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DENSITY ESTIMATION IN THE L NORM FOR DEPENDENT
DATA WITH APPLICATIONS TO THE GIBBS SAMPLER'

By BIN Yu

University of Wisconsin-Madison

This paper investigates the density estimation problem in the L* norm
for dependent data. It is shown that the iid optimal minimax rates are also
optimal for smooth classes of stationary sequences satisfying certain B-mix-
ing (or absolutely regular) conditions. Moreover, for given B-mixing coeffi-
cients, bounds on uniform convergence rates of kernel estimators are
computed in terms of the mixing coefficients. The rates and the bounds
obtained are not only for estimating the density but also for its derivatives.
The results are then applied to give uniform convergence rates in problems
associated with the Gibbs sampler.

1. Introduction. The focus of this paper is on the uniform or L” rates of
convergence of kernel estimators for dependent data. The density estimation
problem in the L” norm or in the maximum deviation for iid sequences has
been the topic of many papers. Early papers on the consistency and the rates
of convergence of density estimates include Woodroofe (1967), Bickel and
Rosenblatt (1973) and Silverman (1978). Moreover, asymptotically optimal
rates have been worked out for families of smooth densities [cf. Khas’minskii
(1978) and Stone (1983)]. On the other hand, the density estimation problem
for dependent sequences was considered by Roussas (1969) and Rosenblatt
(1970) where the interest was the stationary p.d.f. Yakowitz (1985) considered
the pointwise convergence properties of the kernel estimator for Markov
chains under regularity conditions. In his discussion of Rosenblatt’s (1970)
paper, Woodroofe (1970) raised the question of a uniform rate of convergence
for the same estimator. Roussas (1988) partially answered Woodroofe’s ques-
tion by giving rates of uniform convergence over an expanding compact set for
kernel estimators under general mixing conditions for stationary sequences.
His rates, however, do not match the optimal minimax rates in the iid case. Of
course, those rates might be too fast to be achieved by dependent sequences.

Nevertheless, in this paper we show that the iid optimal minimax rates in
the L® norm are still optimal for smooth classes of dependent sequences
satisfying certain B-mixing conditions. The rates are not only for estimating
the density but also for its derivatives, and they hold uniformly over a compact
set or the entire space, and they hold in probability, in expectation and in the
almost sure sense under increasingly stronger mixing conditions. They are
comparable to Roussas’s under the same type of mixing conditions, but we
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note that Roussas (1988) included results for sequences satisfying weaker
mixing conditions. The convergence results are then applied to give conver-
gence results in problems associated with the Gibbs sampler.

Since the smooth classes of dependent sequences yet to be defined include
iid sequences, iid minmax lower bounds hold for these classes. So the major
work is the achievability. In the iid case, the achievability by kernel estimators
is obtained using mainly Taylor’s expansion. Alternative methods do exist,
however. For a particular smooth family, Pollard [(1984), page 35] demon-
strated how empirical-process techniques can be used to get the optimal rate
(log n/n)"? in the L* norm by a kernel estimator. His method can be
employed to get similar general results as was done by Stone (1983), whose
approach also had an empirical-process flavor. More recently, Nolan and
Marron (1989) unified the consistency proofs of various density estimators
using the empirical-process method, and Pollard (1989, 1990) discussed more
examples, advocating a wider use of this method in statistics.

The approach in this paper is a generalization of Pollard’s empirical-process
method to dependent data by the blocking technique, which was introduced by
Bernstein (1927) and was used in Yu (1990). The main feature of the proof is
that one part of the estimation error in the L™ norm—the uniform difference
between a kernel estimator and its expectation, can be viewed as the supre-
mum of an empirical process over a class induced by the kernel function so
that the empirical-process techniques used in Yu (1990) apply.

The mixing conditions imposed are B-mixing (or absolute regularity
or complete regularity) which was proposed by Kolmogorov [cf. (2.2) and
Ibragimov and Solev (1969)]. It is stronger than a-mixing, but weaker than
¢-mixing. Many researchers have used this definition for various limiting
theorem results, see Volkonskii and Rozanov (1959, 1961), Yoshihara (1976),
Bradley (1983) and Harel and Puri (1989) among many others. B-mixing is
also well understood in a stationary Gaussian process framework. Ibragimov
and Solev (1969) and Doob (1953) gave conditions for Markov chains to be
geometrically ¢-mixing; hence geometrically 8-mixing. For time series models
Pham and Tran (1985) gave bounds on B-mixing coefficients and conditions for
the coefficients to decay geometrically, and Mokkadem (1988) showed that
stationary vector ARMA processes are geometrically B-mixing under mild
conditions (cf. Example 2 of Section 3). Since some results hold only for
B-mixing sequences but not for a-mixing sequences, it is an open question
whether the optimal rates obtained here for 8-mixing sequences will still hold
for a-mixing sequences.

The paper is organized as follows: Section 2 introduces the density estima-
tion problem with some preliminaries for using the empirical-process method.
Section 3 gives the main results (Theorems 3.4 and 3.6): sufficient conditions
for the iid minimax lower bounds in L” norm to be achieved by kernel
estimators for smooth families of B-mixing sequences, and bounds on the L*
convergence rates for given B-mixing conditions. Section 4 is devoted to a
special application of the main results: uniform convergence problems arising
from the Gibbs sampler.
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It should be noted that we do not deal with the problem of data-driven
bandwidth selection for the kernel estimator. Interested readers may wish to
refer to Hart and Vieu (1990), where a modified CV is used to select the
bandwidth for dependent data. Some technical proofs for the results in Section
3 are deferred to the Appendix. The letter C is used throughout to denote a
generic constant whose value may change from line to line.

2. Preliminaries. In this section, we introduce the problem of estimating
the stationary density and its derivatives by a kernel density estimator for a
stationary mixing sequence. We begin with a brief review of the results in the
iid case, and then define smooth classes of mixing sequences. It follows from
the definitions of the smooth classes that the minimax optimal rates in the iid
case are lower bounds for these classes as well. In addition, we introduce an
algebraic growth condition on the size of a class of functions. The need for this
condition will be apparent in Section 3 where we show the achievability of the
iid optimal rates.

Suppose X, ..., X, is a segment of an iid sequence of R.V.’s with a density
function f on 2 in R? where 2 could be either the compact cube [0, 1]¢

or RY Let a =(a;,...,a;) denote a nonnegative integer Il-tuple, [a] =
@, + - +ay, al=a;! -+ ay!. Then for any x € R?% denote x° =
(x$1,...,x5¢), D* =9l fgxfr -+ - 9x5¢ and |x; — x5 = [lx; — x,/l2. Now we can

define the Sobolev smooth class of densities on 2 as follows:
W(sg,ag, D) =aee{f: || <M, D*f(x) absolutely continuous
for any a s.t [a] < s, — 1;and | D*f(x;) — D*f(x,)]|
< Clx; — x,/* forall a s.t [a] = s,}.

For n large, Khas’'minskii (1978) and Stone (1983) showed that, for p =
Sy T ag,

2.1) min max Esup| /(%) — f(x)| > constant
(21) min _ max  Esup|fi(x) ~f(x)

[log n ]p/(2p+d)
where the min is taken over all density estimators based on iid samples
X,..., X,

Now let X =(X,,...,X,,...) be a sequence of random variables with
domain 2 in R¢ B(n) is called the B-mixing (or completely regular or

absolutely regular) coefficient if
(2.2) B(n) = s:pEsup{|P(A|o-(X1, vy X)) —P(A) ;A€ a(Xyins--))

In this paper, we always assume B(n) < O(n~"#), for some r; > 0. Note that
B-mixing is stronger than oa-mixing, but weaker than ¢-mixing, compare
Bradley (1986).

Moreover, for a class % of B-mixing stationary sequences, define -

Bs(n) = sup{Bx(n),X € F}, ry(F) =inf{ry(X):X e F}.
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Thus special smooth families of stationary sequences may be defined as
W (s, @9, 2, 15(W)) = o {X: p.d.f. of X; € W(s9, @0, 2),
and ry(X) > re(W)}
and
W(sg, @g, D,®) =40 {X: p.d.fof X; € W(s,, 0, D),
Bx(n) < Cp%, for some C > 0 and some 0 < p, < 1}.

Obviously the set of iid sequences with their densities in W(sg, ay, Z) is a
subset of W(s,, ag, Z,rg(W)) for all ry(W)>0. Hence (2.1) holds for
W(sg, ag, 2, 15(W)), and the major task left is to show that the rate in (2.1)
can be achieved uniformly over this class under conditions on r,(W).

We would like to use a kernel estimator to estimate not only the density
function but also its derivatives. Let @ = ¥, ,q,D", where the ¢’s are real
constants and g, # 0 for some [@] = m. Suppose we are interested in estimat-
ing Qf(x) = Li4)< nq.,D°f(x). Note that Stone (1983) also showed the optimal
rates for estimating Qf in the iid case to be [n~!log n]?~™/@P+d  which
reduces to (2.1) when m = 0.

Let K(-) be a bounded kernel on B¢ with a compact support and of order g,
namely, K satisfies [K(x)dx =1, [x*K(x)dx =0 for 0 <[a] <gq, and
[x*K(x)dx # 0 for [a] = q, compare Stone (1983) and Devroye (1987). In
addition, assume QK is Holder-continuous, that is, there are C > 0 and a > 0
such that |K(x) — K(y)| < Clx — y|*. Without loss of generality, we may
assume @ = D™; hence based on a stationary mixing sequence X, ..., X, the
kernel estimator with a bandwidth A ,, 0 <k, <1,is

" 1
Ful2) = = T b K (hy (X %)
i=1
and D™f can be estimated by

D"f,(x) =D™{n7! i ho 'K (b (x = Xi))}

i=1
=n 'Y h,™(D"K)(h,(x - X,)).
=1
For a particular sequence %, | 0 to be chosen later, let
G (K,m) ={(D"K)(h,'(x - -)): x € ).

For simplicity, let My denote a bound on both K itself and its derivatives of
order not greater than m. It should be clear that G,(K,0) is the class of
interest if we want to estimate the density itself, because for the L* norm || - ||
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on
|Qf.(x) — Qf(x)]|
<|@f(x) - EQfu(x) | + | EQfu(x) - QF(x)]
1 n
(2.3) =hyt sup |~ ¥ g(X) - Eg(X)
g€G,(K,m) i=1

+| EQf.(x) - @f (x)|.

By the definition of G, (K, m), the first term in (2.3) is measurable and can be
handled by the empirical process method. The second term is not random and
depends on the smoothness of the density function. For simplicity, we intro-
duce a bias assumption for the second term.

Bias assumption of order (p,m). Let & be a class of densities. If there
exists an C 4> 0 such that for any 0 < &, | 0 and the kernel estimator f, with
the bandwidth # ,, for which

(2.4) sup | ED™f,(x) — D"f(x)| < Cy hZ™™,
feF

then we say that (%, K) satisfies the bias assumption of order (p, m).
LeEMma 2.1 [Lemma 2, Stone (1983)]. Iffisin F = Wy(sy, ay, 2), and K is

a kernel of order at least s, then (F, K) satisfies the bias assumption of order
(p =5 +ay,m) form < s,.

To use the empirical-process method, we need covering numbers to control
the size of the class G,,.

DErFINITION (L' covering number). For any distribution 4 on 2 and a
class G, of functions in L'(u), define

Ni(e, 1, G,) = min{k: dg,,...,8, € L'(n) such that
(2.5)

12i2k[|g(x) —g,(x)|du(x) <e,Vge Gn}.
Then the essential condition on the size of a class G, is the following:

Algebraic growth condition. For a class G, of functions and a sequence
e, 10, we say (G, ¢,) satisfies the algebraic growth condition if and only if, for
some positive constant C and w,

(2.6) supNy(e,,n,G,) <C-n®.
"
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The next lemma provides sufficient conditions for the class G, (K, m) to
satisfy the algebraic growth condition so that the empirical-process method
will lead to the desired rates of convergence of the first term in (2.3).

LemmA 2.2. Suppose h, = O(n™¢) for some ¢ > 0 and ¢, = O(n"°) for
some e > 0.

@) If 2=10,11% then (G,(K, m),s,) satisfies the algebraic growth condi-
tion.

(i) If K is a density on R? of the form k(|- |), where h(-) is a monotonic
decreasing function on (0, ), then (G,(K,0), ¢,) satisfies the algebraic growth
condition with g;’s fixed in (2.5); namely, the g;’s are independent of w.

Proor. (i) Since (D™K) is Holder-continuous, V x,, x, € 9, and there is
an a > 0,

C
|ID™K(h;'(-— x,)) — D™K(h;}(- — x,))| < ey — ",
Hence ulK(h,'(:—x)) — K(h;'(- — x,))| < Ch} !x, — x,|* for any distribu-
tion u. Therefore

(2.7) Ny(e,,1,G,) < Ch;de /% < O(ndcre/®),

Note that g,(-) = (D™K)h; (- — x;)) form a set of centers of a fixed covering
of G,(K, m) with x,’s being a grid on 2.

(ii) The following bound holds [cf. page 42 of Pollard (1984)], when the
conditions of (ii) are met (G, (K, 0) is a V-C class):

(2.8) Ny(e,, 1, G (K,0)) < C-e;v. O

ReEMARK. (i) Using the same argument as in Pollard (1984), it is not hard
to see that as long as (D™K)(-) = h(-) in Lemma 2.2(ii) has a bell shape, that
is, monotonic on each side of a fixed point, G, (K, m) will satisfy the algebraic
growth condition.

(i1) Although compact support kernels satisfying Lemma 2.2(ii) can be
found to have orders up to 2 [Devroye (1987)], it is more likely that higher
order kernels are functions with oscillating tails. However, as long as the
kernel (or its derivatives) oscillates finitely many times, we can write them in
the form (D™K)X-) = X!_,h,(-) where h’s are functions of the form described
in the first remark. Hence the covering number for G, (K, m) is bounded by
the product of the covering numbers of classes satisfying the growth condition.
Thus G,(K, m) also satisfies the algebraic growth condition.

3. Kernel density estimation in the L” norm: rates and optimality.
In this section, we give the main results on the kernel density estimation in
the L” norm for stationary B-mixing sequences. There are two -kinds of
results. First, for a given B-mixing coefficient and for 2 = [0,1]¢ or RY,
Theorem 3.4(i) gives a bound on the rate at which the kernel estimator
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converges to the stationary p.d.f. in the L* norm. In Theorem 3.4(ii) and
Theorem 3.6, under conditions on the B-mixing coefficient, the kernel density
estimator is shown to converge to the stationary p.d.f in the L* norm at the
optimal rate. Note that, in the case of 2 = R?, an extra constraint on the
relationship between the smoothness of the density and the dimension is
imposed to obtain the optimal rate.

Let us start with the blocking technique in the form as used in Yu (1990).
For any pair of integers (b,, u,) such that (n — 2b,,) < 2b, 1, < n, we divide
the segment of X,..., X, of the mixing sequence into 2u, blocks of size b,
and a remaining block. Then for b, large, the dependence between the odd (or
even) blocks is weak and therefore the odd (or even) blocks together can be
approximated by a sequence of independent blocks with the same within-block
structure. We choose b, and u, carefully so that the remaining block may be
ignored.

Let (51,...,§bn),(§bn+l,‘..,52,,”),".,(5(2#”_1),,",...,§2H”b”) be independent
glocks such that (&3 .15 €Grip,) =0 Xjp, 415 -+ s Xjr1p,)» for j =

yeees My, — L

For j=1,3,...,2u, — 1 and any uniformly bounded function g, let us

write
Jb,
Zj g= )» g(&;) — b, Eg(£,).

i=(j-Db,+1
For j = 2,4,...,2u,, let us write
jbn

Yie= X &(&) —bEg(&).

i=(G—1b,+1

Furthermore, let

1 1 M Jbn
(3.1) P g==—[b Y X s& +Eg(§1)}-

B 2o, J=1i=-Db,+1
Then P, is a probability measure on 2.
Lemma 3.1. Suppose X =(X;,...,X,,,...) is a stationary B-mixing se-

quence with the mixing coefficient B(n). Then for any uniformly bounded class
G,, of measurable functions on 9, the following holds:

" .
(sup Zg(Xi)_ Zen)
geqG =
3.2
( ) 1 H» €,
< 2P| sup |— ¥ Z; o\ = o | +4r,Bx(b,),
g<G, | j=1 8

provided that b, = o(ne,).
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Proor. For the proof of this lemma, we may assume Eg(X,) = Eg(¢,) = 0,
V g € G,. Denoting Z; , and Y}, the counterparts of Z ;¢ and Y; . depending
on the original sequence X, then

Zg(Xi) = ZZ},g + ZY}’,g + Re,

where Re is the remainder term which can be made smaller than ¢, /3 since
b, = o(ng,) and g is uniformly bounded.

By using u,, times the relationship (III) in Volkonskii and Rozanov (1959),
the total variational norm between the joint distribution of the odd X blocks
and the joint distribution of the odd & blocks is seen to be bounded by
2w, B(b,,). Hence

P(sup|n‘1 ZZ},g| > en/3) - P(sup|n‘1 sz,g| > an/3) <2u,B(b,).
g g

Similarly,

P(supln_1 Yy, | > an/3) - P(supln_1 ZYj’gl > sn/3) <2u,B(b,).
g g

The lemma then follows after noting that Z’s and Y’s have the same distribu-
tion because X is stationary. O

LemmA 3.2, Assume o)’s are iid s.t. P(o; = +1) = 1/2 and independent

of the ¢;’s. Then under the same assumptions as those in Lemma 3.1 we have:
@) If n,EZ? , = O(n’2) uniformly for all g € G,,,
Hp

1
; Z Zj,g

Jj=1

€
(3.3) P|sup > ?" < 4P

g

sup
g

Gi) If p,EZ} , = O(n*h%?) uniformly for all g € G,

1 Bn
n ) 0Z; ¢
j=1

gn
= —|.
12

Mpn
p sgp ;jgl (ij,g - EZJ‘z,g) > b,
(3.4)
1 H» 9 9 h()il
< 4P(s:p ;ngaj(zj’g —EZ} )| = T)

See Pollard (1984) for the proof for the iid case, and Le Cam (1986) for the
general independent case. It should be clear that we can now work with the
independent block sequence {Z; _}.

LemMA 3.3.  Assume X is a stationary B-mixing sequence with the mixing
coefficient B(n), and G, = G,(K, m) satisfies the algebraic growth condition
with the exponent w and the ¢, specified below.
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G) IfryX) > 0,b, =n%0 <b < 1,thenfore, = Co(K, wn " log n}/?
where Cy(K, w) = 788 M2(w + 2),

( sup
g€q,
where C depends only on the class G,,.

Gi) If 2p > d, b, = n® with 0 < b < (2/3)2p — d)/(d + 2p), and ryX) >
d/[b(d + 2p)] + 1, "then for e, = Co(K,w)n""log n1'/2h%/2, we have
sup

=€,
geqG,

<Cn~ 2%+ 2u,Bx(b,) <Cn 2+ 2n'"% - n77b,

- L (X) - Ea(X)

. ) < Cn2 + 2, Bx(b,),

- ¥ #(X) - Ba(X)

(3.5)

Proor. We will only prove (i) here and defer the proof of (ii) to the
Appendix. The proof for (ii) is similar to that for (i) but is more delicate. For
(ii), we will use Theorem 3.2(ii) to replace £Z? , in (3.7) instead of the simple
bound 4562 M2.

(i) When r; > 0, it is easy to check that Lemma 3.1 and Lemma 3.2(1) hold.
Thus it suffices to show

(3.6) P| sup

g

an
nt Y oz | = e,,/lz) <Cn™2
j=1

For any g € G,, |Z; | < 2b, My, since |g| < 2Mg. By Hoeflding’s inequality,

ng

Hn
>g,/241¢’s <2exp( 2-247%-62-n%/4 ) 72,
(3.7) J=1

< 2exp|—p,e2/(1152M2)].

Using a standard empirical process technique [cf. pages 14-15 of Pollard
(1984)], we find
,S)

Kn

ZO’Z

j=1

p

sup |—
g

€ 1 “n €
< _l’p , . Pll= 7. > Tlee
= N( 48> e G”) Y ’n El" ia| 2 gq [ s)

<C-g"- exp(—(1152M§7)_1 ~nl7b. s,zl)
—Cn? if CZ> 1152ME(w + 2).

The last bound is nonrandom; so it is also a bound for the left-hand side of
(3.6). The lemma is proved. O
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THEOREM 3.4. Assume the bias assumption of order (p, m).
(i) Under the same conditions as those in Lemma 3.331):
(@) if rg(F) > 0, then for any 6 < min(ry(5), D,
sup supd|D”‘f(x) - D’"f(x)| < Op([n‘5 log n](p_m)/(2p+2d));
x€R
®) if rg(F) > 0, then for any & < 2rg(FXp + dp + 2d + m +
2r(FXp +d)} 7,
supE sup |Dmf(x) - D’"f(x)| < 0([n“s log n](p_m)/(2p+2d));
xeR?
© ifrg(F) > 1, then for any & < min(ry(&F) — 1, D),
sup sup |Dmf(x) - D’"f(x)| < O([n“s log n](p_m)/(2p+2d)) a.s.
x€R?
(ii) Under the same conditions as those in Lemma 3.3(ii):
(@ if rg(F) > 2p + d)/[32p — d)],
sup sup |D"‘f(x) - D"f(x)] < Op([n‘1 log n](p_m)/(2p+d));
xeR?
(b) if rg(F) > (5/2Xp + d)2p — d)™ ~ (3/2m2p — d)7,
supE sup |Dmf(x) - D’”f(x)| < 0([n‘1 log n](p_m)/(2p+d));
F

x€R?

(©) ifrg(F) > 4p + d)X2p — d) 2, then

sup sup |D"‘f(x) - D’"f(x)l < O([n“S log n](p_m)/(2p+2d)) a.s.
F xeR9

Proor. Recalling (2.3) and under the bias assumption of order (p, m), we
have

lQf.(x) — Qf(x)]

1 '
= pod-m - X,) - Eg(X
(38) " ge;:(llg,m) n i§1g( l) g( 1)
+|EQf.(x) - Qf (x)]
(3.9) < O(h;% e, + RE™™),

where ¢, is the rate from Lemma 3.3.

Under our assumptions, using Lemma 3.3, we can ensure that the rate ¢,
holds in probability, in expectation and in the almost sure sense, respectively.
For the latter two modes of convergence, we will have to use the Borel-Cantelli
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lemma and the inequality
ET < 2MyP(T = ¢,) + ¢,
for T = sup, ln"'L7_;8(X))l.

(i) Lemma 3.3(i) gives &, = O({n~*~® log n}'/2). Apparently the optimal
choice for h, is &./?*9 By choosing b to our advantage, we reach the
conclusions of (i).

(ii) Lemma 3.3(ii) gives &, = O((n"!log n}!/2h%/2). By choosing h, =
O({n='log n}/@rP*+d e prove (ii). O ‘

It should be noted that Lemma 3.3 holds for nonstationary sequences as
well. The next theorem, however, holds only for stationary sequences since a
moment inequality known only for stationary sequences is used. It relaxes the
condition 2p > d in Lemma 3.3(ii), but it requires the g’s found in Definition
(2.5) to be independent of the probability measure p which is the case if
2 =10,1]% and (D™)K is Holder-continuous.

LemMA 3.5. Assume X is a stationary B-mixing sequence with the mixing
coefficient B(n). Let 2 =10,114, b, =n® 0 <b < 1, and let G, = G (K, m). If
b <p/(d+ 2p), and ry(X) > d/[b(d + 2p)]l + 1, then for ¢, =
A(K,w)n log n12he/2, where h, = [n~!log n]'/@P*D we have

> sn) <Cn~ %+ 2u,Bx(b,)

n L g(X,) - Ba(X)

P( sup

(3.10) £<G,

<Cn=2+2n'7%. n7sb,
See Appendix for the proof. The following result is similar to Theorem 3.4.

THEOREM 3.6. Under the same conditions as those in Lemma 3.5, and the
assumption that (&, K) satisfies the bias assumption of order (p, m):

(@) ifrg(¥F)>1+d/p,

sup sup |Dmf(x) - Dmf(x)| < OP([n_l log n](p_m)/(2p+d));
F xelo,1)¢
M) if rg(F) > 2 + (d — m)/p,
supE sup |D"f(x) — D"f(x)| < O([n"*log n]* "),
F xelo, 11
(©) if rg(F) > 2 + d/p, then

sup sup |D™f(x) - D™f(x)| < O([n‘llog n](p_'n)/(2p+2d)) a.s.
T xelo,1°
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Remarks on Theorems 3.4 and 3.6.

REMARK 1. The condition 2p > d is not desirable, but it does make sense.
It says that when we have a density to estimate on the whole space R, to get
the optimal convergence rate, the degree of smoothness of the density has to
increase together with the dimension of the space. When the domain is
compact, however, the condition 2p > d is not necessary.

REMARK 2. For = W(sg, ay, Z,15(W)), and p = sy + a,, Theorem 3.4(ii)
gives sufficient conditions for the kernel estimator to be optimal in probability,
in expectation, and in the almost sure sense, for estimating both the density
itself (m = 0) and its derivatives (m > 0). In addition, under moderately
stronger conditions, the results in (i) are improvements on Roussas (1988) in
two aspects: The restriction that the supreme is taken over an expanding
compact set is removed; and the results here hold for smoother classes.
However, the relevant result in Roussas (1988) does cover the a-mixing case as
well.

Next we use the results just obtained to give the rates of convergence of
kernel estimators for the stationary p.d.f. for the transition density of a
Markov chain, and for the stationary p.d.f. of an ARMA sequence. To ensure
that the B(n) go to zero geometrically fast, one may assume the following:

Hyporaesis (D) [page 221, Doob (1953)].

() There is a probability measure ¢ on R?, an integer v > 1 and a positive
€, such that

P(X,€Alxy) <1-¢ ifo(A) <s;

(i) there is only a single ergodic set and this set contains no cyclically
moving subsets.

Note that if the transition density of a Markov chain is bounded, then (i) is
satisfied [page 193 of Doob (1953)]. Moreover, under (D,), B(n) < O(p") [page
221 of Doob (1953)].

ExaMpLE 1 (Markov chain). Let X be a stationary Markov chain satisfying
Hypothesis (D,). Hence r4(X)= . Assume that the p.df. of X, is in
W(sg, ay, 2), then under condition (a) or (b), we have, for h, =
0((n—1 log n)l/(2p+d)),

(3.11) sup|D™f (x) — D™f(x)| < 0((n‘1 log n)(p_m)/(2p+d)) a.s.
X
(@) 2 =10,1)¢, and K is Hélder-continuous and of order at least So-

() 2 =R if 2p > d, (G(K, m),0),n"/2) satisfies the algebraic growth
condition, and K is of order at least s,.
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Moreover, we may consider the problem of estimating the transition density
f(ylx). Let E be a compact set on which f(x) > ¢, > 0, and let fylx) =
f.(x, ¥)/f.(x), where f.(x,y) is the kernel density estimator with another
kernel K, on R?? with the bandwidth A, = O((n~!log n)/@rP+2d) if we
consider ((Xl, X,),(X,, X3),...) as a Markov chain in R??. Assume the joint
density f(x,y) is also in W(s,, @y, 2). Then under (&) or (b’) given below, we
have

sug sup | f(ylx) — f(ylx)| < 0( “llog n)p/(2p+2d)), a.s.
x€E ye9

(@) 2=100,1]% K and K, are Holder-continuous and of order at least s,.
) 2=R4if p>d, (G (K,m),0),n"'?) and (G,(K,, m),0), n~'/?) sat-
isfy the algebraic growth condition, and K and K, are of order at least s,.

Note that similar results with certain rates have been obtained in Roussas
[(1988), Theorem 4.2] either under p-mixing or under G,-ergodicity.

ExampLE 2 [ARMA process, cf. Yakowitz (1985) and Mokkadem (1988)].
Let {Y(2)}, c ; be the unique sequence satisfying the following ARMA equation:

P Q
Y B(i)Y(t—i)= Y A(k)s(t - k),
i=1 R=0

where B(i) and A(k) are d X d and d X r matrices, B(0) = Id, £(¢) are iid in
R? Ee(t) = 0.
By Mokkadem (1988), if .#(&(¢)) < Lebesgue measure, then

By(n) < O(p™) forsome0 <p < 1.
Hence, if f(y) is the p.d.f. of Y(1) and under (a) or (b) of Example 1, then

supl Fuy) = F()] < O([n—l log n]P/(2p+d))
y

4. A Special nonstationary case: applications to the Gibbs sampler.
The Gibbs sampler or its analogy is now a popular computer simulation
method to obtain samples from distributions which cannot be sampled from
otherwise. See Gelfand and Smith (1990) for a recent review. In this section,
we apply results of Section 3 to the Gibbs sampler related convergence
problems.

We first prove a lemma which reduces the uniform convergence problem for
the nonstationary Markov chain X which arises from the Gibbs sampler to the
same problem for its stationary counterpart Y. Then we give two examples. In
the first one, we obtain interesting convergence results for four estimators of
the marginal density function based on Gibbs sampling, see Gelfand and Smith
(1990). In the second example, the uniform convergence rate of a Gibbs
sampler based approximation to the likelihood ratio function is given [cf.
Thompson and Wijsman (1990)] so that the maximizer of the approximation
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can be shown to be close to the maximizer of the true likelihood ratio function
under some regularity conditions.

Asymptotic stationarity condition. Suppose X = (X,, X;,...,X,,...)isa
Markov chain with the equilibrium density f and the marginal density f, for
X,. If for a norm || - ||

(4.1) I £u(x) = F(x)| < Cr,,
such that r, |0 as n — », we say that X tends to stationarity at rate r, in the
| - || norm.

We say that (4.1) holds geometrically if r, = O(p") for some p < 1. Condi-
tions for (4.1) to hold geometrically can be found in Nummelin and Tuominen
(1982) for the L' norm, in Liu, Wong and Kong (1991) and Schervish and
Carlin (1992) for the relative L? norm, and in Geman and Geman (1984) for
the L” norm in the case of finite state space.

Define Y = (Y,, Yy,...,Y,,...) as the X’s stationary counterpart: the chain
with the same transition probablhty but the equilibrium density the same as
the initial density.

Lemma 4.1. If X =(X,, X,,...,X,,...) is a Markov chain satisfying the
asymptotic stationarity condition (4.1) for the L' norm, then for any bounded
class G, and m,, such that m, = o(ne,),

(sup f (X)) - Eg(Y)) zen)
geq =
< (sup i g(Y,) - Eg(Y,) zg—”)wrm
geq = 4 "

Proor. Since m, = o(ne,), for n large we have

(SUP Z g(X;) — Eg(Y,) Zgn)
geqG =
1 » £,
<P|sup|— ) (&(X;) -~ Eg(V))|=
gEGn n 1,=mn
1 n
<P|sup|— ) (g(Y) Eg(Y, +Cr,,
gEGn n 1,=mn
1 n
<P| sup |- )} (&(Y;) - Eg(Yy))|=—| +Cr,,
g€@G, ni-1

The second inequality holds because the L! distance between the joint density
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of X , X, and the joint density of Y,, ,..., Y, is bounded by

myr e

[|f ( m)f( n+1 )f(xnlxn—l)

_f(x )f( mn+1 Xm ) e f(xnlxn—l)|dxmn T dxn
<Uf=fnlu < O, .

ExampLE 1 (Density estimation from Gibbs sampling). We consider the
Gibbs sampler in the case of two variables (X, Y). It is assumed that it is easy
to sample from the two conditional probability distributions f(x|y)and g(y|x).
To obtain one of the marginal distributions, say f(x), the Gibbs sampler
simulates a joint Markov chain whose limiting stationary marginals (equi-
librium) are f(x) and g(y); namely, it simulates a joint Markov chain
X0, Yo, X1, Yy, ..., X,, Y, starting with some initial distribution f, from which
we can sample, then continue by drawing Y; from g(:|X;) and X, , from
f(:1Y;). We hope to choose f, so that (4.1) holds geometrically.

There are four ways to estimate the density function f(x). The first two are
described in Gelfand and Smith (1990) where iid samples (X}, V),
(X2,Y2),...,(X", Y,") are used.

(a) Mixture estimator: M (x) = A/m)Er, f(x|Y7).

(b) Kernel estimator: f; (x) = (1/m)E7™ b, K(x — X])/h,,).

We would like to take i large so that the marginal density f; of X; is close
to f(x), but in that case a large proportion [the first (i — 1)m of the samples]
is not used. The gain is the independence. This waste of (i — 1)m samples,
however, might not be always necessary since the dependence between succes-
sive samples from a Markov chain is in fact very weak so that we can, as
shown in the previous section, estimate the density asymptotically at the same
rate as in the independent case. Therefore, we can also use the following two
estimators based on n = im successive samples from the Markov chain [cf.
Liu, Wong and Kong (1991) and Thompson and Wijsman (1990)].

(¢) Mixture estimator: f,f”(x) =1 /n)Lt_; f(xIY).
(d) Kernel estimator: £X(x) = (1/n)L7_,h;?K(x — X,)/h,).

When (4.1) holds geometrically for the L* norm, one may take m,
O(log n) in Lemma 4.1 and find

THEOREM 4.2. Assume that Y,,Y,,... has a geometrically decaying B-mix-
ing coefficient, that the equilibrium density f is in W(s,, ay, 2); and that
(0/0x) f(xly) is uniformly bounded in x and y. For n = mi, m,i - © and
under Condition A or B stated below, we have almost surely and in expecta-
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tion,

sup | M (x) - f(x)| <O +0(p'),

x€9

(logm)l/2

log m )p/(2p+d)

- + O(p'),

sup | £%,(x) - f(x)| <O
xe9

R 1 1/2
sup | £(x) ~ f(x)| < 0 °g”) )+0(p”),

n

. logn p/@2p+d)
su%|ff(x)—f(x)|50 - ) )+o(pn).

ConpiTiON A. (i) 2 = R9, 2p > d; (ii) (4.1) holds in the L* norm; (iii) K is
a Holder-continuous bounded kernel of order at least s, and (G, (K, 0), n"1/%)
satisfies the algebraic growth condition.

ConbiTioN B. (i) 2 = [0, 1]%; (ii) (4.1) holds in the L* norm; (iii) K is a
Holder-continuous bounded kernel of order at least s,.

Proor. Note that for any of the three norms employed and for any
estimator f,

I =l <11 f = Efll + IEf = 1.
The uniform boundedness of the partial derivative ensures that the class
{f(x| - ): x € 9} satisfies the algebraic growth condition. Moreover, the results
regarding estimators (a) and (b) are consequences of related results for the iid
case [Stone (1983) and Pollard (1984)]. It is sufficient to show the results for
the estimators (c) and (d).

For estimator (d), one may argue as follows. Under Condition A or B,
Lemma 4.1 holds for m,, = O(log n). Thus we only need to check conditions in
Theorems 3.4(ii)) and 3.6 in Section 3 for the stationary chain Y. By the
assumptions, r,(Y) = . So || fX — £ has the desired order by Theorem 3.4(ii)
or Theorem 3.6 under Condition A or B, respectively. Finally, ||EfX(x) —
f(x)ll. < O(p™) since (4.1) holds with the L* norm.

As to estimator (c), we can mimic the proofs for Theorem 3.4(ii) and
Theorem 3.6. for the new index class G, = {f(x|-): x € 9}. Similar argu-
ments hold if, under Condition A we replace A% in (8.4) by 1 and replace
g, = (n"'log n)/2h%/2 in (3.5) by (n~! log n)'/?; and under Condition B, we
replace 7% in Lemma A3 by 1 and replace ¢, = (n ! log n)*/?h%/? in (3.11) by
(n"llogn)/2. O

ReEMARK 1. It should be clear that we require (4.1) to hold in the L* norm
only to deal with the bias term in the L® norm. Otherwise, L' or L? norms
will do.
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REMARK 2. Although the geometrically decaying assumption of the B-mix-
ing coefficient is implied by Doob’s hypothesis (D,), it is weaker than (D). See
references cited in Section 1 for other conditions under which the geometri-
cally decaying assumption holds.

REMARK 3. Recalling that n = mi, one may note from the convergence
rates that:

(i) If independent samples are to be used, ¢ should be chosen to be of the
O(log n) so that the overall convergence rate is optimal.

(ii) The rates are asymptotically slower for the estimators (b) and (d). The
ratio is roughly i'/? for the mixture estimators and i?/®?*® for the kernel
estimators.

(iii) Observe that (n ! log n)?/@P*® js the best rate possible for (d) by the
lower bound given in Section 1. In addition, the kernel estimators (b) and (d)
can never beat their mixture counterparts (a) and (c) since p/(2p + d) < 1/2.
Intuitively, estimators (a) and (c) take into account more prior
information—the form of the conditional density and they are unbiased when
fo is the equilibrium density; thus they should be better. However, the
performance of these two kinds of estimators in terms of convergence rate
should be similar if p is large, that is, when we have really smooth equilibrium
densities and hence the bias of the kernel estimator is really small. Gelfand
and Smith (1990) showed that the mixture estimator (a) has a smaller variance
than the kernel estimator (b). Liu, Wong and Kong (1991) showed that the
same holds for estimators (c¢) and (d) if one started with the equilibrium
density. Their results, however, leaves the possibility that the variances of (c)
and (d) have the same magnitude. Our contribution is to give a rate compari-
son, showing that the variance of (c) is smaller asymptotically than that of (d)
even when we start with a density other than the equilibrium density. More-
over, it is necessary to compare the estimators in terms of sample-path
behaviors, since calculations and estimations based on the Gibbs sampler often
depend on only one or few samples. Our almost sure result does allow such
comparisons.

ExaMpLE 2 (Maximum likelihood estimation using the Gibbs sampler).
Thompson and Wijsman (1990) use the Gibbs sampler to draw samples
(approximately) from the posterior distribution in complex genetics models and
then use the Monte Carlo method to approximate the (relative) likelihood ratio
function. The MLE is then found from the approximate likelihood ratio
function based on the Gibbs sample. A valid concern is whether the conver-
gence rate of the approximate likelihood ratio function at different parameter
values is uniform. If not, the maximizer of the approximate likelihood function
could differ greatly from the maximizer of the real likelihood function. There-
fore, the approximation could cause a bias in the maximum likelihood estima-
tion. As an application of our previous results, we give sufficient conditions for
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the approximate likelihood ratio function to converge uniformly to the true
(relative) likelihood ratio function.

Thompson and Wijsman’s (1990) setup may be briefly described as follows.
Let 0 denote the parameter of interest (say segregation or linkage parameters),
let Y be the incomplete data (say the observed phenotypes of a pedigree), and
let X be the complete data (say the unobserved genotypes of the same
pedigree). The goal is to find the maximum likelihood estimator of 6. First of
all, we have to evaluate the likelihood function L(6), or to the same effect,
evaluate the (relative) likelihood ratio function #(6, 8,) = L(6)/L(8,) for some
fixed 6,. Thompson and Wijsman (1990) observed that

£(0,00) = L(0)/L(8,) = Lpo<y,x)/poo(y,x) dP, (xly);

hence #(6,60,) is the expectation of a function of X with respect to the
posterior probability distribution of X given Y at parameter value 6,, which
can be approximated by its sample mean provided that we could draw samples
from the posterior. Since one cannot sample directly in the case that Thomp-
son and Wijsman considered, they proposed to use the Gibbs sampler to
calculate an approximation #,(6, 6,) of the likelihood ratio #(6, 6,) based on a
Markov sample X!, X2, ..., X" which converges to the posterior of X given Y
at parameter value 6,:

1 N .
tn(0,0,) = N Z qo(X7),
j=1

where q,(*) = po(y, - )/Pe(¥s * ) = Pe(y| - ) /Do (¥| - ) X Pe(-) /Py () With the p’s
denoting the given conditionals and marginals from the model.

THEOREM 4.3. Let the parameter space ® be compact, let (3/30)p,(x) and
(9/30)p,(ylx) be uniformly bounded over ©, and let (4.1) hold geometrically in
the L norm. Furthermore, assume Hypothesis (D). Then the approximate
likelihood ratio function ty(0) converges uniformly over the parameter space to
the true likelihood ratio function t(8) at a rate not slower than (log N/N)'/2,
where N is the sample size of the Markov chain sample from the Gibbs
sampler.

Proor. Note that (a) Gy = {g,(*): 6 € ©} satisfies the algebraic growth
condition because of the assumed boundedness of the partial derivatives; (b)
B(N) = 0(p") (rﬁ = o) by (D,). Then the arguments for estimator (c) in
Theorem 4.2 apply here. O

REMARK. In light of Theorem 4.3, let n be the sample size of the observed
data X, suppose 5,, is the unique maximizer of the target likelihood ratio
function #(6,6,), 6* is the true parameter, and a(n)(é,, - 6*) has a
limiting distribution _# for some a(n) — «, for example a(n) = Vn . Let 5,\,’,,
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be a maximizer of ¢,(6, 6,), then one has

(4.2) tx (O 00 00) = tn(B,,0,).
Hence

0 < t(B,,00) — t(6,n, 6,) < (tN(éN,n,oo) - t(@N,n,oo))

~(tn(0,,00) — t(6,,65))

<2 sup |tn(8,00) — £(8,8,)| = O((log N/N)'?).

Because O is compact and 0 is the unique maximizer, by a subsequence

argument, BN , goes to 6, as N tends to infinity. Moreover, when #(6, 6,) is
quadratically dlfferentlable around the maximizer 0 , then there is a ¢ > 0
such that

(8,,60) = £(6,60) = cllo = 8,I°

for 6 in the neighborhood or 6,. Because for N large BN,,, is close to 6,, one
has

cllby, , = 0,11% < ¢(8,,80) — t(by, .. 0o) < O((log N/N)'?).
Thus IIBN I 0 Il < O((log N/N)/%).
Let_us take N(n) such that N/a**®(n) - » for some small § > 0, then

a(n)(0N . — 0%) has the same limiting distribution . Hence all asymptotic
inferences based on the limiting distribution of 0 should apply to the Gibbs

sampler estimate 0N .- Finally, we refer to Geyer (1992) and Geyer and
Thompson (1992) for related work on MLE and the Markov chain Monte Carlo
method. In particular, they proved the consistency of the approximate MLE
under weaker conditions using analytic methods.

APPENDIX

Here we provide proofs for Lemma 3.3(ii) and Lemma 3.5.
The proof of the following lemma can be found in Ibragimov and Linnik
[(1971), Theorem 17.2.1] or Dehling and Phillip [(1982), Lemma 3.1].

LemMma Al. If X is a-mixing, then for t,s,q > 1, satisfying 1/t + 1/s +
1/q = 1, we have

(1) |EX, X, - EX,EX;| < 15¢'(j){E|X, - EX,I*}""* - (EIX; - EX,17)"/".

Recall that

G (K, m) = {(D”‘K)(xh_ ’ ):x < 9},

n

where h, = (n~!log n)'/@+2p),
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Observing that for g€ G(K,m) and fe &, gl <My, |flI<M and
Eg(X,) = E/(D™KX(x — X)/h,)| < Ch%, it is easy to see that, for r > 1,

(2) Eflg(Xl) - Eg(Xl)lr < Chi.

Lemma A2. If X is B-mixing, with b, = nb, and r, > d/[b(d + 25)] + 1,
then

() EZ?, < Cb, - k% uniformly over g € G(K,m) andj = 1,..., u,.
Gi) If X is also stationary, then EZ}', < Cb. - h%' uniformly over g €
G, (K, m) and for all integers | > 1.

Proor. Since (ii) is a direct consequence of (i) by a result of Ibragimov
(1962) when stationarity is assumed, it suffices to prove (i). Denote v = Eg(¢,).

(3) EZ}, = Z E(g(g) —v)' + Z E(g(&) —v)(g(&) —v).
i=(j—-1b,
Since ¢’s are B-mixing and hence strong mixing, by Lemma Al,
|E(g(£&) = v)(8(&) — v)| < 15C"a/!(li — k) - R51/5H/ D)
= 15C"a/!(i)hdd-1/D,

(4)

Combining (2), (3) and (4)
EZ?, < C'b,h? + 15C" ¥ al/4(li — kl)hda=1/0
i*k
b"
< C'b kY + 15C'b, Y V(i) RIA-1/D(4).
i-1
If r, > d/[b(d + 2p)] + 1, we can choose ¢ > 1 such that

b,

Eal/t(L)(n_.llog )(d/t) [1/(d+2p)] 0(1)
i=1

Hence (i) is proved. O

LemMA A3. Ifb, = n®, h? = (n"!log n)?/'*2P) then under the following
conditions (a) or (b) and for n large, we have
Mn

-2 O'J'(ij,g - EZJ'z,g)

Jj=1

P > h

n

sup
g

(@) 2p >dand 0 <b <(2/3)2p — d)/(d + 2p);
(b) X is strictly stationary, 0 < b < d/(d + 2p), and the g’s in Definition
(2.5) are fixed and independent of .

) < Cn~2.
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Proor. Recall that

Kn Jbn

1[ 1
F.(&) =33 > Y g(&) +Eg(é)|.

Mo j=1;=(-1p,+1

Let

P,(g,8)=P,(lg —gl), foranyg,g' € G,(K,m).

By repeated uses of the triangle inequality and |a? — b?| < |a — bl(la| + |b]), we
have

1 Hn

1 Mp
n )y "j(zjz,g - Ezjz,g) T Azl‘fj(zjz,g’ - EZJ'Z,g’)
j=

< anM}{PM(Ig' - g.
j=1

Hence, for §, = h% /4 Mb,, we can find g,’s, such that

o
)y UJ‘(ZJ‘Z,g - EZJZ,g)

j=1
<N(5,,P, ,G,(K,m))

P| sup|—

g

> h‘f,lg}S)

X max

lstsN(S,L,PMn,Gn(K,m)) > 8t

n

- X o(2, 521, =

1 ’
5 Ifjs

1
< supN(§,,u,G,) max P > Eh‘ilgﬁs)

m <t<N

Mg ( J> 81 EZ2 )

2 1
o — d|¢gr
<C(s,) " max P||— jz‘,:loj(zﬁgt ~EZ?,)| = Ehnlgjs)‘

However, for any g € G, (K, m), and any integer [/ > 1,

1
> Eh‘ilf}s

1 Hn
" AZl‘Tj(ZJZ,g - EZJ'Z,g)
j=

221
NCE

Setting T' = L#»,0(Z?, — EZ? ))*, then E, T = ):k PP § LEST S ¢ )
where k,,(T) is the 2k th cumulant of T. Since the o’s are 1ndependent

Mp

2l
]21 ) Ea’s(JZ ‘Tj(ij,g - EZJZ,g)) .

j=1

My

1220
kop(T) = .ZIKZk(O‘-i(ij,g - Eij,g)) = AZIsz(‘Tj)(Zj%g - Eij,g)) k‘
Jj= Jj=

Obviously, (Z% , — EZ? ))?** < (2M2b?)?*. Hence
J> 8 J, 8 K%n

1k 1 N
P n Zzhd|§j8 Scthlnzl(bnlJ“n) <C Wh2d |

- X o'j(ij,g - EZJ'Z,g)
J=1 n
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The last quantity is bounded by Crn~2 by choosing ! large enough provided

that (a) holds. Thus the lemma is proved under (a).
Under (b), the proof is a little more complicated. We need to invoke Lemma

Eg'sE(r’sq 2 =< C Z Ef's]: I ( j, 8 - J‘»g)) g
i=1;

m 9 2 21,
max  ET(22,-EZ%,)) "

Observe that, by Lemma A2(ii) and the independence of Z; ,’s, uniformly over

g’s, we find
E nm Z? —EZ? )21" < Cb2!p2id
k=1( r & jk,g) = nttn -

Thus E, E, T% < Cul b2 h%°.
Because the g,’s are fixed, we have
1

1 #» C
P ’; .Zlaj(zjz,g - Eij,g) 2 Eh(i) <Cs,” Wﬂ’nbilhfd
J= n

(5)
[ b?l ‘|21

<Cé % —=
" | nhd

Now under (b) we can take / large enough so that {62/(nh?)}?>' < Cn~2 for n

large. O

Let
1 MHn
n Z (ZJZ,g - EZJZ,g)

d
<hS},
Jj=1

B, = {f}s: sup
g

then Lemma A3 shows that P(B¢) < Cn~2. On the other hand, on B,, we

have

Kn ‘
Y EZ},+h% <0

1 1 1
- Y7}, < — (—,L,, b, hd + hz) < Che.
n n nj n

Hence, by the Hoeffding inequality and recalling that
B Jbn

P/J,"g = (bnl““n)vl Z Z

J=li=(-Db,+1

g(fz) + Eg(fl)’
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we find
1 120 gn ,
I =P|sup ;_Zaij’g 2§§jseBn
-1 Jj=1
N[t P a Pl Y oz Cn B
< _ —_— N/ > — . €
B (16’ b ”)12331\1 n | & | =g o € Ba

Cle,) " 2 enn [1 5 72
< . -9 — — <
= Cle,) ~ max - 2exp| — o n =

<C(e,) *-2-exp

e2n
"~ 512-Che |’
Taking C, > 512C[wp/(d + 2p) + 2], we obtain I < O(n~2). Hence, for n
large and under (a) or (b) in Lemma A3,

1 &n £,

—8— <P Slglp ;JE:IO'J*Zj,g Zg NnB, +P(Bn)
<0(n"?) +0(n"%) =0(n"?.

Therefore, Lemmas 3.3(ii) and 3.5 are proved after checking that the follow-

ings hold for our choices of b, ¢, and k, in the lemmas: (i) b, = o(ne,); (i)

w,EZ?, = o(n’2); and (i) u,EZ} , = o(n?h%?). O

En

P| sup >

g

1 Hn
n Z 0;Zj,g
Jj=1
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