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Standard empirical likelihood confidence intervals for quantiles are
identical to sign-test intervals. They have relatively large coverage error, of
size n”1/2 even though they are two-sided intervals. We show that
smoothed empirical likelihood confidence intervals for quantiles have cover-
age error of order n~!, and may be Bartlett-corrected to produce intervals
with an error of order only n~2. Necessary and sufficient conditions on the
smoothing parameter, in order for these sizes of error to be attained, are
derived. The effects of smoothing on the positions of -endpoints of the
intervals are analysed, and shown to be only of second order.

1. Introduction. Empirical likelihood methods for constructing confi-
dence regions were introduced by Owen (1988, 1990). One of their advantages
is that they enable the shape of a region, such as the degree of asymmetry in
the case of a confidence interval, to be determined ‘“automatically” by the
sample. In certain regular cases, empirical likelihood regions are Bartlett-cor-
rectable, meaning that an empirical correction for scale reduces the order of
magnitude of coverage error from n~! to n~2, where n denotes sample size.
See DiCiccio, Hall and Romano (1991).

Almost all theoretical development of empirical likelihood has focussed on
the case where the statistic of interest is a smooth function of means. For
example, it is only in this case that coverage error has been shown to be of
order n~!, reducible to n~2 by Bartlett correction. A survey of developments
in this setting has been given by Hall and La Scala (1990). Owen (1988) has
noted that, when applied to the problem of constructing confidence intervals
for a population quantile (in particular, for the median), empirical likelihood
reproduces precisely the so-called sign-test or binomial-method interval. This
is reassuring, but it does show that in the context of quantile estimation,
straight empirical likelihood has nothing to offer over existing techniques. One
of the disadvantages of the sign-test method is that it is usually unable to
deliver confidence intervals with coverage accuracy better than n /2. This is
true for both one- and two-sided intervals, and arises because of the dis-
creteness of the binomial distribution, which determines the true coverage
probability. By way of comparison, even the most rudimentary of normal-
approximation methods for constructing a two-sided confidence interval for

the population mean has coverage error of order n~!.
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Our aim in this paper is to show that by appropriately smoothing the
empirical likelihood method, coverage accuracy may be improved from order
n~1/2 to order n~1. We demonstrate that this improvement is available for a
wide range of choices of the smoothing parameter, so that it is not necessary to
accurately determine an ‘‘optimal” value of the parameter. Furthermore, we
show that smoothed empirical likelihood is Bartlett-correctable. That is, an
empirical correction for scale can reduce the size of coverage error from order
n~1 to order n~2

We also establish a very general version of Wilks’ theorem in the context of
empirical likelihood for quantiles. This result provides necessary and sufficient
conditions on the range within which the smoothing parameter must lie if the
asymptotic distribution of the empirical log likelihood ratio statistic is to be
central chi-squared. Furthermore, we derive necessary and sufficient condi-
tions on the smoothing parameter for the error in the chi-squared approxima-
tion to be O(n~1), and also for the error after Bartlett correction to be O(n~2).
We suggest a particularly simple version of the Bartlett correction that pro-
duces confidence intervals with coverage error o(n~!), although not quite
Oo(n=2).

Section 2 describes empirical likelihood methods for constructing confidence
intervals for quantiles. Section 3 presents our results about Wilks’ theorem
and the order of approximation there and Section 4 discusses analogous results
for Bartlett correction. A small simulation study is presented in Section 5.
Proofs are deferred to Section 6.

One competing approach to determining confidence intervals for quantiles is
based on interpolation of sign-test intervals. This method has only been
developed in the case of the median, and no convergence rates have been given
for the coverage error; see, for example, Sheather (1987) and Sheather and
McKean (1987). Unpublished work of R. Beran and P. Hall shows that the
approach may be satisfactorily generalized to general quantiles, and that the
convergence rate is O(n~1). Most importantly, that rate cannot be reduced to
O(n~2) by higher-order interpolation. Therefore, in the sense of coverage
accuracy, the Bartlett-corrected, smoothed empirical likelihood approach sug-
gested in the present paper is particularly competitive with methods based on
interpolated sign-test intervals.

Other techniques may be based on the asymptotic distribution of a sample
quantile. However, that involves the unknown value of the probability density
at the population quantile. While the latter may be estimated, choice of
bandwidth in this problem is a rather tricky matter, and even with an optimal
choice of bandwidth the convergence rate of coverage error is of larger order
than n~!; see Hall and Sheather (1988). Duffy and Santner (1990) have
recently surveyed different approaches to the setting of confidence intervals for
quantiles.

#An excellent expository paper by Barndorff-Nielsen and Cox (1979) develops
the subject of Edgeworth expansion to the point where it produces rather
general forms of the Bartlett correction, in parametric problems. These include
one of the forms suggested by Hayakawa (1977). Hall and La Scala (1990) have
also discussed the implications of Bartlett correction in the context of
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Edgeworth expansion, this time for empirical likelihood. However, it should be
stressed that there are extensive differences between proofs of the validity of
Bartlett correction in parametric and nonparametric (i.e., empirical likelihood)
contexts. Indeed, the fact that Bartlett correction is applicable to empirical
likelihood is not, to us, entirely obvious.

It is not possible to derive the results in this paper from those of DiCiccio,
Hall and Romano (1991), since the latter work relies on the so-called ‘‘smooth
function model” for a statistical estimator, which does not encompass sample
quantiles.

2. Smoothed empirical likelihood for quantiles. Let X,,..., X, de-
note a random sample from a distribution with distribution function F.
Assume that the gth quantile, 6, = F~ (@), is uniquely defined. We wish to
construct a confidence interval for 6,.

To this end, let G, denote a smoothed version of the degenerate distribu-
tion function G, defined by G,(x) = 1 for x > 0, 0 otherwise. Specifically, let
K denote an rth-order kernel, of the type commonly used in nonparametric
density estimation or regression [e.g., Silverman (1986), page 66ff and Hardle
(1990), page 141ff]. That is, for some integer r > 2 and constant « # 0, K is a
function satisfying

1, ifj=0,
(2.1) JuK(u)du=1{0, ifl<j<r-1,
k, ifj=r.

The case r = 2 is the most common, and there we take K to be a symmetric
probability density. Larger values of r produce curve estimators with smaller
variance. Define G(x) = [, ., K(y) dy. In this notation we put G,(x) = G(x/h).
When r = 2 and K is a density, G and G, are proper distribution functions.

Write p,,...,p, for nonnegative numbers adding to unity, and define
p = (P1’-~-,Pn),
A n n
Fp,h(o) = E p.Gn(0 — X;), L,(0) = sup H (np;).
i=1 p: B, (0)=qi=1

Empirical log likelihood is defined by {,(6) = —2log L,(6).
A smoothed empirical likelihood confidence interval for 6, is given by
I, ={6:1,(0) <c}.
Here, ¢ > 0 is a constant whose value determines the coverage probability,
Apes Of I h c:

(2.2) a,. =P(6,€1,.) =P{l,(6,) <c}.

As we shall see shortly, ,(6,) typically has an asymptotic x2 distribution, and
this property may be used to select c.

If G, is a distribution function, then I,, will be an interval, as desired.
When higher-order kernels are used to construct G, it is possible that for
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small sample sizes and unusual values of h, I,, might be a union of disjoint
intervals.

We may give the definition of [ more explicitly, as follows. Put w. (0) =
G,(6 — X;) — q. The method of Lagrange multipliers may be used to maximise
Ip; subJect to Xp,wi(0) = 0 and Lp, = 1. Arguing thus, we may prove that
the turning point occurs with p, = n={1 + A(6)w, (0)} 71, whence

1(0) =2 Z‘, log{1 + A(0)w;(8)},
i=1

where A(6) is determined by
L wi(8){1 +A(0)wi(0)} " =
i=1

The standard, unsmoothed version of empirical likelihood has & = 0 in the
preceding formulae. It produces the interval

Ioc = [X(rl)’ X(rz)] )

where X ;) < -+ < X, denote the order statistics of the sample X,..., X,
and r; and r, are respectlvely the smallest and largest integers such that

(a/D){(L-q)/(n =)} " 2c
The exact coverage probability of the interval I,, is given by
a,,=P(0,€l,)=P(ry<M<r,—1),

where M is a binomial Bi(n, ¢) random variable. Compare (2.2). This probabil-
ity cannot be rendered closer than order n~!/2 to any predetermined value,
such as 0.95, no matter how the integers r; and r, are selected. That is
because any alterations to r; and r, produce changes of size n~'/2 in
P(ry <M <r; — 1), except in the extreme tails. To appreciate why, observe
that

sup [P(M =r) = {2mnq(1 - q)} " exp[ - 3(r — ng)*(nq(1 - @)} ]|

O<r<n
=o(n"1?).

See Petrov (1975), page 187.

3. Wilks’ theorem and coverage accuracy. We adopt throughout the
notation introduced in Section 2. Recall that the smoothed empirical likelihood
confidence interval I, is defined in terms of a positive constant c, which
determines coverage probability. If the distribution of [ #(6,) were known, then
¢ could be chosen so that I,, had a predetermined level of coverage, such as
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0.95. Our first result establishes necessary and suﬂ'lc1ent conditions on the
choice of bandwidth, A, for /,(6,) to have an asymptotic x2 distribution.
Let f = F’ denote the first derlvatlve of F, where defined.

THEOREM 3.1. Assume that

K satisfies (2.1), and is bounded and compactly supported;
that f and £~ exist in a neighbourhood of 6, and are
continuous at 0,; that f(6,) > 0; and that for some t>0,
nh! = 0 as n — o,

(3.1)

Then 1,(6,) has an asymptotic x; distribution if nh®" — 0, and this condition
is also necessary if f"~1(6,) + 0.

Let us explain the implications of condition (3.1). The first part of (3.1) asks
that K be a kernel of order r. The second part asks that the distribution
function F be sufficiently smooth in a neighbourhood of 6,; the condition that
r continuous derivatives of the target function (here, F') exist is the usual
smoothness assumption imposed when working with an rth-order kernel.
Requiring that f(6,) > O ensures that the asymptotic variance of the sample
quantile is of order n~1. Without that assumption the order of magnltude of
variance is strictly larger than n~!, and the asymptotic theory is quite
different. Finally, asking that nk’ - 0 as n — « ensures that the bandwidth
does not converge to zero too slowly.

If K isa second-order kernel (i.e., r=2) and f'(f,) # 0, then 1,(6,) is
asymptotically x? if and only if 7 = o(n 1/4). Such a bandwidth is of smaller
order of magnitude than that which is usually appropriate for minimising
error of a curve estimator; the latter A is of size n~'/% as shown, for ex-
ample, by Silverman (1986), page 40ff, and Héirdle (1990), page 155. When
fU=9(6,) = 0, it is possible for ,(6,) to have an asymptotic x7 distribution yet
nh®" to be bounded away from zero.

If (3.1) holds and nh?" — 0, then by the theorem,

P{1,(6,) <c} » P(xi <¢).
Therefore, if ¢ is chosen from chi-squared tables to satisfy
(3.2) P(x? <c)=a,
the asymptotic coverage of the interval I, will equal a:
a,.=P(0,€1l,,) >«

as n — o,
Of course, we are interested in not just the asymptotic coverage of I,. but
also in coverage accuracy. Our next result gives a necessary and sufficient
condition for the coverage error of I,, to be of order n~!. It also shows that
this size of error is best possible, in the sense that & cannot be chosen to give
an error of smaller size than n~!.
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THEOREM 3.2. Assume condition (3.1) and in addition that the bandwidth
h satisfies

(3.3) nh* - 0 and nh/logn — .
Define ¢ = c(a) by (8.2). Then a sufficient condition for
(3.4) P(o,€1,) =a+0(n"),

as n — o, is that nh” is bounded. This condition is also necessary if
f"=18,) # 0. No matter what the value of ¢ > 0, the right-hand side of (3.4)
cannot be rendered equal to a + o(n~1) by appropriately choosing h.

The first part of assumption (3.3) is just the necessary and sufficient
condition for 7,(6,) to have an asymptotic x?2 distribution, noted in Theorem
3.1. The second part asks that & not be too small, and is imposed to ensure a
minimal level of smoothness of the statistic 7,(6,). We use it to derive a
version of Cramér’s smoothness condition from the theory of Edgeworth
expansions. It is not difficult to see that if

(3.5) nhlogn — 0,

then (3.4) must fail because insufficient smoothness is imposed. [The closest
data pairs in the vicinity of 6, are separated by no more than (n log n) ™!, and
if h is of smaller order than this, then there is effectively no smoothing of the
empirical likelihood method.] Asking that the second part of (3.3) hold is only a
little more stringent than insisting that (3.5) fail.

When f“~Y(6,) = 0, it is possible for (3.4) to hold yet nh” to diverge to
=+ oo,

Our proof of Theorem 3.2 provides an expansion of Edgeworth type for the
left-hand side of (3.4); see (6.11) in Section 6. That result may be used to
derive the “optimal” value of C when nh” — C. However, determination of C
by this rule is not really a practical proposition, particularly in view of the
availability of Bartlett correction. (See Section 4.) Therefore, we do not give
further details here.

4. Bartlett correction. It may be proved that if nA” — 0 then
E{1,(8,)} =1+n"'B+o(n™1),

where 8 = 2(8uz%u, — 2p5%u3) and p; = E[G{(6, — X,)/h} — qV. Thus, the
expected values of /,(6,) and its approximate chi-squared distribution differ by
n~!B. It stands to reason that if this error of scale were corrected, then the
chi-squared approximation might be more effective. The striking thing is that
the accuracy of the approximation can be improved by an order of magnitude
by making such an adjustment. Indeed, the main result in this section shows
that if n®h?" is bounded, then the distribution of ,(6,)/(1 + n~'g) differs
from the x? distribution only in terms of order n~2, not just terms of order
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n~1. In practice, B is unknown and must be estimated. To this end, define
n .
A J
a;=n"t ¥ [G{(6, - x,)/n) - q
i=1

and B = 2(34; %4, — 2ii5%42), where éq denotes the usual estimate of 6,. Let
c be the a-level point of the x? distribution, defined at (8.2), and put
d(c,y) = ¢(1 + n~y) where y is either B or B. Our claim is that, provided A
is chosen appropriately, the Bartlett-corrected confidence regions I, ;4. g, and
I, 4, p) have smaller coverage error than I, . This is made clear by our next
theorem.

THEOREM 4.1. Assume conditions (3.1) and (3.3), and define ¢ = c(a) by
(8.2). Then a sufficient condition for

(4.1) P(8, €1, 4e.,) =+ 0(n72),

for either y = B or v = B, is that n3h2" be bounded. Iff"=8,) + 0, then the
boundedness of n3h?" is also necessary for (4.1). Since uy, = q(1 — q) + O(h),
ps =q1 —gX1 — 2q) + O(h) and p, = q(l — gX1 — 3q + 3¢®) + O(h),
then B = B, + O(h), where B, = 5q~ (1 — @)~ (1 — q + g?). It is permissible
to take y = B, when constructing the confidence interval I, 4 ), but this will
not give the same coverage accuracy as y = 3 or y = B, owing to the relatively
large distance between B and B,. In particular, result (4.1) should be changed
to

(4.2) P(oq € Ih’d(c’po)) =a+ 0(n"'h).

From a practical viewpoint, this very simple approach to Bartlett correction
is particularly attractive. Although it does not enjoy quite the same asymptotic
performance as the “full” correction discussed earlier, the simulation study in
the next section shows that it performs commendably well in practice. This is
presumably because the ““full”’ correction is relatively sensitive to bandwidth
choice, and such methods can be rather variable in small samples.

5. Simulation study. Here we summarise the conclusions of a numerical
study designed to investigate the performance of simple rules for selecting &.
Throughout we smooth using a second-order kernel (i.e., r = 2),

»‘ 3 1Ly
K(u)= Z‘/—'g'(].— gu ), lqu,S\/g,

0, otherwise.

This is the so-called Bartlett or Epaneénikov kernel; see, for example,
Silverman (1986), page 42, and Hirdle (1990), page 25. We concentrate on
confidence intervals for quartiles and the median G.e., ¢ = 3, 3, 2), and take
the parent distribution F to be chi-squared with a variety of different degrees
of freedom. We choose nominal coverages of a = 0.90 and « = 0.95, employ a
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variety of different formulae for A and check on the performance of two
different versions of Bartlett’s correction. In the latter we take y = B, and
y = B in the formula for the confidence interval I, 4., ) we do not treat the
case y = 8 since that version is not of practical interest. Formulae for I,
Iy acc,vy Bo and B are given in Sections 2 and 4.

Recall from Theorems 3.2 and 4.1 that when r =2, the bounds h =
O(n=2) and h = O(n~3/%) define the largest h for which the uncorrected
interval has coverage error O(n~1') and the Bartlett-corrected interval with
y = B has coverage error O(n~2), respectively.

Table 1 summarises results for the yZ distribution and the sample size
n = 20. Figure 1 illustrates how coverage accuracy varies over different de-
grees of freedom and different sample sizes. Each point in the table and figure
is based on 10,000 simulations. The chi-squared variables were produced by
adding squares of independent normal variables given by the routine in
Numerical Recipes [Press, Flannery, Teukolsky and Vetterling (1989)].

Table 1 and Figure 1 summarise a larger simulation study that is given in
detail in Chen (1993). The following broad conclusions may be drawn from
those results. First, smoothed empirical likelihood intervals have greater
coverage accuracy than their unsmoothed counterparts, and further improve-
ment is offered by Bartlett correction. Second, the ‘‘theoretical” Bartlett
correction (based on the value B,) performs similarly to the ‘“empirical”

Bartlett correction (using f). Since B, is simpler than B to implement, it is to

TaBLE 1
Estimated true coverages, from 10,000 simulations, of a-level smoothed empirical likelihood
confidence intervals for the qth quantile of the x2 distribution

q 0.25 0.50 0.75

« 0.90 0.95 0.90 0.95 0.90 0.95
h
0 0.874 0.935 0.922 0.973 0.905 0.972
uncorr. 0.884 0.957 0.887 0.956 0.885 0.960
n1 Bo 0.887 0.959 0.888 0.957 0.888 0.961
B 0.891 0.960 0.889 0.971 0.887 0.961
uncorr. 0.883 0.947 0.890 0.949 0.883 0.941
n=3/4 Bo 0.889 0.950 0.894 0.951 0.890 0.942
B 0.890 0.951 0.894 0.951 0.890 0.943
uncorr. 0.895 0.944 0.899 0.948 0.889 0.947
n=1/2 Bo 0.902 0.948 0.903 0.949 0.896 0.949
B 0.903 0.950 0.903 0.950 0.896 0.949
uncorr. 0.890 0.941 0.893 0.944 0.897 0.947
n~1/4 Bo 0.896 0.945 0.897 0.948 0.900 0.951
B 0.897 0.946 0.899 0.949 0.903 0.951
Rows headed ‘“uncorr.,” “B,” and “B” give the uncorrected interval and the Bartlett-corrected

intervals computed with y = B, and y = B, respectively.
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(a) m=3 varying n
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b) n=20 varying m
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Fie. 1. The graphs depict coverage error, given by ¢ = true coverage — 0.95, of smoothed (—)
and unsmoothed (---) 95% confidence intervals for the median (i.e., q = D). In the case of the

smoothed confidence interval, the bandwidth is b = n—3/4 and the Bartlett correction is employed

with y = By. Throughout, the underlying distribution is xZ. Panel (a) illustrates the case where

m = 3 is fixed and n varies; panel (b) illustrates n = 20 and varying m.

be recommended. Third, choices of % in the range n~'/% n=3/% generally
provide quite good coverage accuracy. However, when the underlying distribu-
tion is heavily skewed (e.g., x2), less smoothing than this is desirable.

6. Outlines of proofs.

ProoF oF THEOREM 3.1. Define w; = wl8,) = G0, — X,) — q, and let
A = A(6,) denote a solution of the equation

(6.1) f; w;(1 + Aw;) "' = 0.
i=1

Our first step is to prove that
(6.2) C A=0,(n"2 4 ).

The probabilities p; appearing in the definitions of L(6,) and 1(8,) (see
Section 2) are given by p, = n~1(1 + Aw;)~!. Therefore, 1 + Aw, > 0, and so

(6.3) 1+ aw,] ™' > 1+ l/\lmaxlwil)_l.

Define w; = n‘l):wij for integers j > 1. Let C, denote an upper bound to |G|.
Then C, = C, + q is an upper bound to lw,l, for all i and all k. By definition
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of A,

n
0=rn"Y ¥ {Aw2(1 + rw;,) ™" — w;)
i=1 :

> (1 + Colal) 'w, — lw,,
using (6.3). Therefore, [A|@w, < (1 + C,|AD|w,l, or, equivalently,
(6.4) IAl(@y — Cylw,l) < lw,l.

Observe that w;, — E(w;) = 0,(n"'/?), E(w,) = o(h") and E(w,) =
q(1 — q) + o(1), the second identity following by Taylor expansion. Therefore,
by (6.4),

IA{g(1 - q) +0,(1)} < O,(n"2 + h"),

which gives the desired result (6.2).

Next we develop Taylor expansions of A and [ #(8,). These are a little longer
than are necessary for the present proof. However, the additional details given
here will be needed in the proof of Theorem 3.2.

By (6.1) and (6.2), for each integer j > 1,

0=n"! i wi{l — Aw; + (/\wi)2 - ()\wi)8 + - }
i=1
- i (-0 '@, + 0 {(n12 + hr)j}'
k=1

Solving this polynomial equation for A gives, for each j > 1,

A= B30, + W7 °W,WE + (205505 — BT, )W

(6.5) i 1 o
+ ¥ Ryt + 0,{(n72 4+ h7)T),
E=4
where R, denotes w; ®*~1 multiplied by a polynomial in @,,...,w,,,, with

constant coefficients. Similarly,

lh(f)q) = 2 '_El log(]. + Awl)
A i+2
=2n ¥ ()" "Ww, + O {n(n2 + 1)’
k=1

6.6 — o fm-172  2—-3— —3 ——5—2 _ 1——4— \:—4
(6.6) =njiwy, Wi + W, “wawy + (w2 W3 — 3Wy w4)w1

+ (85 *wsw, — 8W; @3 — 2w; W, wf}

J
— _ j+2
+n ¥ Ryttt + O,{n(n /2 + h7)" 7).
k=5
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The third identity follows on substituting (6.5) into the second identity, and
noting that @, = w, — E(@,) + E(@,) = 0,(n"'/2 + h").

Put u; =E@,) and Z = n""*(w, — ,u,l),u,2 172 Tt is readily proved that
under condition (3.2), Z is asymptotically normal N(0, 1). Furthermore, w, =
pe +0,(1) =q(1 — g) +0,(1), and w; = O,(1) for j > 3. Hence by (6.6) we
have for any k£ > 1,

1,(8,) = nug w2{1 +0,(1)} + O,{n(n 12 + )"}
= (P52, + Z){1 + 0,(1)} + O{n(n~ V2 + )"}

Therefore, since nh’ - 0 for some ¢t >0, 1,(6,) has an asymptotic central
chi-squared distribution with one degree of freedom if and only if n'/Zu, %,

— 0, that is, n'/%u; — 0. Now,
oy = f_w{F(Oq — hu) — F(6,)}K(u) du

= (=R)"(r) Tk FTI(8,) + o(hT).
Therefore, n'/%u; — 0 if nh® — 0; and if f"~1(g,) # 0, then n'/%u; —> 0
implies Rk 0. O

Proor oF THEOREM 3.2. Our starting point is formula (6.6). Taking the
signed square root of the right-hand side, we see that we may write

1(8,) = (n*285)",

where
Si=w; VW, + 3w, *Waw? + (3w2'4w3 - wg w,;)z?f
112——-6-—3 97— —5— — 4——4— \—4
+( 27 Wy W3 + [3Wy "W3ly — 5Wy w5)w1
J
E kwl + U].j
say, where T, denotes w; 2*~V multiplied by a polynomial in @, ..., w, with

constant coefficients, and U,; = O,{(n~/? + h")’*1}. Noting that nh’ — 0 for
some ¢ > 0, a little additional analysis shows that by choosing j sufficiently
large we may ensure that for [ = 1,

(6.7) P(IU,l > n=%%) = O(n"?).

Hence, for x > 0,
P{lh(eq) < x?
(6.8) {

P(—x <n'/%S} < x)

}P(—x Fn?<n'/?S;<x+n"?) +0(n?),

IV IA
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where the inequalities and plus/minus signs are to be taken respectively in
the indicated orders.

The next step is to develop an Edgeworth expansion for the distribution of
n'/2S;. Observe that S; is a function of wj, ..., w;. Denote that function by s -
Put /.Lk=E(wk), /.L=(/.L1,...,/.Lj), u=(u1,...,uj), Vk=L_Uk—,uk, V=
Vy,..., V),

)

.....

6
p(u) =SJ(/.L) + E (m!)_l E dkl ..... kmukl...ukm.
m=1 i

Then p is a polynomial, and p(V) represents a Taylt‘)r approximation to S;

with an error of order n~3:

Sj =P(V) + U2j,

where U,; = O,(n~?). A little additional analysis shows that (6.7) holds for
[ =2, and so

(6.9) P(n'/?8; < x){ i }P{nl/zp(V) <x+n7%+0(n"?).

By painstakingly developing Taylor expansion formulae for the quantities
dy,.. &, and for the cumulants of V, we may prove that the cumulants

~~~~~ m

ki, kg, ... of n'/?p(V) satisfy the following formulae:

by = n'% (1) — tuy®ugn V% + O(n~ V2R + n=?),

ko = 0%+ (315 s = gopz u3)n "t + O(n7'R" + n7?),

ky = O(n~V2"),  ky=O0(n"'h"), k= O0(n"2/2) forlx5,
where

o = kE kdeldsz{(w{h - /J’kl)(w{zz N /J’kz)}

=1+ guy%uipg + (Fug s — fus ' — ams Su,)ud + O(A).

(Details are outlined in tﬁe Appendix.) This allows us to develop a formal
Edgeworth expansion for the distribution of p(V): assuming nh?" — 0,

P{n'?p(V) < x}
(6.10) = ®B(x) — g {bpy (np)” + Bug %, — 2u5 ud)xd(x)

+ (even polynomial in x)¢(x) + o(nh®") + O(n"2),
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where ® and ¢ denote the standard normal distribution and density func-
tions, respectively. Now,

p1 = (=h) (r) Tk fOT(8,) + o(h7),
me=q(1—q) +o(1),
ps =q — 39% + 2¢° + o(1),
ke =q —4q% + 6q® — 3¢* + 0(1).
Hence, for x > 0,
(6.11) P{—x <n'?p(V) <x}
= 20(x) — 1 - n7Y{(r!) 2R3 0(0,) (nh") g7 (1 — q)

+3¢7 11 - q)_l(l —q+ qz)}xqﬁ(x) +o(n~! + nh®).

Accepting that the formal expansion (6.10), and hence (6.11), may be
justified, it follows that (a) sup, nh” < « implies
(6.12) P{-x <n'?p(V) <x} - {20(x) — 1} = O(n~') forall x;
() if fU=D(6,) # 0, then (6.12) implies sup,, nh"” < »; (¢) if nh” > C,0 < C <
o, then
(6.13) P{—x <n'?p(V) <x} — {2®(x) — 1} =o(n~') forx >0
if and only if

(r)) 22F(0,)°C2 + (1 — g + ¢2) = 0.

The left-hand side is strictly positive for all 0 < g < 1. In view of (6.8) and
(6.9), conclusions (a)-(c) continue to hold if, on the left-hand sides of (6.8) and
(6.9), P{—x < n'/?p(V) < x} is replaced by P{l,(6,) < x?). This proves Theo-
rem 3.2.

It remains to check that the formal expansion (6.10) is valid. This may be

done by developing an Edgeworth expansion of the multivariate distribution of
n'/2V, with the form

P(n'?V e A) = @, 5(A)
6.14 m
(619 + 3 0t [ py(x) o, o(x) dx + O(n=D72)
© k=1 A
uniformly in j-variate sets A from any class &/ satisfying
sup @, 5{(34)°} = O(¢)
Ae

as €] 0. In these formulae, ®, 5 and ¢, 5 denote the distribution and density
functions of the N(0, 3) distributions; p, is a polynomial of degree £ + 2 with
uniformly bounded coefficients; m > 1 is any integer; and (dA)? is the set of all
points distant at most & from the boundary of A. Noting that V is a mean of a
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sum of independent and identically distributed random variables, this result
may be proved using techniques from Bhattacharya and Rao (1976), page
192ff, provided we establish an analogue of Cramér’s condition. This result
states that for each & > 0 there exists a constant C(e) > 0 such that for all
sufficiently small &,

sup <1-C(e)h,

|2V tj: Lltyl>e

[ exp{i 5 th(u)k}f(Bq — hu) du
k=1

where i = V— 1 and G(x) = [, ., K(y) dy. The methods used to establish this
result, indeed to prove (6.14), are those given by Hall (1991).

The method of deriving (6.10) and (6.14) is identical to that described by
Bhattacharya and Ghosh (1978), page 443ff. O

PROOF OF THEOREM 4.1. Put B = (31 %, — 215 °u?). Then by (6.10),
P{np(V)2 <x%(1+Bnh)}
= P{—x(l +3Bn" 1Y) < n'2p(V)
<x(1+3Bn" 1)} +0(n7?)
— P(x <) - nuz uded(x) + o(nh¥) + O(n"?)
— P(x? <x) — k¥ (r!) 3f(0,) (1 —q)
+ o(nh?*) + O(n~2).

Therefore, (a) sup, n®h*" < « implies
(6.15) P{np(V)® <x*(1+Bn~Y)} - P(x{ <«®) = 0(n7?) forall x,
and (b) if f"~P(6,) # 0, then (6.15) implies sup, n3h?" < «. In view of (6.8)
and (6.9), these conclusions continue to hold if on the left-hand side of (6.15),
P{np(V)? < x%(1 + pn~ 1)} is replaced by P{l,(0,) < x2(1 + Bn~H).

The case where B is replaced by 3 may be handled similarly, although the
analysis is far more tedious. O

APPENDIX

Calculation of cumulants k,;. In this Appendix we calculate the cumu-
lants &y, k,, ... of n'/2P(V) which were used in the proof of Theorem 3.2. Let
kiviz--ip be the pth-order multivariate cumulants of V= (Vy,...,V)). Ac-
cording to results given by James and Mayne (1962), the ks may be expressed
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as follows:

(A1) by =n"2{S;(w) + 3d,;kY + §d,;,k"* + 2d, ;5 kRM) + O(n™572),
(A2) ky=n{d,d;k" +d,;d k" + (d,;d, + 3dd ;) RURM ) + 0(n72),

ky = n%2(d,d;d, bV + 3d,,d,d REM + 3d,d,d ki ,
+(3d,dyd,, + Sdynd,d,
(A-3) +3d,;dy,d,, + 3d,yd,d, kR + 3d,,, dyd, kITRM R

+(3dijkdlmdn + 3dikmdjldn + dikdjmdin)kijkklkmn}
+0(n=%?),
ky = n?*{d,d;d,d k" + 12d;,d;d,d,, kR

(A.4) +(4dlkmdjdldn + 12dlkdjmdldn)kljkklkmn} + O(n—z),
k,=0(n"¢"2/%),  [>5,

u=p
It may be shown after some calculations that

dy=p; "%+ Spusu, + O(n~V2h" + n=3%2),

dy= =313 + O(n~Y2h" + n=3/2), d, = O(h®"), >3,
dy =315+ O(R"),  dyy= —3p7%%+ O(n"),
d,, = O(h™), for all other second derivatives,
din = —3ms Pug + Sus%%d + O(h7),  diy= —3us %y + O(R),
dig = 3132+ O(R7),  dip = 30352 + O(R7),
d;;, = O(h"), for all other third derivatives.

Moreover, we have

'Y =n"Y (g — u?), EZ =n"ug — piuy),
k'3 = n_l(,Uv4 — M1M3), k22 = n_l(#4 - ,Uvzz),
T = n72(ug — Buipy + 24d), RU2 = n"%(pg — 2u1p5 + 20105 — 43),

R =073y — 203) + O(n72uy), B2 = n3(ug — 2uap,) + O(n"%uy).

Substituting the above derivatives and the multivariate cumulants of V into
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(A.1)-(A.4), we are able to obtain

kl — nl/zsj(/.:,) _ %M§8/2M3n_1/2 + O(n—l/zhr + n—3/2),

ky =0+ (53 %, — 5ens u3)n™t + O(n~ A" + n72),
ky=0(n"12n"), k,=0(n "), k,=0(n"“2/2) forl > 5.
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