. Also, by the right invariance of I, there
is exactly one point a distance 1 from m and one point a distance 2 from . If T
is symmetric, then I(id,w) = I(w,id) = 1, and I(ar, o) = I(o, w) = 2. Hence,
ther2e are two points a distance 2 from ¢ which violates the fact that ©, ¢ /*>™
=q°“+q+ 1.

4. Examples. This section illustrates the application of the results of
Section 3 to three data sets that consist of partial rankings with n > 4. In
particular, Theorem 1 and Corollary 2 are used to determine all of the three
dimensional faces of the higher dimensional generalized permutation polytope.
Frequently, it is also useful to plot portions of the four-dimensional faces. A
permutation polytope in four dimensions is inscribed in a sphere, so it can be
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TABLE 6
Data set (n = 5 candidates, A, B, C, D, E; 7 rankers)

Orderings : Rankings
(A, E,(B,C, D)) 1,3,8,3,
(A, D,(B,C, E)) ,3,3,2,
(D, A,(B,C, E)) ,3,3,1,

(A, B,(C, D, E))
(B, A,(C,D,E))
(C,B,(A, D, E))
(A,C,(B, D, E))

N - N Lo W
N0 W oW
0 00 L0 Lo - o W

AN AN A A AN~
HOLONFMNDH

WwWwwWwwwwN
N

drawn in three dimensions with distortion just as the surface of a globe or an
inscribed truncated octahedron can be drawn as a planar map in two dimen-
sions. This is very similar to the Schlegel diagrams discussed and illustrated by
Banchoff (1990).

To determine all of the i-faces most easily in practice, the sequence of
pseudoranks is first written down with appropriate equal or less than signs.
Then, Theorem 1 is used to determine all of the possible values for
lwgl, #=1,...,n — 1, such that ; Cw,<c - Cw,_; ; Cw,_,=N,, and
such that if |0,/ —|w;_ ;| > 2, then @pjw, > @nju;+1- This determines
the sizes of the sets @,, k= 1,...,n — 1. Then, for an arbitrary, fixed mr,
and for each set of possible values of 1Q,l, the sets @, are written as

(T 41 Ty 420+ - ”"Iwkl} k= ,n — 1. It then follows from Corollary
2 that the set of vertices of the i- face correspond exactly to the orderings
(m, ..,y (with parentheses 1nserted in the required places) such that

b= {'rrlwk U+ 1 Ty y+20 - s Touts £ = 1,..., n — i. Then, the number of faces
are counted by letting = range over S,,.

ExaMpLE 1. In a university department, five job candidates, named A, B,
C, D and E, were being evaluated by the seven faculty members to determine
which one should be invited for an interview. The chairman asked each faculty
member to name a first and second choice. The data are shown in Table 6,
both as orderings and as rankings with a; =1, a;, =2, a;=a,=a;=3.1In
this case, we have a; <a, <a5=a,=a; There are 20 possible partial
rankings. The two questions of interest are whether there is a “most popular”
candidate to invite and whether there are any ‘“‘outliers”” among the faculty. In
determining the 3-faces, it follows from Theorem 1 that the only possible
3-faces occur when |w,/ =1 or |w,| =4. It is not possible to have |w,| = 2
because a5 = a4, and it is not possible to have |w;| = 3 because a5 = a;. If
either |w,| = 2 or |w,| = 3, the second condition of Theorem 1 is not satisfied.
Hence, for any 3-face we have either @, = {m,, 7y, 73, 7} and @, = {m;}, or
Q, = {m and Q, = {m,, w5, m,, m5}. In the first case, the orderings of the
points on the vertices are (mj, my, (w3, 7o, 1)), (w5, w3, (my, o, T,
(15, 79, (g, w4, w)) and {my, 7, (75, 7y, m,)). The resulting figure is a tetra-
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<AE,B8,CD)>

Tetrahedron =
/ Candidate A ranked 1st

<AD,(B,C,E)>, <A,C,(B,D,E)>

<DA,B,CE)> <C,A,(B,D,E)>

<D,B,(A,CE)> <C,B,(ADE)>

<D,c.(A.B,E)>/4 <C,D,(AB,E)>

Truncated tetrahedron =
Candidate E ranked among the last 3

Fic. 11. Voting data.

hedron in which all points have the same first choice, and the four vertices
correspond to the four possible second choices. There are five different 3-faces
that are tetrahedrons, each corresponding to a different first choice. In the
second case, that is when @, = {w} and @, = {m,, w3, m, 75}, the figure is a
truncated tetrahedron in which each vertex has the same candidate ranked
among the last three. There are five 3-faces that are tetrahedrons. As shown in
Figure 11, all of the data can be graphed by drawing only two adjoining
3-faces, the tetrahedron in which candidate A is ranked first, and the trun-
cated tetrahedron in which candidate E is ranked last. The distances between
the points on two different 3-faces of a four-dimensional permutation polytope
are somewhat distorted when plotted in three dimensions, but much informa-
tion is still preserved. It is immediately seen from Figure 11 that candidate A
is most popular. Also, there is an outlier (who is, coincidentally, the chairman)
at 3,2, 1, 3, 3. Better intuition about Figure 11 can be obtained by noting that
the maximum number of edges that must be traversed to get from any one
point to another is 3. That is equivalent to saying that the extension of
Kendall’s 7 proposed in Section 3 takes the values 0, 1, 2 and 3. In fact, each
point has four points that are adjacent, six points that are two edges away, and
nine points that are three edges away.
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TABLE 7
Data set (n = b types of crackers; 16 mothers and 22 preschool boys)

Orderings

Boys Mothers
ACS CRA
GCA SRG
ACG CSA
CAG CSA
CGA SRA
ARC SCR
CSA SCG
SCR . GAR
AGC SAR
ARG CSA
AGC RSC
ACS RAG
GRA SCG
CGA SAR
ACS GAS
CGS SCA
ARC

ACG

RAC

AGC

ACG

CAG

ExampLE 2. Table 7 contains the orderings for partially ranked data in
which 16 mothers and 22 preschool boys were asked to taste five crackers.
A = animal crackers, R = Ritz crackers, S = Saltine crackers, C = cheese
crackers and G = Graham crackers. [See Critchlow (1985).] Each mother and
preschooler named their first three choices, but did not differentiate between
their last two choices. This means that n =5, r=4,n, =1, n, = 1, ng=1
and n, = 2; and the pseudoranks are a; <a, <a, <a, =a;. The corre-
sponding generalized permutation polytope, which is inscribed in a sphere in
four dimensions, has 60 vertices. When i = 3, condition (ii) of Theorem 1 is
not satisfied if |w,| = 2 because a, = a;. It follows that |w,| = 5, and there are
three different kinds of 3-faces which corresponds to |w,| = 4, |o,] = 3 and
lw,| = 1. In terms of the sets @,, the three cases are:

@ Ql = {771772a T3, 774}, Qz = {775}-
(ii) Ql = {71772’ 773}7 Q2 = {774, 775}'
(iii) Ql = {771}, Q2 = {772, 7T3, 774, 775}.
In the first case, the 3-face is a truncated tetrahedron corresponding to the

cracker labeled 7; being ranked first. In the second case, the 3-face is a
triangular prism. The vertices of the triangular prism are {7y, 7, 73, (74, 7)),
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cs@ cas
e P N ,,&n\\
///// RS S QBQ ‘ \\ AN
7 ,7CsA N\ QGA \\ N
s 7 N/ N N
/ / // N N \ \
/ / / ‘CRA \ \ N
S CASy——fcAG N N
/ / // TCAR \ \ \
Iy ACR. A
/ / / ACS RN, ACG \ \ \
/ / / :ARC \ \ \
! / Ky \ \ \
I ase/ S N Voo
L (o e VoL
| P\ -ARS AR AT \aca !
- SGA ) ARS ARG /) oo\ @AC GCA|
8 ; 1 ’ A /- ® GCR
\| /~SRC.____ g ‘SAR ASG  AGS 1/ ~GRA___GRC.X [/
ca A Vg . Yacs
' \GRs
SRa/ OSA———/asc
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Omit: RSC, RAG

Fic. 12a. Cracker data: mothers.

<775, 774, 771, (773, 772)>, <7T4’ 775, 773, (772’ 771)>’ <7T4’ 775, 772’ (771, 773)>’
{1y, w5, w1, (74, w3)) and {mwy, my, wy, (7, m3)). In the third case, the 3-face is a
truncated octahedron corresponding to the cracker labeled 7; being ranked
among the last. Its three-dimensional faces consist of five truncated octahe-
drons, five truncated tetrahedrons, and 10 triangular prisms. The maximum
number of edges that must be traversed to get from one point to another is six,
and each point is adjacent to four other points.

Figures 12a and Figure 12b show plots of the partial rankings for the
mothers and boys, respectively, on a portion of the four-dimensional polytope.
The differences between the mothers and the boys are readily apparent: The
boys tend to prefer animal crackers and the mothers tend to prefer saltines.
Because the surface of the polytope in R* has been mapped onto R3, parts of
the figure are stretched. Clearly visible in the figures are four truncated
tetrahedrons and three triangular prisms. The dashed lines are all of length 1,

sand form three more triangular prisms. The missing truncated tetrahedron,
which has vertices all beginning with R, as well as the other four triangular
prisms, are behind the middle of the figure and are not drawn. Only two of the
mothers and one of the preschool boys chose partial rankings beginning with
R which would be plotted on the omitted truncated tetrahedron. The spaces
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Fic. 12b. Cracker data: boys.

between the prisms and the truncated tetrahedrons are filled by the truncated
octahedrons. Parts of all five truncated octahedrons can be discerned in the
figures, but they are very distorted. This is because more information seems
available from the picture if the truncated tetrahedrons are drawn with as
little distortion as possible. The truncated octahedrons can be plotted sepa-
rately, but little additional insight into the data is obtained.

ExamMpLE 3. In a major city, Catholic Charities mailed a survey to a
sampling of the members of the local diocese asking each person to rank from
1 to 3 the top three services needed in the community as they saw them. The
list of possible choices were:

I = Intensive therapy for emotionally troubled youth and their families
+E = Employment assistance for the unemployed

F = Food and financial assistance for families in crisis

L = Legal assistance for immigrants and families
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M = Marriage and family counseling

D = Day care for low income families

A = Adoption

O = Outreach to refugees arriving in the city

S = Alcohol and substance abuse treatment for adolescents

P = Prepared meal and health services for low-income senior citizens

H = Housing for low and moderate income families
Table 8 shows the frequencies with which each partial ordering was chosen.
Altogether there were 576 respondents to the survey who listed a first, second
and third choice; and 284 of the possible 990 partial rankings were chosen.

In this example the pseudoranks are a, <a, <az<a,=as=ag=a, =
@g =ag =a;y = a;;. The resulting permutation polytope is inscribed in a
sphere in R'® and has 990 vertices. Using Theorem 1, it follows that there are
four different possibilities for the sizes of w,:

@ lwl=1,k=1,...,7 lwg] = 11.

() lw,l =1,k =1,...,6; |w;| = 10; lwg| = 11.
© lwgl =1,k =1,...,6; o, = 9; lwg| = 11.
@ lopl =1,k =1,...,5; lwgl = 9; lo,| = 10; |wg| = 11.

The resulting sets @, are

@ @, ={m},k=1,...,7; Qs = {mg, w9, m10, 711}

(b) Qk = {Wk}, k=1,...,6; Q7 = {77'7, g, Ty, 77'10}; Qs = {77'11}~

(© Q,={m), k=1,...,6; Q7 = {7y, g, mo}; Qg = {19, m14).

(d Qk = {Wk}, k=1,...,5 Qs = {77'6, T7, g, 77'9}§ Q7 = {77'10}§ Qs = {7T11}~

In the first case, the 3-face is a truncated octahedron in which items labeled
through 7, are ranked among the last eight, and the remaining four items are
permuted among the first, second, third and fourth places. In the second case,
the 3-face is a truncated tetrahedron in which item 7, is ranked first, and
items m;, g, my and m,, are permuted among second, third and two fourth
places. In the third case, the 3-face is a triangular prism in which items 7,
and 7, are permuted between first and second place, and ;, 74, and 7, are
permuted among the third and two of the fourth places. And in the fourth
case, the 3-face is a tetrahedron in which item m; is ranked first, item 7, is
ranked second, and items mg, 7,, m5 and 74 are permuted among the third
and three of the fourth places. Altogether, the 3-faces consist of 330 truncated
octahedrons, 2310 truncated tetrahedrons, 4620 triangular prisms and 13,860
tetrahedrons.

In spite of the large number of 3-faces, a great deal of the data can be
illustrated by choosing the 3- and 4-faces that contain the largest percentage of
the data. For example, if interest is restricted to any five items, then the points
can be plotted on the same type of figure used in Example 2. This is done in
Figure 13 for F, E, D, H and P. The truncated tetrahedron corresponding to
rankings beginning with P is hidden behind the figure. This hidden truncated
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TABLE 8

Data set (n = 11 choices; 576 survey respondents)

1425

DFO
DFP
DFS
DHE
DHF
DHO
DHP
DIF
DIP
DMF
DMI
DMS
DOI
DPF
DPH
DPM
DPS
DSE
DSH
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FSD
FSE
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FSL
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HDE
HDF
HDI
HDL
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HDP
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HFD
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MIE
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MIL
MIO
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MPF
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MSF
OFE
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OLF
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OMF
OPF
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PAF
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PDI
PDL
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PEF
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PEM
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PHF
PHS
PID
PIE
PIF
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PME
PMF
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SAD
SAE
SDE
SDF
SDI
SED
SEF
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SEP
SFD
SFE
SFH
SFI
SFL
SFM
SFP
SHE
SHL
SHP
SIA
SIF
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SIP
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SMD
SME
SMP
SOD
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SPF
SPH
SPM
SPO
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No other orderings were chosen.

tetrahedron is shown at the bottom of Figure 13. The most striking feature of
the 4-face in Figure 13 is that although it contains only 20 of the 21,120
po§sible 3-faces, it contains almost 1/3 of the data. And the truncated tetrahe-
dron in Figure 13 in which F is ranked first contains 92 responses or 16
percent of the data. Also interesting is the fact that the points on this
truncated tetrahedron are chosen almost uniformly except for FDH and FDP.



1426 G. L. THOMPSON

Fic. 13. Catholic charities data.

The frequency distributions on the other four truncated tetrahedrons in
Figure 13 are all fairly similar to each other, but overall their frequencies are
considerably less than those of the truncated tetrahedron beginning with F.
These observations are useful in guiding the choice of a metric based model for
the data.

Faces can also be chosen to answer specific questions of interest. In this
case, there is interest in the relationship between I and S. Figure 14a
contains a truncated octahedron whose vertices correspond to the partial
rankings in which the first, second and third choices are chosen from F, P, S
and I. On the right-hand side of the figure, S precedes I; on the left-hand
side, I precedes S. Clearly, S precedes I more frequently on this particular
3-face. As a contrast, Figure 14b contains a hexagon with all of the permuta-
tions of S, I and M. In this case, I precedes S. These observations were
interpreted in light of the qualitative differences between the choices F and P,
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PIF

PIS

Fic. 14a. Catholic charities data.

MSI Mis

SMI
IMS

SIM ISM.

Fic. 14b. Catholic charities data.

and the choice M. Other faces to illustrate the relationship between S and I
contained too few points to be of interest.

5. Proofs.

ProoF OF THEOREM 1. First, we prove that the system of (4) and 5)
determines an i-dimensional face when conditions (i) and (ii) hold. Clearly, the
points satisfying (4) and (5) are a subset of the points satisfying (2) and (3) in
the definition of the permutation polytope. Because the system is consistent, it
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determines a face. The rank of the system is n — i. To show that the face is of
dimension i, we use Proposition 4.3 of YKK, page 36, and show that the
system has exactly n — i linearly independent constraints. To do this, let o be
any subset of N,, and define @, = w,/w;,_, for 1 <k <n —i. If v is the
union of the elements in some subset of {®,; 1 < k < n — i}, then the n — 1
constraints in (5) imply
ol

)y x; = Y it

jcw j=1
On the other hand, if o is not the union of the elements in any subset of {@,;
1 < k < n — i}, then it is sufficient to show that there is a solution to (4) and
(5) such that

|wl

(7) Yx < XA

i€w i=1
Let p be the largest integer such that w, ¢  and ,,; ¢ w; and let g be the
smallest integer such that o ¢ w, and © ¢ o,_;. If |Q,| = 1 for all integers k
such that p < k < q, then o is the union of the elements in some subset of
{Q,; 1 <k <n — i}). Hence, we must have that |@;/| > 2 for some integer &’
where p < k' < q. This implies that a,_,j+1 < @p_jo,_,- NOW consider the
solution defined by letting x;, = a,_;,; for j &€ N,\ Qy and x; =
(Tscq,@n-s+1/1Qylfor j € Q. Clearly this solution satisfies (5). Because the
a;’s are nondecreasing, the solution satisfies (4). And because w,\ o is
nonempty and the a;’s are nondecreasing, the solution satisfies (7). Hence, the
face has dimension i.

Conversely, suppose that we have an i-face of the permutation polytope
satisfying (4) and (5). Without loss of generality, assume that |w;| <|w,l
implies j <k, j,k =1,2,...,n — i. Assume that condition (ii) does not hold
so that for some integer j we have |w;Aw; />2 and @, |, 111 =Cn_jo,_,
Straightforward calculations show that the system in (4) and (5) is equivalent
to the system defined by (4) and (5) augmented with

@ |
Z xX; = )y Qp_j+1s

JEwy Jj=1
where w, = o;_; U {x,}, where x, € Q;. Hence, the face is of dimension less
than i which is a contradiction. Next, suppose that the inclusions in condition
(i) of the theorem do not hold. Then there is a pair of sets, », and w,, such
that neither is a subset of the other. Without loss of generality, we can assume
that p = ¢ — 1 and that |o,| <|w,. Then for any point x on the i-face, we

have

Y ox+ Y x;

JEw, JEw,

lwpl lwgl

Z Qp_ji1 T Z Qn_j+1
j=1 j=1

prUwa |wpﬁwq|

= X x4+ Y %< Y @t Y ujer
j=1 j=1

JEwVw, JEw,Nw,
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Because neither v, or w, is a subset of the other, we have that pr Awa > 2,

which in turn implies that Uy oy +1 < Cpjo- Because the pseudoranks are
nondecreasing, it follows that
lwp, Vel lw,Nw,l lwgl lw,|

Z a—_]+1+ Z a—J+1<Za—j+1+Za—J+l

Jj=

This contradiction implies that the inclusions in condition (i) must hold. O

Proor oF CoroLLARY 2. The proof of Corollary 2 is aided by the following
definitions involving multisets. The multiset corresponding to the pseudoranks
in (1) is {w}, wdz, ..., w)'}, where w, <w, < -+ <w, are the r distinct
values of the pseudoranks, and w; occurs n, times. The set of

n, ny ng n ) distinct permutations of the multiset {1"1,2"2,...,r"} is

denoted by &, and a permutation of (nondistinct) pseudoranks is denoted by
w, = (w,,, w,, , W, ), where o € §. Define the set A(o) = {w € S,, such
that w,=a -1} Note ‘that = is in A(o) if and only if X, =a,is equlvalent to
Xp = W,,. Define the pseudoinverse of w € S, to be the element o € ® such
that w € A(o). This pseudoinverse is unique and well defined, but more
thanone element of S, can have the same pseudoinverse. Next, for any i-face,
define S(Q,,Q,,...,Q,_;) to be the set of all possible permutations = € Sn
such that @, = {7, _1+1, Tju,_y+25- > Tj,)> and define S Q,Rq..-,Q,_;)
to be the set of pseudoinverses of the permutations (w,, 7, _,...,7,), where
™E S(Ql’ QZ" ’Qn—z

Now, suppose that w, is a vertex such that 0 € S™4Q,Q,,...,Q,_;) and
let ¥ = w,. By definition of S™YQ;,Q,,...,Q,_,), we have x_ =a,_ ;.
k=1,2,...,n where w € S(Q,,Q,,...,Q,_;). Hence,

Qs 1@
(8) Y= L X, = Y a, 4y fork=1,2,...,n—1i,
j<Q =i =i

where j, =|w,_;/ + 1. This shows that a, is on the face determined
by @, ®s,...,Q,_;. Conversely, suppose that w, is not on the face gen-
erated by @,,Q,,...,Q,_;; that is, GES'l(Ql,Qz,.. ,Q, ;). Let x=w
Then, because a,_;,; is decreasing in j, (8) holds at x =uw, only
if {x " kan’ e X = (@ jys1 @nojyrzs -+ s Cnojguen fOr cach % =
1,2,...,n — i. This implies that n € S™XQ,, Q,, - .., ®,_;), which is a contra-
diction The corollary follows immediately by noting that the ordering corre-
sponding to any pseudoranking can be obtained by simply inserting the proper
notation into any element of A(¢). O
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