The Annals of Statistics
1993, Vol. 21, No. 2, 1071-1092

ITERATIVE WEIGHTED LEAST SQUARES ESTIMATORS*

By JiaHUA CHEN AND JUN SHAO

University of Waterloo and University of Ottawa

In a heteroscedastic linear model, we establish the asymptotic normal-
ity of the iterative weighted least squares estimators with weights con-
structed by using the within-group residuals obtained from the previous
model fitting. An adaptive procedure is proposed which ensures that the
iterative process stops after a finite number of iterations and produces an
estimator asymptotically equivalent to the best estimator that can be
obtained by using the iterative procedure. Theoretical and empirical results
of the performance of the adaptive estimator are presented.

1. Introduction. One of the most useful models in statistical applica-
tions is the following general linear model:

(1.1) Yij=x;B + e, i=12,...,n,, 1=1,2,...,k,

where y,; are responses, x,; are values of a p-dimensional covariate, x;; is the
transpose of x;;, B is a p-vector of unknown parameters and e;; are random
errors. Usually, the e;; are assumed to be mutually independent, E(e;;) = 0
for all i, j, and the variances var (e, j) exist but are unknown and not necessar-
ily equal.

Let 6 = g(B) be the parameter of interest, where g is a known function
from R” to R. If var(e;;) = o? for all i, j, the customary estimator of 6 is the
ordinary least squares estimator (OLSE) given by

kE n; -1 k. n;
0, = g(Bo)7 B, = ( Z Z xijxfj) 121 _leijyij-
i=1j=

i=1j=1

In many situations the errors in the same group, ¢;;, j = 1,2,...,n;, have a
common distribution. For example, x,; = x; for all j and y,;, j = 1,2,...,n,,
are replications. But the errors from different groups, e;; and e;; with i # ¢/,
may have different distributions. Hence o> = var(e;;) are not necessarily the
same. Under such a case, the OLSE may be improved by a weighted least
squares estimator (WLSE)

kn; k '

-1
(1.2) éw =f([§w), éw = ( Z Z wixijxgj) Z WiX;;y;j

i=1j=1 1j=1
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1072 J. CHEN AND J. SHAO

for some weights w; > 0, i = 1,2,..., k. If g2 are known,
3 koom e on

(1.3) 6 =g(B), B = ( Y X o'i_zxijx;j) XX 07 %%,y
i=1j=1 i=1j=1

improves 0 and has some optimality property Since o are unknown, we
need to estlmate o by 62 and use w; = 6,2 in (1.2).

In some situations 02 are related to the x,; jor x, ;B J=12,...,n,
through a smooth but unknown function h, that is, 02 = h(x;y, %;5, . xm )
In these situations o;? can be estimated conSIStently and the resultlng WLSE
is asymptotically as efﬁc1ent as 6 in (1.3) [Carroll (1982) and Davidian and
Carroll (1987)]. However, there are situations where 0% is unrelated to the X,
and therefore this approach cannot be applied. For example in a “common
mean’’ problem [Fuller and Rao (1978)],

Yij = M T e;;.

The o are unrelated to x,; ; since x;; =1 for all 7, j. More generally, in a
“common regression coefficients’” problem [Box and Tiao (1973), pages

478-4179], where for each i,
Yij —x”B+e”, Jj=12,...,n,

is a regression model and we wish to combine the data from % different
communities (batches, days) to improve the accuracy of estimates, the het-
eroscedasticity in o is usually caused by the variation among different
communities (batches, days). In these situations estimators of o> such as the
MINQUE and its modification were proposed and studied in the literature
[Rao (1970), (1973)]. If % is fixed and min; _, n; = «, then these estimators
are consistent and the resulting WLSE is as eﬁ"lment as 6. We confine our

attention to the situation.

supn; <« and £k islarge,
i
which is particularly true if y;;, j = 1,2,...,n;, are repllcations [Fuller and
Rao (1978)]. Rao (1973) proposed a modlﬁed MINQUE of o2, the within-group
average of residual squares

1 ™ o2
(1.4) U(B) = — l(yij_xgjﬁ) ’

l l
where § is an estimator of B. The WLSE constructed by using v, is better
than the WLSE constructed by using the MINQUE or the w1th1n -group
sample variance [Rao (1973) and Carroll and Cline (1988)].

Because of the existence of a large number of nuisance parameters 72,
estimators of o;? are not consistent as # — « and therefore the correspondlng
WLSE is not as efficient as the “estimator” 6 in (1.3). Hence it is still possible
to improve the WLSE. A natural appraoch suggested by many researchers is to
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use the following iterative procedure:

Obtain an estimate of B — obtain estimators of o2 —

(1.5) feedback and repeat.

More precisely, the WLSE after the mth iteration is

1

Eon, -1
(1.6) 0;(0"1) = g(Bfum))> Bfum) = ( Z Z wtg,H)xijxt"j) Z w§m)xijyij,
i=1j=1

i=1j=1
where
wm = [u(BeD)] ", i=1,2,.,k
for m =1,2.... The OLSE Bo can be used as an initial estimator ﬁ}f’, in

which case B is the WLSE proposed in Fuller and Rao (1978).
This raises some interesting questions:

(a) What is the asymptotic distribution of élﬁ,'")Afor each fixed m? .

(b) Is there a finite integer m* such that 6" is the best among 6™,
m=12...7

(o) If such an m* exists but is unknown, when should we stop the iterative
process?

These problems are studied in the present paper. In the case where o are

related to the x;; or x;;8, problems similar to (a)-(c) were studied in Carroll,
Wu and Ruppert (1988), for the small sample case.
Our main findings are the following.

1. It is shown in Section 2 that under some regularity conditions, the WLSE
given by (1.2) with w; = [v;(8)]"* given by (1.4) is asymptotically normal
with mean 6. As a consequence of this result, the WLSE (™ for each fixed
m is asymptotically normal with mean 6 and its asymptotic variance can be
explicitly obtained.

2. It is shown in Section 3 that under some conditions, there exists a finite
integer m* such that in terms of its asymptotic efficiencies, ™" is better
than 0™ for any m + m*. This m* depends on o2 i=1,2,..., %, and
therefore is unknown.

3. An adaptive procedure is proposed in Section 3. Three main features of this
adaptive procedure are: (i) It ensures that for given data, the iterative
process (1.5) stops after a finite number of iterations; (ii) the resulting
adaptive estimator of 6 has an optimality property, that is, it is better than
any B¢ and is as good as the optimal B™" if it exists and is unique;
(iii) an estimate of the asymptotic variance of the adaptive estimator is
obtained.

4. If n, <2 for all i, it is shown in Section 4 that asymptotically the WLSE
cannot improve the OLSE. We consider combining some groups so that
each new group contains at least three observations. The adaptive proce-
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dure can then be applied to the data with combined groups. The resulting
adaptive estimator improves the OLSE in some cases.

5. A simulation study is presented in Section 5. The performance of the
adaptive estimator is shown to be adequate in the simulation study.

2. General asymptotic results. Denote the ¢ X ¢ identity matrix by I,.
Let

€; = (eil’ €igs-- - ein,),’
e=(€,e,...,e,),

)
u; = ee;/n;,

éz = ei/ut’
&= (8,8...,8,),
V.= cov(e;),

V = block diag(V;, V,, ..., V),
X = (%15 %25+ Xy, B
X = (X1, X5,...,X}).

The following assumptions will be used.

AssuMPTION A. There are positive constants, o,, o,, ¢, and c,, and positive
integers n, and n, such that for all i and j,

oI, <Vi<al,, ¢I,<k (XX),

o p —
’
n,<n;<n,, X;j%;j < Coe
AssuMmPTION B. e, e,,...,e, are independent.

AssuMPTION C. There are positive constants d and § such that for all i, j,

E\e;; Zeizj =0,
j=1

n; —(1+8)
Ele;)*™° < d, E( Zefj) <d.
j=1

The first part of Assumption C reflects a certain degree of symmetry of the
error distributions. Without this condition, the WLSE may be inconsistent
[Carroll and Cline (1988), Theorem 3]. .

We first establish a general asymptotic result for a WLSE .
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THEOREM 1.  Suppose that Assumptions A, B and C hold. Let B be given
by (1.2) with w; = [v,(B)]1Y, v (B) given by (1.4) with B satisfying

(2.1) B—-pB=Gy '(A,é + B,e) + 0,(k71?),

where G, = L*_Eu;'X!X,, A, and B, satisfy A, A, = O(k) and B,B) =
O(k). Then

(2.2) B, —B =G (A& +Bye) +o,(kV?),

where

and
(Zn IX;“,‘;X,)

REMARK. It follows from (2.2) that
[Gi15,6:1] 7 *(Bu - B) =4 N(O,1,),

where 3, = var(A,é + B »€)- Result (2.2) was established in Shao (1989a) for
the special case where 8 = BO and e;; are mutually independent.

PrOOF OF THEOREM 1. Let v; = v;(3). Then

k -1y
(2.3) B, — ( ) —IX'X) Z v Xle,.
Note that
vl =uit —ui (v, - uy) +u (v, — u‘)2
2.4 il
R T bij€i; = ni U E 6% + up v (v - u,)’,
Jj=1

where ¢,; = xgj(é - ,B) We now show that

(2.5) E T2 (v — u)  Xle; = 0,(kV?)
and ‘
k n,
(2.6) Ynitui? ) ¢ Xle, = 0,(kY?).
i=1 j=1

For 21 +8) ' <a; <ay<1/2 let

A, = {mm max|e; l > kT, maxix”(ﬂ B)I <k~ “2}
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Let c be a generic constant. On the event A,
v 2 maxle;; —xi;(8 ~ B)/n,
n;
>(1- k"‘l""‘2)2mfxe;2j/ni > (1 — ka—o2)? .Zlefj/n? > cu;
j=
and therefore
uy v (v — u;)? < e(v; — u;)?upd.

Under Assumption A,

n, n, 2
(v; - ui)2 = ni_z[ Y2 ¢ijeij}
j=1 j=1

n, 12 1/2
[ Eaeo el (Ea) ]

< c[lIB - BI* + w8 - BI?],
where || — Bl = (8 — BY(B — B). Consequently, on the event A b

<C(“B Bl & uro2 +[14 - ol z)

i=1

2

k

_9 _ 2
Z u; 2Ui l(vi —u;) Xle
i-1

= 0,(k'?),

since |3 — Bll= O (k™) and max; u; ' < ¢ max; min; e;;® < ck®* = o, (k).
Note that

(2.7) P{A%} <P{max|x”(B B) >k "‘2} + ZIP{maxle | <k~ al}

Since |8 — Bl = 0,(k~1'/%), the first term on the right side of (2.7) goes to 0.
The second term on the right side of (2.7) also goes to 0, since

P{maxle,| <~} < Plu, < k=) < Plu;? = k)
J
< Eui—(l+3)k—2a1(1+5)

and 2a4(1 + §) > 1. This proves P(A,) — 1, and hence (2.5) holds. The proof
of (2.6) is similar.
From (2.4)-(2.6),

;]

k k
(2.8) Z Ui—IXl{ei = Z u;—IXl{ei + 2
i=1

i=1

Z ;'Xje.& X ,-]([3‘—,3)+op(k1/2).
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Following the argument in the proof of (2.5), we obtain that
‘1( i v XX, - Gk) -,0,
i=1
which, together with Assumption A, implies that

E -1
k[( Y ui—lxgxi) - G; -, 0.

ﬁ
. p
i=1

Also, it is easy to see that

( Z n; IXz, €; le Hk) P
Hence the result follows from (2.3) and (2.8). O

Let {A?} and {B{} be the two sequences of p X (*_,n,) matrices satisfy-
ing (ADYAPY = O(k) and (BN BL) = O(k). For any positive integer m,
let

m—1
AP = Y (2H,G ) X + (2H,G Y™ AP
t=0
and

B{™ = (2H,G;')" BY,

where G, and H, are given in Theorem 1. Applying the §-method and
Theorem 1 repeatedly with A, = A¢™D, B, = B¢V, 8 = ¢~V and B8, = B9,
t=1,2,...,m, we obtain the followlng result for the WLSE 60" given in
(1.6).

THEOREM 2. Assume the conditions in Theorem 1 and that (2.1) holds
with B = BY. Assume also that g is differentiable at B. Then for any fixed m,

(29)  {V&(B)Gy'Z¢G; ' [Ve(B)]} X85 - 6) >4 N(O,1),
where 3{™ = Var(A{™é + B{™e).

4
We now discuss some important special cases.

1. When B© = B, (the OLSE), (2.1) is satisfied since
AP =0 and BP =G,(X'X) 'X".

Then for m > 1,

m-—1
AP = Y (2H,G ) X,
t=0

B{™ = (2H,Gy) " G(X'X) ' X".
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2. If ¢;;/0;, for j=1,2,...,n; i=1,2,...,k, are independent and identi-
cally distributed (i.i.d.), n; = n, for all i and if for j # j/,

then H, = n,'G,, G, = p(n,) X'V~ 'X, where p(n,) = 02Eu;?,

mo1( 2 \f 2\"
Y PR E

t=0 \ o 0
2\t 2\" 2 \"
A b e
n, n, n,
and
2 m
B{™ =|—| B,
e[ #
3. If e;;/0; are iid. and for j #j’,
(2.11) Eeijeij,/ui = 0,
then

3(m = AYME(88')(AYYY + APV(BY™) + By(AGYY + ByWV(BYWY.

Note that (2.10) and (2.11) hold if e;;/0; are ii.d. with a symmetric
distribution. Combining (1)-(3), we have the following result. The proof is
straightforward and omitted.

TureoreM 3. Suppose that the conditions in Theorem 2 and (2.10) and
(2.11) hold. Assumethee;;/o; arei.i.d.,n; =n, foralliand B = B,. Then
for any m,

(rg'")/k)‘l/"’(ég,’”) _ 0) -, N(O, 1)’

with
m)y _ p(m) s 1w —1 ,
i =k o(n.) EBXVTIX) Ve (B)
+¢(m)Vg(ﬂ)(X'Xrl(X'VX)(X'X)‘%(B)",
where
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and

9 2m
wom-(2)"

n,

3. The efficiency of the WLSE and an adaptive estimator. We now
study the asymptotic efficiency of ™). For simplicity, we confine our attention
to the situation where n, = n, for all i and e,;/0; are i.i.d. Let

b, = k[ Vg(B)(X'X) "N(X'VX)(X'X) 'Vg(B)]
and
b, = k[ Ve(B)(X'V'X) Vg (BY].

Note that b,/k and I;k /k are the asymptotic variances of (30 and 6, respec-
tively. From Theorem 3, the asymptotic variance of 6™ for a fixed m is

(3.1) k= [“m) by + w(m)bk]/k,

p(n,)

where ¢(m) and ¢(m) are given in Theorem 3:

Lemma 1. When n, > 3,

(i) ¢(m) is strictly increasing in m.
(ii) The function

e(m +1) —p(m)
y(m) —¢(m + 1)

is strictly increasing in m and A(m) - © as m — .

A(m) =

Proor. (i) From the expression of ¢(m), we need only consider the func-

T2 2

4 4
—1— —x, +|— — 1|x2
n n

2

m?

o o
‘

where x,, = (2/n,)™. Since

d 4 4 4 4
—[1l - —x+|—-1|x%|=2|— -1|x — — <0,

dx n n n

o o o nO

when x < 2/3, the function 1 — (4/n )x + (4/n,) — 1)x? is strictly decreas-
ing in x. This implies ¢(m) is strictly increasing in m.
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(ii) Similarly, with x,, = (2/n )",

_ 2 -2 4(xm_xmﬂ-l) 4
som = (1) ey )

which is strictly increasing in m. Finally,

. Xm . 1
lim 3 2 N lim ——————— = o, O
m—® (xm - xm+1) m—o X, + Xm+1

T Xm+1

Using this lemma, we can compare the asymptotic efficiencies of 5,(”"‘),
m =0,1,2,.... Throughout this section we assume n, > 3. The case of
n, = 2 is treated in Section 4.

THEOREM 4. Suppose that b =lim, b, and b = lim, _, b, exist. Then
there exists an integer m* such that

lim r,g"‘*)/fg"‘) <1

k—> oo

for all m with equality holding at most for m = m* or m* + 1.

Proor. Note that
_(m) —g(m+ 1)
p(n,)

From Assumption A, 0 <b < w and 0 < b < «. Since ¢(m) — y(m + 1) > 0,
whether or not lim, _,, 7{"* P /7{™ < 1 depends on the sign of

t(m) = A(m) — p(';")b.

T;@m+ 1) _ T%m)

Ek[A(m) - M]
k

From Lemma 1, #(m) can change sign only once as m increases. Thus, as m
increases, the quantity

]}l_l;I:o (T](em+1)/71(em) _ 1)

will change sign only once. Since A(m) — © as m — « (Lemma 1), there
always exists a unique m* such that

I ”'(em){<1 if m <m*orm>m*+1

im ——

koo T](em) < 1 if m = m* + 1.

This proves the theorem. O

From Theorem 4, in terms of asymptotic variance, 69" is the optimal
estimator of § among 6™, m = 1,2,..., and m* is the optimal number of
iterations. Note that m* can be as small as 0. §(""*? is also optimal if
lim,  (7{™"*D/7{™) = 1, which does not occur frequently in practice.
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In general, b, /bk measures the degree of heteroscedasticity of the model
(1.1), that is, b, /b, is large when o; are very different and b, /b, is close to 1 if
o; are nearly the same (b,/b, > 1 by Jensen’s inequality). Since A(m) is
increasing as m increases, our result shows that the more different the o, are,
the more iterations we need.

The optimal m™* is generally unknown and therefore we need to estimate it
using the data. Let

a, = Z;k/p(no)'
Then, by (3.1),
T = @(m)a, + ¢(m)b,

where ¢(m) and ¢(m) are known and a, and b, are independent of m.
Suppose that 4, and b, are consistent estimators of a, and b,, respectively.
That is,

(3.2) d,-a,—,0 and b, —b,—,0.
Then #{™ = ¢(m)d, + w(m)bk is consistent for 7{™ for each fixed m.

Let 7, = b,/6, and r, = b, /a,. Then, by (3.2),
(3.3) Py =1y =, 0.
Define

M, = min{m: A(m) >, m=0,1,2,...}.

THEOREM 5. Assume that (3.3) holds and lim, _,,r, =r. Let m* be as
given in Theorem 4. Then
(3.4) lim P(rh, = m* orm, =m* +1)=1.

k— o0
Furthermore, if m* is the unique optimum (lim, __ 7{™ */7{™ > 1), then

(3.5) I}im P(f), =m*) =

Proor. From Lemma 1 and the proof of Theorem 4,
A(m*—-1)<r and A(m*+1)>r.
Then
P(h, <m*-1) <P(A(m*—-1) > #,) >0,
since P(r—e>rk)—>0fors~r—A(m 1).
Similarly,
P(h, > m* +2) < P(A(m* + 1) <#,) - 0.
This proves (3.4).
Now assume m* is the unique optimum. Then A(m*) > r and
P(, =m* +1) < P(A(m*) <#,) >0,
which with (3.4) implies (3.5). O
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Result (3.5) indicates that if we stop the iterative procedure (1.5) after i,
iterations, we always stop at the right time when £ is large enough. This leads
to the following adaptive estimator of 6:

b, =00,

This adaptive estimator has the desired optimality property, provided that
the estimators 4, and b, satisfying (3.2) can be found. Furthermore, an
estimator of the accuracy of 6, is

Tr/k,
with
2, = @(hy)a, + w(my)b,.
THEOREM 6. Assume that (3.2) holds.
(i) Ask > o,
P(8, = 6™ or 6, = 85" *P) > 1.
If in addition, m* is the unique optimum, then
P(b, = 65™) - 1.
(i) Let 7* = lim, _,_, 7{"". Then
Fp—7* >, 0.
ProoF. The results follow directly from (3.4) and (3.5). O

In practice when there is a computational limitation, one may force the
iterative process (1.5) to stop after at most M steps, where M is an integer.
That is,

M, = min{m: A(m) > #,,m=0,1,2,..., M}

M if A(M) < 7,

and
(3.6) 6, = 60w,
From the previous proofs, 5a is the best among 5,(”'”), m=0,1,2,..., M.

Estimators ¢, and 3k satisfying (3.2) are needed to carry out this adaptive
procedure. We suggest the use of the following consistent estimators:

ko,
(3.7) 6=k X T (1-hy)(HG7 - 00),
i=1j=1
ko4 Ao A2
(3.8) bi=kY X (1-cy)85-0,),

i=1j=1
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where
_ . —-1,-1 B -1 -1 _ 3
hij =n;y xéj(-’\:i=lvi Xi,Xi) Xijs v; = vi(Bo)7
1 -1
cij =n; x:J(X,X) xij,

657 = g(BS7),

-1
ﬁg’j)=é3)_ (1 ”) ( ZU_IXX) xij(yij_x;jﬁ(u}))
and
B0 = g(BP), B0 = By~ (1= ) (XE) My )

Note that b, is a consistent (weighted) jackknife estimator of b,, the
asymptotic variance of k/%(§, — 0) [Shao (1989b)]. Also, 4, is asymptotically
equivalent to

k -1
k[Vg(B)( )» ui‘lX;Xi) Vg(ﬂ)']

[Shao (1989b)] and hence &, is consistent for b,/p(n,) = a, because of

Eu;' =07%(n,).

In some cases we need to consider simultaneous estimation of 6 = g(g8),
where g is a g-dimensional vector-valued function 8, 1 < g < p. For example,
we may need to set a joint confidence region for several functions of 8. When g
is a vector-valued function, we may need different numbers of iterations for
different components of g, which is undesirable unless we can reduce the
problem to several one-dimensional problems (e.g., applying the Bonferroni
method, we may obtain a joint confidence region for 6 by taking the product of
confidence intervals for components of ). In the following we discuss some
extensions of the one-dimensional results in Theorems 4-6 to the case of
vector-valued g.

We shall use the same notation §0™ = g(B¢™), Vg, a,, b, and 7}2”‘) but now
g and 6™ are g-vectors, Vg is a ¢ X p matrix and a,, b, and 7™ are q X q
matrices. Using the delta method, one can show that the result in Theorem 3
still holds [with N(0, 1) replaced by N(0, I,)]. Since 7{™ is a matrix, we need a
scalar characteristic of 7{™ to measure the efﬁc1ency of 6™, For example, we
may consider a quadratlc loss function used frequently in simultaneous esti-
mation:

L(6,d) = (d - 6YQ(8)(d — ),

where @(6) is a ¢ X g positive definite matrix function continuous at the true
parameter 6. The asymptotic risk function of ™ is

E,L(6,05™) = E,(65 — 6) Q(6)(6y™ — 6) = trace[Q(6) 7™ /k]
= {@(m)trace[Q(0)a,] + z//(m)trace[Q(O)bk]}/k,
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where E, is the expectation under the asymptotic distribution of 80 — 6.
The scalars trace[@(6)a ] and trace[Q(O)bk] can be consistently estimated by
trace[Q(6,)d,] and trace[Q(6,)b,], where &, and b, are still given by (3.7) and
(3.8) (with the square replaced by the vector product). Then the results in
Theorems 4-6 can be directly extended to this case. For example, we estimate
the optimal number of iterations by

trace[Q(éo)l;k]
trace[Q 6, dk] ’

Another widely used measure of efficiency is |1~§2’”)I the determinant of 7{™,
which is also called the generalized asymptotic variance of 0(”‘) We prove some
results similar to those in Theorems 4-6.

M, = min{m: A(m) > =0,1,2,...

THEOREM 7. Suppose that a, — a > 0 (positive definite) and b, — b > 0.

(i) There exists an integer m* such that lim kw(lf,gm*H /1™ < 1 for all
m with equality holding for at most ﬁnztely many m’s.

(i) Let #{™ = o(m)é, + y(m)b, and v, be a minimizer of 7™, that is,
|#"#)| = min,,|#{™)|. Then

(3.9) lim P(h, e M) =1,

k—o

where M = {m: lim, _, (I7{""] /Ir{™)]) = 1}.

Proor. (i) Since a > 0 and b > 0, there exists a nonsingular matrix I’
such that

I'[e(m)a + ¢(m)b]T = o(m)I, + y(m)A,
where A = diag(A;,...,A,) with 0 <A; < -+ <A,. Then

q
Jim || = I0F]e(m) I, + ¢(m)A| = TETT [e(m) +v(m)A.].

Note that
[e(m + 1) + ¥(m + DA,] = [e(m) +y(m)A,]
= [y(m) = ¢(m + D][A(m) -]
and by Lemma 1, A(m) — A, can change sign only once as m increases. Thus
p(m+1) +¢(m+ 1)/\;{< 1 if m <m(¢)
p(m) + ¢(m)A, >1 ifm>m(t) +1

for an integer m(¢), t =1,...,q. Since Xl < Sd,, mD < o <mdg).
Hence

lim

|7m D] (<1 if m < m(1)
k> |T(m)|

>1 ifm>m(q)+1.
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This proves that {11m powolTd™], m =0,1,2,...} has a minimum at some m*
satisfying m(1) < m* < m(q) + 1. Hence the result in (i) holds.
(ii) Since ¢(m) and (m) are bounded,

7™ =, ¢(m)a + ¢(m)b uniformly in m.
This implies (3.9). O

Thus, in terms of the generalized asymptotic variance, 1, in (3.9) can be
used to stop the iterative procedure.

4. Asymptotics for the case of n; < 2. One of the conditions required
for the asymptotic results in the previous sections is that for any i,

n, —-(1+8)
(4.1) E( Y e?j) <d
Jj=1

for some constants 6 and d. This condition is satisfied for most error distribu-
tions if n, > 3 [see Proposition 4.1 in Shao (1989a)]. Often, when n; < 2,
Eu;' = » and hence (4.1) does not hold. Furthermore, Lemma 1 in Section 3
requires n, > 3. Hence the results in the previous sections cannot be applied
when n; < 2. The problem of having Eu;' = » can be avoided by considering

ij=1
and
A 1 % )2
0; = 0,(B) = — (y” xng) + k7
n; -1
since Ea;"' exists for any n;. However, the WLSE with weights w; = 6; ! is

not asymptotically better than the OLSE. More precisely, we have the follow-
ing result,

THEOREM 8. Suppose that Assumption A holdsand n;,=n, =2 foralli.
Suppose also that the e;;/o; are i.i.d. with a symmetrzc denszty which is
positive and continuous at 0. Let Bw be given by (1.2) with w, = ;! and let
B = Bo be the OLSE. Then

(4.2) By,—B=8,—B+o0,(k7V?).

Proor. Under the symmetry condition, when i, # i,, €; X; X' e; /ii, i 2

12 "2
has zero expectation. Let f(x) be the density function of e, /0' Since f is
positive and continuous at 0,

part e [ OOy

1
ey~ [ T s ey = 0Cog k)
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Therefore,

2k
( Y a;'Xle ) = Y Ee X, Xle,/i? = O(kE(efI/ﬁf)) =O0(klogk),

i=1
where the second equality follows from the boundedness of X; and o;. Conse-
quently,

M-

(4.3) i;'Xje, = 0,((klog k)'/*) = 0,(k"/?log k)
i=1
and
k k
(4.4) Z 07 Xje, = ¥ (07" — a; ') Xje; + o,(k/?log k).
= i=1
Note that
k k i .
> (0 (hl ~i_1)Xz{ei = ) (a,5,) Xeee, X,(B— B)
(45) i=1 i=1

k
—1 Y (6,,)  Xrey| X8 - )|
i=1

We show that the second term on the right side of (4.5) is negligible. Let a be
the set of the i’s satisfying

(4 6) max{le,,ll |e,2|} = k_1/2(10g k)1/4

Since max; J[xu(B B = O,(k~"), we may focus on the event of
max; J[x”(B B2 <k Ylog k)1/2/4 Then for each i € @, max; J[x”(B -
B < max; e?;/4 and

A

o, >kt + mJax(yij - xng)2/2

>k 1+ {max ei/2 — max[xij(ﬁ - B)]z}/2
j i,

>k 1+ max e;/8 > u,/16.

Also
- cf (%) f(y)
Eq;%? ~ [(k 11 .2 4 2)3/2 dx dy
(it ek _ e
fo j;’ (1 + kx?+ ky2)3/2 d(Vkx)d(Vky) = O(k'?).
Hence

@) | x.(8 -8 x| xe(@.5,) | < 0,(k~Ha;¥? = 0,(k"12)



ITERATIVE WEIGHTED LEAST SQUARES ESTIMATORS 1087

uniformly for i € a. Let a° be the complement of «. Since [x] J(B B2 <
2(ylj - szB)2 + 281‘],

|x.(8 - )| x| xte(a, ||— (le,ll/, + lle,11/3)
O,(kle;ll) = O,(k*2(log k)'/*)

for i € a®. Let N be the number of elements in a°. Then N is a random
variable w1th binomial distribution having parameters (k, p,). The density of
e;;/0; being continuous at 0 implies that

b= {Ieill < k~2(log k)1/4, le;ol < kB~1/2(log k)1/4} _ O(k‘l(log k)l/z),
Therefore, N = O,((log k£)'/?) and

k
> (a;5,) Xe
i=1

L O0,(k7'%) + ¥ 0,(k?(log k)"/*)

i€a i€a
0,(k'/?) + 0,(k'/*(log k)*'*) = 0,(k'/?(log k)).
From (4.3), (4.4), (4.5) and (4.9), we get

(4.8)

(4.9)

k
(4.10) Z 07 ' Xje; = ) (@,0;) 'Xe,e) . X.(B-B) + 0,(k"?log k).
i=1
Similarly, for i € «,

L (a - o)X, < T (108 - ) + 2leixi(f - p)lxix, | /a

i€a

<clB-BI* X a;2+clf - BI Y a;%? = 0,(k),

i€a i€a

since E@;? = O(k) and Ea;3/? = O(k'/2). We hence obtain

T (a7t - 6;1)X;XiH

i€a®

(a;' -7 ") XX,

1=

l = O,(k) +

= 0,(k) + O,(k(log k)"/*) = 0,(k log k),

because each of %; or ; are larger than =1 From Ei;2 = O(k), we get

2

B| ¥ (art - Ba) X

k
; E(a; Eu‘l) = 0(k?),

L
k
X (a7 - Ba ) XX

l O,(k) =o,(klogk).
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Clearly,

k
ZE”‘IX’ >cklogk.

Therefore,

k 1
_ ~ 1y <1y
= Zvi X; X, Evi Xe;
i=1 i=1

k -1 3
= ( ZEﬁflexi) Y (@;0;) Xl’elelX(Bo_B) +0,(k™V2).
i=1

i=1

Using the same technique as that in establishing (4.10), we can show that
(@,0,)" 'e,€’, in the preceding equation can be replaced by E@; 'I,. This proves
(4.2). O

Result (4.2) indicates that when n; = 2 for all 7, the asymptotic variance of
B("‘) is the same as that of B if B is used as the 1n1t1al estimator. Therefore,
asymptotically 3™ does not improve j, for any m > 1. Despite this asymp- _
totic result, 7 and B, may have different performances for fixed % (see the
simulation result in Section 5).

Note that Theorems 1 and 2 do not require that the within-group errors
have the same variance. Hence we may combine some groups with n; < 2 so
that all the new groups contain at least three observations and then apply the
adaptive procedure.

In some cases there is auxiliary information about variance pattern. For
example, we may consider some physical background: The variances may vary
with time, community, batch, and so on. A general rule for combining groups
is to combine groups with similar variances since combining groups with the
same variance generally increases the efficiency of the WLSE.

Since the adaptive procedure picks the OLSE if the OLSE is better than the
WLSE, the adaptive estimator with combined groups is asymptotically as good
as the OLSE and improves the OLSE when the heteroscedasticity is severe. In
Section 5 we show by simulation that with a correct combining method, the
adaptive estimator with combined groups significantly improves the OLSE and
the WLSE with noncombined groups. -

Another method for improving the OLSE when n; are very small is the
empirical Bayes method. Assuming that the o; is random, Hooper (1990)
proposed the use of empirical Bayes estimators (EBE). He showed (by asymp-
totic theory and by simulation) that the EBE improves the Fuller and Rao
WLSE 5501), provided that we can correctly specify the type of distribution of
the random o;. Similarly, the method of combining groups requires some
auxiliary information about the o;. In the case where n; < 2, it is actually hard
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to improve the OLSE without having any auxiliary information about the
variances.

5. Simulation results. We study by simulation the finite sample bias
and root mean square error (rmse) of the OLSE, one-step WLSE [WLSE(1)],
two-step WLSE [WLSE(2)] and the adaptive estimator (AWLSE). To illustrate,
we force the iterative process to stop after at most two steps so that the
adaptive estimator given by (3.6) with M = 2 is used. We consider a common
mean problem

(5.1) ylj=I.L+eLJ, j=1,2,...,n ,i=1,2,...,k,

o

where k£ = 40, n, = 3 or 4 and e, ;/0; are i.i.d. random variables with common
N(0, 1) distribution. Without loss of generality, we take u = 0 in our simula-
tion. Four models with different variance patterns are considered:

MopEL 1 (Homoscedastic model). o; = 1 for all i.

MobEL 2.

i |1-10 11-20 21-30 31-40
o, | 1 1.5 225 3.375°

MobDEL 3.

i | 1-10 11-20 21-30 31-40
| 0.5 1 2 4

g;

MopEL 4. {o; — 0.1, i = 1,...,40} is a random sample from Beta(0.5, 0.5).

Models 1-4 are arranged in increasing order of heteroscedasticity. To
examine the performances of various estimators in the case where n, = 2, we
also consider the following model:

MopeL 5. Model (5.1) but n, =2, k£ =80. {0, — 0.1, i = 1,...,40} and
{0, — 0.1,i = 41, ..., 80} are two ordered random samples from Beta(0.5, 0.5).

Under Model 5, in addition to the OLSE and WLSE, we also consider the
estimators based on the data with combined groups and denote the one-step,
two-step and adapted estimators by CWLSE(1), CWLSE(2) and CAWLSE,
respectively. Two combining methods are used:

1. Randomly combining every two groups;
2. Combining the ith group with the (40 + i)th group, i = 1,2,...,40.

Note that for the second method, we actually assume that we know that the
variances for the ith group and the (40 + i)th group are close. This allows us
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to see what is the best we can do by combining groups. On the other hand, the
first method (random combining) is the most inefficient combining method and
hence we can see the worst.

The results in Table 1 are based on 10,000 repetitions. In addition to the
biases and rmse’s of various estimators, Table 1 also shows the number of
times (frequency) that AWLSE equals OLSE, WLSE(1) and WLSE(2) in 10,000
repetitions.

The following is a summary of the simulation results:

1. The performance (in terms of rmse and bias) of the adaptive estimator
AWLSE is generally good and is always close to the best estimator among
the OLSE, one-step WLSE and two-step WLSE. In all cases, the biases are
negligible, due to the fact that the OLSE and WLSE are unbiased when the
errors have symmetric distributions.

2. In terms of the rmse, the improvement of the adaptive estimator over the
OLSE can be as large as 48% when the heteroscedasticity is severe.

3. Except for Model 2 with n, = 3, the adaptive procedure picks the winner
with a high probability (in many cases the probability is over 90%).

4. When n, = 2 (Model 5), the WLSE(1) improves the OLSE in terms of rmse
(about 20%). This does not conflict with Theorem 8 which is an asymptotic
(k — ) result. Also, one of the conditions in Theorem 8 is that the ratio
v; = (max; 0)/(min; ¢?) is bounded. In Model 5, however, we find vy, =
118 and v,/k = 1.5 which is not small. Generally speaking, the WLSE(1)
may still improve the OLSE when n, = 2 provided v, /k is not relatively
small.

5. In Model 5, when an inefficient combining method (randomly combining) is
used, the performance of the CWLSE is almost the same as that of the
WLSE. On the other hand, when the groups are combined with some prior
knowledge (the second method), the CWLSE and CAWLSE have very good
performances: They improve the OLSE in terms of rmse (about 45%) and
also improve the WLSE.

TABLE 1
Simulation results b = bias X 10*, r = root mean square error X 102,
f = frequency distribution of AWLSE

Model 1
(n,, k) = (3,40) OLSE WLSE(1) WLSE(2) AWLSE
b —4.6118 —3.8018 —3.8918 —4.4189
r 9.1800 10.1963 11.587 9.3039
9028 660 312
(n,, k) = (4,40) OLSE WLSE(1) WLSE(2) AWLSE
b —17.7597 —17.8325 —7.5796 —-17.1013

r 7.8718 8.7922 9.7372 7.9627
f 9222 703 75
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TABLE 1
(Continued)
Model 2
(n,, k) = (3,40) OLSE WLSE(1) WLSE(2) AWLSE
b 2.6376 —2.0820 —4.1923 —4.7963
r 20.2841 17.8672 18.4310 19.0425
f 3193 4326 2481
(n,, k) = (4,40) OLSE WLSE(1) WLSE(2) AWLSE
b -11.1978 —10.6913 —9.9395 —13.6378
r 17.5123 14.6337 15.1137 14.9461
f 549 6954 2506
Model 3
(n,, k) = (3,40) OLSE WLSE(1) WLSE(2) AWLSE
b 8.9063 —0.0209 —3.2834 —1.8743
r 21.0282 14.0737 12.4129 12.5488
1 200 9799
(n,, k) = (4,40) OLSE WLSE(1) WLSE(2) AWLSE
b -8.1214 —7.5647 —6.5526 —6.4433
r 18.2416 10.6878 9.4770 9.4825
f 0 5 9995
Model 4
(n,, k) = (3,40) OLSE WLSE(1) WLSE(2) AWLSE
b 1.5179 —0.4538 —1.5582 -1.1074
r 6.6878 4.1942 3.5880 3.6581
f 5 112 9883
(n,, k) = (4,40) OLSE WLSE() WLSE(2) AWLSE
b —17.8392 —2.7950 —-0.6531 —-0.6434
r 5.7416 3.1513 2.7081 2.7100
f 0 3 9997
Model 5
Noncombining
(n,, k) = (2,80) OLSE WLSEQ1) WLSE(2)
—2.7945 —-3.4378 -3.6127
r 5.6685 45148 4.0397
Combining method (1)
(n,, k) = (2,80) OLSE CWLSE(1) CWLSE(2) CAWLSE
b —2.7945 —1.6845 —-0.4240 —1.4609
r 5.6685 4.2820 4.2597 4.3298
f 163 4623 5214
Combining method (2)
(n,, k) = (2,80) OLSE CWLSE(1) CWLSE(2) CAW'LSE
b —2.7945 —2.7571 —2.4675 -2.5271

r 5.6685 3.4309 3.1166 3.1293
f 0 74 9926
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