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RENORMALIZING UPPER AND LOWER BOUNDS FOR
INTEGRATED RISK IN THE WHITE NOISE MODEL:

By Mark G. Low

University of Pennsylvania

Renormalization arguments are used to derive optimal rates of conver-
gence, under integrated squared error loss, for parameter spaces having a
certain rectangular structure.

1. Introduction. Many functional estimation problems arising in density
estimation and nonparametric regression are easier to analyse in the following
white noise model:

(1) dX, = f(t)dt +odW, 0<t<1, feF cLyo0,1],

where W, is Brownian motion.

Many results which might be difficult to prove in the density estimation or
nonparametric regression context take on a more transparent form in this
white noise model. A sample size of n in the density estimation and nonpara-
metric regression problems corresponds to o, =0/ Vn in (1) when o is
suitably chosen. In particular the tools of rescaling developed in Low (1992)
and Donoho and Low (1992) and the hardest one dimensional subfamily
arguments of Donoho and Liu (1987, 1991) have yielded a fairly complete
picture of how to estimate both bounded and unbounded linear functionals on
the basis of observations generated by (1). A separate literature is developing
to show how to replace density estimation and regression problems by the
corresponding white noise problems. See, for example, Low (1992), Brown and
Low (1990) and Donoho and Low (1990).

In this paper we focus attention on estimating the entire function f on the
basis of the observation scheme given by (1), using integrated squared error as
a measure of loss. In particular we shall let R(F, o) denote the minimax risk
under this loss function. That is,

(2) R(F,0) = inf supE [ ( f(x) - 3(x))" dx,
8 ferF 70

where the infimum is taken over all procedures 6.

For elliposidal parameter spaces such as F = {f: [}f x)dx <1, f(0) =
f(1)}, a fairly complete analysis has already been given for the asymptotic
minimax risk R(F, o) as o | 0 by Pinsker (1980) and Efroimovich and Pinsker
(1982).
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578 M. G. LOW

In this paper we derive upper and lower bounds for the minimax risk
R(F, o) for nonellipsoidal parameter spaces satisfying certain renormalizable
properties. In particular, as shown in Examples 1 and 2, this framework
includes parameter spaces consisting of functions with derivatives satisfying a
uniform Lipschitz condition. These examples are not covered by the analysis
given in Efroimovich and Pinsker (1982). This work may therefore be viewed
as an extension of the use of invariance ideas to global estimation problems,
although in the present context the renormalizing structure is more involved.
We use invariance in this paper to accomplish two goals. First we show how
optimal rates of convergence for estimating an entire function can sometimes
be derived just from the renormalizing structure of a parameter set F. Second
we use invariance to reduce the calculation of lower bounds for global estima-
tion to a single hardest one dimensional subfamily argument similar to those
analysed in detail by Donoho and Liu. In this way we can find lower bounds for
the minimax risk involving constants and not just rates. Upper bounds for the
minimax risk can be given in terms of the corresponding pointwise estimation
problem as has been shown in Gasser and Miiller (1979). As an example we
compare upper and lower bounds for a class of functions with a uniformly
bounded derivative.

The results of this paper should also be understood as part of an ongoing
effort to find general techniques for bounding the minimax risk in nonpara-
metric problems. See, for example, Donoho and Johnstone (1989). One contri-
bution of this paper is to show how to connect local problems to global
problems.

2. Rescaling properties of F. Throughout this paper we always assume
that F ¢ L,[0, 1]. However we can also extend any f € F to a function, which
we shall also call f, with domain (— o, ») by defining f(x) = 0 for x & [0, 1].
Hence we shall allow function evaluations at points outside the closed interval
[0, 1] and always take the value to be zero. In the assumptions and theorems
which follow we write [T']~ for the greatest integer less than or equal to 7" and
[T]* for the smallest integer greater than or equal to T'.

In a previous paper [Low (1992)], we showed how optimal rates of conver-
gence for estimating a function at a point can be derived from invariance
properties of the parameter set F. In particular we required the space F to be
invariant under particular scale and dilation transformations. In other words
we needed to assume, for appropriate choices of a and b, that the map
f(t) - af(bt) is a bijection on F. For the problem of estimating the entire
function the renormalizing structure we need is more-inyolved.

AssumpTioN 1 (Lower bounds). For lower bounds we assumeé that we have
a collection of parameter spaces F; such that for each T € [1, «):

(@ If feFr and if x & (0,1/T), then f(x) = 0, where (0, l/T) denotes
the open interval {x: 0 <x < 1/T}.
(b) If f€Fy and if 0] < 1, then 60f € F.
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(0) If f, € Fy, then g(¢) + LT} ~1 6, f(t — i/T) € F where g is some fixed
function not depending on the choice of f;, 16;| < 1,1 <i <n.

(d) ¢:[1,o) > (0,) is a function such that if T € [1, ), then the mapping
f@) - f(Tt)/$(T) is 1 — 1 and onto from F, to F.

REMARK. Assumption 1(a), (b) and (¢) taken together allow us to give a
lower bound for estimating f € F in terms of a lower bound for estimating a
single f € F;. Assumption 1(c) is essential and the most restrictive of the
assumptions. It gives a certain ‘“‘rectangular’ structure for the function space.
See, however, Donoho and Johnstone (1992) where renormalization ideas are
used to yield optimal rates of convergence over certain Besov spaces. Assump-
tion 1(d) captures the renormalizing structure, needed to replace the problem
of estimating f € F; by the problem of estimating f € F, but with a different
value of o. Details are found in Lemma 1 and Theorem 1 given below.

AssumpTioN 2 (Upper bounds). For upper bounds we assume that we have
a collection of parameter spaces F7, T' € [1,®) such that the support of any
function f € F! is contained in the interval [0, 1] and:

(a) FcCFL.

(b) ¥:[1,0)y (0,) is a function such that if T' € [1, ©) then the mapping
f(t) - f(Tt)/y(T) is 1-1 and onto from F! to FT. It follows that if f < F7,
then f(x) =0 for x €[0,1/T].

(c) If fe F! thenfor i =0,1,...,[T] — 1thereis an f7 € F7 such that
fT@)=fG/T +t),0 <t <1/T andif f € F!, then thereisan f € F7 such
that fT®) =fQ1 - 1/T+1),0<t<1/T.

ReMARK. If the functions ¢ in Assumption 1(d) and ¢ in Assumption 2(b)
are the same, the upper and lower bounds derived in the next section are of
the same order and yield optimal rates of convergence. Compare Theorem 1
and Theorem 2 in Section 3.

ExaMPLE 1. Write f/(x) for the jth derivative of f. Let
F(k, M) = {f:[*"(x) = *7(9)| < Mlx -y,

(3)

Take

(4) Fy(k,M)=F(k,M)n{fI|f/(0)=f/(1)=0,j=0,...,k—1}

and take

(5) Fi(k, M) = {f:|f*""(x) = f*7' ()| = Mlx -},

Let ¢: [1,] > (0,%) and ¢: [1,%] — (0, ) be defined by ¢(¢) = ¢(¢) = t* and
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take g = 0. Define F;, and F7 by

[Ty
(6) Fp= {qf)(T) i fe Fl}
and
Froy
(7 FT={¢(T):f€F}.

Then Assumptions 1(d) and 2(c) are by construction satisfied. Once we note
that
d*=' f(Tt) T* ! 1
= k(Tt)y = f* (Tt
dtk—l ¢(T) Tk f (T) Tf ( )

it is easy to check the remaining conditions given in Assumptions 1 and 2. We
leave the details to the reader. We shall return to this example at the end of
Section 3.

ExampLE 2. We now give an example where we do not take g =0 in
Assumption 1(c). Let

(8) F(M)={f:0<f'(x) <M}.
Take
M M
® R - {f-g @) <5 (0 =11 -0)
and take
(10) Fi(M) = F(M).

Then if we let ¢(¢) = y(¢) = t, take g(t) = (M /2)t and define F; and F” by
(6) and (7) it is easy to check that Assumptions 1 and 2 are once again
satisfied.

3. Upper and lower bounds. Assumption 1(a), (b) and (c) given in the
previous section enable us to give lower bounds for the minimax risk R(F, o)
in terms of the minimax risk for a single bounded normal mean problem. The
analysis combines invariance ideas with hardest one-dimensional subfamily
arguments due to Donoho and Liu (1987, 1991). Let us denote by p(d, o) the
minimax risk for estimating 6 on the basis of X ~ N(8, 02), where 10| < d.
Then )

(11) p(d,o) = inf sup E(0 — 8(x))°.
3 |gl<d

Explicit values of p(d,o) were first given by Casella and Strawderman

(1981) for d /o < 1.01, where it was also shown that

(12) p(d,0) = o[ %.1).
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Extensive tables for d /o < 5 can now be found in Brown and Feldman (1990),
and Donoho, Liu and MacGibbon (1990). In the following lemmas and theo-
rems when we refer to the white noise process we shall always be referring to
the process given by (1). We also write || fllz for the L, norm of a function f,

I £1I5 = JFt) dt.
Lower bounds.

LEMMA 1. Suppose we observe the white noise process and that the parame-
ter spaces Fp satisfy Assumption 1(a), (b) and (¢), then

(13) R(F7U) = Sup[T]—R(FT’U)’
T
where
(14) R(Fp,0) = supo p(”f”2 )
feFp o
and hence
I £l
(15) R(F,0) > sup sup [T] & p( )
T feFy

Proor. LetF, ={f,: f,=f+ g, f <€ F}. Then if X, satisfies (1), it follows
that Y, = X, + fog(s)ds satlsﬁes

(16) dY,=fg(t) dt + o dW,.
Hence
(17) R(Fg,a) =R(F,o0).

We may thus without loss of generality assume in Assumption 1(c) that
g =0. Now fix T € [1, ©) and suppose we observe

[T] -1 ;
(18) dX, = 2 f(t——)dt+(rth,

where f; € Fy for i = 0,...,[T] — 1. Then, since X!} "' fi(t —i/T) e Fit
follows that

(T17-1 i )
(19)  R(F,0) = inf sup Ef( T f,.(t - 7) —f(t)) dt
> ) [T]" -1 G+1,T i . 2
(20) =inf sup ) E| (ﬁ(t - —) —f(t)) dt
f fi€Fp i=0 i/T T
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Now for a prior » on Fp write R(Fj, o, v) for the Bayes risk in estimating
f under loss [&/T(f(¢) — f(t))? dt based on

(21) dX, = f(t) dt + o dW,,

where f € Fy.

Then, since observing (18) is equivalent to observing [T']” independent
experiments of the form (21) we have (by putting independent priors » on each
of these experiments)

(22) R(F,0) > [T] R(Fp,o,v).

Now since the minimax risk is the supremum of the Bayes risks we have
sup, R(Fr, o,v) = R(F;, o) and hence

(23) R(F,0) > [T] R(F;,0),

(13) is established by taking sup; in (23). Now fix f € F,. By Assumption
1(b), 6f € Fy for all |0] < 1. Hence

(24) R(Fy,0) = infsupE [ (6f(t) - (2))" dt.
f o 0

Now for each f(¢) we may define 6(¢) by

(25) a(t) () =£(t).
It then follows from (24) that

(26) R(Fp,0) > i{lfsupE(fl/T(Of(t) — 8 (1)) dt).
6 ] 0
Let 6 = [6(¢) f%(t) dt/ [f %(¢) dt. Then
fOl/T(of(t) —8(2) F(1)) dt = f()l/Tf2(t)(0 —G+6- é»(t))2 dt
- /Ol/T,ﬂ(t)((e —6) + (6~ é(t))2) dt.
Hence
@) [N0r@) - ) (o)) de= [TH(0f () - 6f(2)) .
0 0
We can thus replace the infimum in (25) by an infimum over § which yields
(28) R(Fy,0) = | fll}inf sup E(6 — 6)
6 0

Now note that § = [f(£)X(d¢) is sufficient for 6 and S/ FI13 ~ N6, a2/l £113).
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It then follows by (11) and (12) that
. - 2 o
inf supE(6 — 0) =p(l,—-)
6 o I £l

7iz° e

(30) R(Fy, o) 202p(||f||2 1).

’
g

and combining (28) and (29) yields

Now take sup, c s, to yield (14). Equation (15) follows immediately from (13)
and (14). O

If in addition to the assumptions imposed in Lemma 1 we add Assumption
1(d), then bounds on the minimax risk R(F, o) can be given in an even more
convenient form which is especially useful for asymptotic results as o | 0. An
example of such an application is given at the end of this section.

THEOREM 1. Suppose we observe the white noise process and that the
parameter spaces ¥ satisfy the assumption given by 1, then

(31) R(F 7 )>[T]_- L pE, o)
THT)] T T eXT) T

and

(32) R(F, o) > sup sup [T]_(rzp(ﬂﬁ—z— 1).
7T 0 feF, VT o(T)’

Proor. Consider the model

(33) dX, = f(t) dt + W, feF,.

VT (T) ¢

Write E' for expectations taken with respect to this model. Since f(¢) —
f(Tt)/¢(T) is 1-1 and onto from F; to Fy, (33) can be replaced by the model

i) o
= o 4 Tem ¢

Write E? for expectations taken with respect to this model. It then follows

(34) dX, W, feF,.
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that

R(FT, W(T)) = inf sup Elf(f(t) —f(t)) dt

f feFp

. NHCORCONk
e f( oy ~ |
-t e ey (0 ~feo

Now in Low (1992) it was shown that the model given by (34) is equivalent as
an experiment to

(35) dX, = f(t)dt + 0dW,  feF,.
In particular it follows that
inf sup Ez(f( £(t) - f(1))° dt) — R(F,, o)
f feF

and therefore

(36) R(F,,0).

o 1
R|F =
( r \/T¢(T)) T$*(T)
Finally Lemma 1 showed that R(F, o) > [T]"R(F;, o) and so
o _ 1
AP frgery | (70 ey R

and the proof of (31) is complete.
Now it follows from (31) that

[ry

RE0) = 5= gy

R(F,,0VT ¢(T))

and (14) of Lemma 1 yields

R(F,,oVT ¢(T)) > 25&7‘&(7‘),;(%,1).
Hence we have
(37) R(F,0) > sup [T]‘a2p( 71l )
feFR \/__‘f’(T)
and (32) follows on taking sup, in (37). O

Upper bounds. Upper bounds for the minimax risk can be derived from
invariance ideas similar to those used in Lemma 1 and Theorem 1.
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THEOREM 2. If the parameter spaces F7 satisfy Assumptions 2(a), (b) and
(¢), then

(38) R(F 7 )< 71’ R(F, o)
"VTY(T) )]~ TyX(T) T

Proor. Let &7 be the collection of estimators f(t) such that for i/T < t <
G+D/T, i=0,...,[T]"-1, f(#) is a function only of X,, i/T <t <
(i +1)/T and for 1 — 1/T <t < 1, f(¢) is a function only of X,1-1/T <
t < 1. Then

R(F,0) < R(F',0) = inf sup E [ (f(t) - (1))’ dt.
f fert 0
Now by restricting attention to estimators in the class 8, it immediately
follows that

[T] -1

R(FLo) < inf sup | ¥ E["7(f(t) - f(2)) at
fedr feFt\ i=o0 i/T

+E[1‘_1/T(f(t) ~f(&))’ at

[T1" -1
< Y inf sup Ef
i=0 feér pepr "i/T

1 A 2
+ inf sup E t) — £()) dt.
il f;lfl fI_I/T(f( ) = f())

(i+1)/T(

F(t) - £(£))" dt

Now by Assumption 2(c), for each i = 0,1,...,[T] - 1,

inf sup £ [ ;; YITCR) - £(2)) dt < inf sup E [O YIF) - f(e)) at

fedr feFt i feFT

and
. 1 A 2 . 1/T N 2
inf sup E f(t) — f(t)) dt < inf sup E f(t) —f(¢)) dt.
feér feF? '/;—1/T( 2 ( )) f feFT j;) ( () ( )

Hence since [T'] + 1 < [T']" it follows that

R(F,0) <[T]" inf sup E["(f(2) - f(1))" dt
feér fefT "0
= [T]" R(F7,0).
Then

(39) R(F, ﬁ(T)) < [T]+R(FT, #(T))
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Now an argument essentially the same as that used to show (36) in the proof
of Theorem 1 yields

(40) R(F.,0).

R(F r o ) _ 1
"VTy(T)) Te(T)
The proof of Theorem 2 immediately follows on combining (39) and (40). O

Upper bounds can also be given in terms of corresponding results for the
pointwise estimation problem. In the following theorem we write R(F,x, o)
for the minimax risk for estimating f(x). That is,

(41) R(F,x,0) = inf supE( f(x) — 8(x))%,
8 feF

where the infimum is taken over all procedures & based on the white noise
model (1).

THEOREM 3. Suppose we observe the white noise process (1), then
(42) R(F,0) < [ R(F,x,0) dx.
0

If in addition for each ¢, 0 < ¢ < 1 the map
(43) £(£) > f((¢ + ¢) mod 1)
is a bijection on F then
(44) R(F,0) <R(F,x,0) = R(F,0,0).
Proor. Given ¢ > 0, let §,(x) be an estimator such that for each x

supE(f(x) — 8,(x))" < R(F,x,0) +.
f
Hence

s1;pf()1E( f(x) - 8‘9(x))2 dx < j;)l[Sl;pE( f(x) - 86(9c))2 dx

= ['R(F,x,0) dx ++.
0
Since ¢ is arbitrary we have proved (42). Now if F satisfies the translation
invariance condition given by (43) it immediately follows that
(45) R(F,x,0) = R(F,0,0) Vxe[0,1],
(42) and (45) taken together yield (44). -
ExampLE 1 (Continued). As remarked earlier Theorem 1 is especially

useful for application to asymptotic problems as o | 0. We now give a concrete
example to show how this can be done.
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Write F(M), F(M) and FY(M) for the class of functions denoted earlier by
F(1, M), F(1, M) and F(1, M) in (3). In other words,
F(M) = {f:[0,1] » R: [ f(x) — f(y)| < M |lx — yI, (0) = f(1))}
and
F(M) =F(M) n{f:[0,1] = R: f(0) = f(1) = 0}
and
FY(M) = {f:[0,1] > R: | f(x) — f(y)| < M |x — y1}.

Furthermore if we define F (M) = {f(Tt)/T: f< F (M)}, then the as-
sumptions of Theorem 1 are satisfied and yield

_ Il
(46) R(F(M),o) = sup sup [T] (rzp(—f3—52,1).
T feF(M) oT

Note that the function p(x, 1) is an increasing and continuous function of x
and hence the right-hand side of (46) is equal to

feF(M)
o e

sup | fll2
supm-azp( ,1)
T

Now the function g defined by

| Mx, 0<x<1/2
8(*) =\ma-x), 1/2<x<1,
belongs to F(M). Moreover it is clear that for any f e F(M), | f(x)| < g(x)

for all x. Hence
2

1
sup IIf1I3 = [ g2(x)dx = —.
feF(M) ];) 12

We may thus replace (46) by

(47) R(F(M),O’)ZSlql'p[T]_0'2p(W—3—];\.{T—3/—2,l).

If we put d/2 = M/(2V3 ¢ T3/?), then T = (M /(3"/2 d¢))?/? and
M2/3 d

(48) R(F(M),O’) > sgp[W] g-zp(—2—,1).

Analysis of (48) is made easy by an analysis of the functional
sup, d°p(d/2,1) given in Donoho and Liu (1987). In our case @ = —2/3 and
Donoho and Liu (1987) show that

d
(49) sup d“z/Sp(E,l) — 0.283.
d
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Let d; be the value of d attaining the supremum in (49). Then 0 < d; <
and

M\
Now [(M /(3Y%ad))*/3]1 = (1 + o(DXM /(3'/%0d,))*/® and hence
(51) liminf o~/ °R(F(M), ) > 0.196M*",

It is also easy to see how Theorem 2 can be used to find upper bounds for
the rate of convergence. Set o = 1/T3/2, then Theorem 2 shows that

(71"

R(F(M),o) < e TzR(Fl(M) 1)

(52) (1/0)*? +1
<——R FY{(M),1).
< Lo RPN,

Hence

(53) limsup o~ *3R(F(M), o) sR(Fl(M),l).

ol0
(51) and (53) taken together of course yield o~ %2 as an optimal rate since

R(FY(M),1) < », In this example Theorem 3 can be used to give a more
explicit bound since

R(F(M),o0) <R(F(M),0,0)
and we may bound R(F(M),0,0) from above by using the optimal linear

estimator for this pointwise problem, essentially given in Sacks and Ylvisaker
(1981) and Donoho and Liu (1987), yielding, for sufficiently small o,

2/8,4/3
R(F(M),0,0) < —55—
Hence
M2/3
(54) 0.196M*” < limsup o~ *°R(F(M),0) < —775 -

ol0

It is possible to improve on the upper bound in (54) by using an upper bound
given for the minimax risk for an ellipsoidal parameter space considered by
Pinsker (1980).

Let P(M) ={f:[0,1]1 >R, J} f’Z(x) dx < M2, f(0) = f(1)]. Then F(M) ¢
P(M) and Pinsker showed that

1/3
. -4/3 ) - 2/3
1171?(1)0 R(P(M);0) _——(277)2/3M

= 0.424M?/3,
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Hence

0.196M?/% < limsup ¢ */3R(F(M), o) < 0.424M?%/3.
ol0

The ratio 0.424/0.196 = 2.16.
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