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CONSISTENCY AND LIMITING DISTRIBUTION OF THE
LEAST SQUARES ESTIMATOR OF A THRESHOLD
AUTOREGRESSIVE MODEL!

By K. S. CHAN

University of Iowa

It is shown that, under some regularity conditions, the least squares
estimator of a stationary ergodic threshold autoregressive model is strongly
consistent. The limiting distribution of the least squares estimator is
derived. It is shown that the estimator of the threshold parameter is N
consistent and its limiting distribution is related to a compound Poisson
process.

1. Introduction. Recently, there is much interest in nonlinear time se-
ries analysis. See, for example, Tong (1987) for a review on some recent work
on nonlinear time series analysis. One of the most interesting nonlinear time
series models is the self exciting threshold autoregressive model (SETAR) or
sometimes just called the threshold autoregressive model (TAR). The SETAR
model can exhibit many nonlinear phenomena such as limit cycles, jump
resonance, harmonic distortion, modulation effects, chaos and so on. Specifi-
cally, the SETAR model is defined as below:

Xn = Y (apptaux, + -
l<i<m+1
(1.1)
tap,x,_,+ ce)I(ri_1<x,_4<r1),
where —o=r,<r < '+ <r,,; =; a;/’s are scalars; c/s are positive

numbers; m and p are nonnegative integers and d is a positive integer; e,, is
ii.d., zero mean, of unit variance and independent of the past x,_;, %, _o,... .
The parameters r;’s and d are called the thresholds and the delay, respec-
tively. Heuristically speaking, x, is generated by one of the m + 1 “linear”
mechanisms according to the level of x,_,;. See Tong (1983) for an introduc-
tion of the SETAR model.

Here, we only consider the case m = 1. Then, (1.1) becomes

Qo+ @y1X,_1+ " +a,x,_, +ce,, ifx, ;<r,

(1.2) =, = Aoy + Ao X + - 4a,,x + c,e if x >r
20 21%n-1 2p¥*n—p 2%n>» n—d ’
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where r =r;. Let A; = (a;,a,;,...,a,,), i = 1,2. Throughout, it is assumed
that A, # A,, r € #, d < p and p is known.
Given the data {x,, x;, xo,..., x5} generated from (1.2), the parameter

6, = (A}, A,, r,d) can be estimated by the method of conditional least squares
(CLS). In this paper, we consider the properties of the CLS estimator. Suppose
(x,,) satisfying (1.2) is ergodic. In the case when r and d are known, it is not
difficult to show that the estimators of a’s are consistent and asymptotically
normal. In practice, r is unknown and needs to be estimated. For the case
p =d =1, Petruccelli (1986) proved that 7y, the CLSE of r, is strongly
consistent. In Theorem 1, we show that, for the case of arbitrary p, the CLSE
Oy of 6, is strongly consistent. Next, we consider the limiting distribution of
0, for the case when the autoregressive function is discontinuous. Then r is
the location of the discontinuity of the autoregressive function. In Theorem 2,
it is shown that 7y is N consistent and N(7#y — r) converges weakly to a
random variable M _, where [M_, M) is the unique random interval over
which a compound Poisson process attains its global minimum. (For details,
see Section 2.) Furthermore, 7y is asymptotically independent of (A,y, A,y)
and the asymptotic distribution of the latter is equal to that in the case when r
is known.

The organization of the paper is as follows. The main results are stated in
Section 2. The proofs of Theorems 1 and 2 are given in Sections 3 and 4,
respectively.

2. Main results. Let #= %U {—»,o} be equipped with the metric
5(x,y) = |larctan(x) — arctan(y)|. Thus % is compact. The parameter space
is B2 x #x(1,2,...,p} equipped with the product metric. A general
parameter in Q) is always denoted by 6 = (B, Bj, z,q) and the true parame-
ter 6, = (A, A,, r,d).

Some further notation to be adopted throughout: E,(-|-) denotes the
conditional expectation assuming 6 to be the true parameter; all summations
are, unless stated otherwise, from n = p to N; statements involving random
variables are meant to hold a.s. The CLSE 6y = (A, Ayp, Ay, dy) is any
measurable choice of 8 € Q) which globally minimizes the (conditional) sum of

square errors function

(2.1) Ly(6) = T (%, — Eo(,IF,_,))’,

where F, is the o algebra generated by {x,, x;, ..., x,,}. The minimization can
be done in two steps. First, for fixed z and q, Ln(6) = Ly(B,, By, 2,q) =
L.n(By,2,q) + Lyy(By, 2,q), where L N(By,2,q)=X(x, — B;-Z,)* and
Lyn(By,2,q) =X"(x, —By-Z,)% Z, = (1,%,_1,%,_5,...,%,_,); - stands for
inner product; ¥’ denotes summation over all n such that x,_, <z and X’
summation over the remaining n’s. Let L;5(-, 2, q) be globally minimized at
B;n(2,q), i = 1,2. However, Ly(B,y(z,q), Byy(2,q), 2, q) has only a finite
number of possible values. In general, there are infinitely many 6 at which
L,(-) attains its global minimum, the one with the smallest z and g can be
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chosen as Oy. In Theorem 2, ()N is assumed to be defined in this manner. We
can estimate c¢? by é? = N(ALN, Pyrdn)/N;, i = 1,2, where N, = YI(x,_g,
si"N)andN2=N—N -p+ 1

The first main result obtained in this paper is the following theorem.

THEOREM 1. Suppose that (x,) satisfying (1.2) is stationary ergodic, hav-
ing finite second moments and that the stationary distribution of
(x4, %g, ..., x,) admits a density positive everywhere Then, 6y is strongly
consistent, that is, Oy — 0, a.s. and so are é2 and &

REMARK A.

() If max; ¥la;;| <1 and e, is absolutely continuous with a pdf positive
everywhere, then the conditions in Theorem 1 hold. See Chan and Tong (1985)
for some general sufficient conditions for (x,) to be stationary ergodic. In
general, the problem of determining the region of stationarity, say Q5, of a
TAR model is still open. For p = d = 1, the problem is however completely
solved. Then the conditions on the a’s can be weakened to a,; <1, a5 <1
and a;;a4 < 1. For details, see Chan, Petruccelli, Tong and Woolford (1985).
Note that QS is a proper subset of the parameter space ().

(ii) Even if 6, € Q5, 8, need not be in Q5. However, if 6, is an interior
point of Q5, Theorem 1 implies that P(§y € O5) » 1 as N — o,

(iii)) Without the assumption of x,, being stationary ergodic, Theorem 1 may
not be true as shown by the following.

ExampLE 1. Let p = d = 1 and consider

(2.2)

x. = allxn—l + en’ lf xn—l < 0’
n a9 X,_1+e,, ifx,_;>0,

where e, is iid., zero mean and E(le]) < +ow. If a, > 1, then (x,) is
transient. See, for example, Petruccelli and Woolford (1984). Specifically, if
%o > 0, then there is positive probability that x, > 0 for all n. Therefore,
strong consistency of 6 is impossible.

Next, we study the limiting distribution of éN‘ Let
X, = (%, %, 1, Xp_pr1) -

Then (x,) is a Markov chain. Denote its [-step transition probability by
P!(x, A) where x € #F and A is a Borel set. The following set of regularity
conditions will be required later.

ConpITION 1. (x,) admits a unique invariant measure m(-) such that 3 K,
p<1LVxeRP Vned|Px, - )—m()| <KQ+ |x|)p", where | - || and
| - | denote the total variation norm and the Euclidean norm, respectively.
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CONDITION 2. e, is absolutely continuous with a uniformly continuous and
positive pdf. Furthermore, E(e?) < cc.

ConpITION 3. (x,) is stationary with its marginal pdf denoted by =(-).
Also, E(x2) < .

CONDITION 4. The autoregressive function is discontinuous, that is, 3
=(1,2,_1,2,_2,---,29) such that (A; —A,)-Z*+0and 2,_,=r.

Some remarks on the above conditions will be given after the statement of
Theorem 2. Suppose Conditions 1-4 hold, then it follows from Theorem 1 that
d ~ = d eventually. Hence, with no loss of generality, assume d is known. To
describe the limiting distribution of #y, consider two independent compound
Poisson processes {LD(2), z > 0} and {£L®(2), z > 0}, both with rate w(r),
L®0) = L®(0) = 0 a.s. and the distributions of jump being given by the
conditional distribution of {; = (A; — A,) - Z (2cie, + (A, — A,) - Z,) given
x,_q=r_ and the conditional distribution of ¢, =(A; — A;) - Z,(2cee, +
(A, - A) - Z,)given x,_; = r,, respectively. The former condltlonal dlstrlbu-
tion is the llmltlng conditional distribution of {; given r — 8§ <x,_4; <r as
6 10 and the latter that of ¢, given r <x,_; <r + & as § | 0. The existence of
these limits as well as some of their properties stated below follow from
Condition 2 and a result in Neveu [(1965), page 124]. It is worthwhile to note
that although the stationary univariate marginal distribution of x, has a
continuous pdf, the pdf of a finite dimensional distribution of (x,) is possibly
discontinuous over a number of hyperplanes. These facts can easily be deduced
from the invariant equation which the stationary density has to obey. Note
that both distributions of jump have positive means and are absolutely contin-
uous. So the two random walks associated with the compound Poisson pro-
cesses tend to +o a.s. Hence 3 a random interval [M_, M) on which the
process {LMD(—2)I(z < 0) + L®(2)I(z > 0), z € &} attains 1ts global mini-
mum and nowhere else. [We work with the left continuous version for L(-)
and the right continuous version for £®(-).]

THEOREM 2. Suppose Conditions 1-4 hold. Then N(#y — r) converges in
dlstrzbutwn to M _. Furthermore, N(fy — r) is asymptotically independent of
VN(A,y — Ay, A,y ~ Ay) and the latter is asymptotically normal with a
distribution same as that for the case when r is known.

REMARK B.

(i) Geometric ergodicity of (x,) only requires that ||P"(x, ) — w(:)|| =
O(p") for some p < 1. [For a discussion of geometric ergodicity, see, e.g.,
Nummelin (1984)]. Hence, Condition 1 is stronger than geometric ergodicity.
However, it is shown in Chan (1989) that if (x,,) satisfies an appropriate drift
condition, then Condition 1 holds. Indeed, if Condition 2 holds and
max,_; , L?_,la;;| < 1, then Condition 1 obtains and E(x;) < . This follows
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from the discussions in Chan and Tong (1985) and Chan (1989). For p = 1,
the above condition on the a’s can be weakened to a,; <1, ay,; <1 and
a;,09, < 1.

(ii) Condition 2 entails that (‘) is absolutely continuous with its pdf
bounded away from 0 and « over each bounded set. This follows from the
invariant equation for the stationary distribution of (x,) given in, for example,
Chan and Tong (1985). It is clear that w(-) is the marginal distribution of the
first coordinate of (x,,). Hence () is positive everywhere.

(iii) Under Condition 4, r can be considered as the ‘“location’ parameter of
the discontinuity of the autoregressive function. For i.i.d. observations, statis-
tical inference of the location of the discontinuity in the density function is
considered in, for example, Chernoff and Rubin (1956). See also Chapter V in
Ibragimov and Has’minskii (1981).

We conclude Section 2 by mentioning two areas of future research. It would
be interesting to have efficient methods to compute the percentage points for
the limiting distribution of 7. Another problem is to work out the limiting
distribution of the CLSE when the autoregressive function is continuous.

3. Strong consistency of the CLSE.

Proor oF THEOREM 1. We consider the simple case that ¢, = ¢, = o,, the
proof for the general case being similar and hence omitted. Then (1.2) becomes
31 @yt apx, 1+ - tax, ,+e,, ifx, ,<r,
. x, = .
(3.1) n Qoo+ A%, g+ 00 tag,x, ,t+e, ifx, ;>r,

where e, is i.i.d., zero mean and of finite nonzero variance = g2. Consider the
following decomposition of a summand of L ,(6):

(3.2a) (%, — Ey(2,1F,_,))" = R1,(8) + Ry,(6) + Ry,(6) + Ry(6),

where

(3.2b) R.,(8) = (%, — By Z,)’I(x,_,<2 %, q<T),
(3.2¢c) R,,(0) = (%, — By 2,)I(x,_,<2z,%,_4>T),
(3.2d) R3,(8) = (x, — By Z,)I(x,_,> 2, %, _g<T),
(3.2e) R,(0) = (%, = By 2Z,)I(%,_y> 2, %,_q>T).

Substituting (3.1) into (3.2b), we get

R, (0) =ell(x,_,<2z,%,_4<71)+2e,(A —B)) Z,I(x,_,<2,%,_ 4<T)
(3.3) +((A, = By) " Z,)°I(%,_, <2,%,_g<T)

n—q —

= $32(0) + $52(0) + $5.(6),
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where, for example, ¢{(0) = e2I(x,_, <z, x,_4 < r). ${*)(6) could be defined

n—q —

analogously so that R,,(0) = L3_, ¢{*X0).

LEmMMA 1. Let U denote an open neighborhood of 0. Suppose that the
conditions in Theorem 1 are satisfied. Then for each 6 € Q, V j=1,2,3,
VEk=1,234,

(3.4) E( sup |¢%(6%) — ¢4(0) |) as U shrinks towards 6.
0*eU

We postpone the proof of this lemma and first see how it could be used in
showing the strong consistency of 6. This is done in three steps.

StEP 1.

Cram 1. 3 7 > 0 such that, for N sufficiently large, 6y, liesin Q, = {§ € Q:
lz —r|l <7} as.

We now verify Claim 1. Let V={0 € Q: |A, - B,/ =1,i=1,2} and ¢ > 0
to be determined later. From the compactness of V and Lemma 1, 3
{0,,0,,...,0,} CV and a finite partition {@;, @, ..., ®Q,,} of V such that, V ¢
andV1<k<4V1<j<3,

(8.59) 5 sup |4200) - a0 ) <
and hence,
(3.5b) E((g&@’f}(e)) > E(68(6,)) — e.

Note that ¢{(0) = ¢R(8), dRO) = |A;, — B,1¢§%(0") and ¢R(6) =
|A, — B,1°¢6$R,(8") for some ¢, 6” and 6” € V. Moreover, these can be chosen
such that V¥ 6, 0’,0” and 6” have the same z-coordinate that 6 has. Similar
properties hold for the other ¢’s. Let z, = r + 7 and Q(z,) = {0 € Q: z > z,}.
By increasing ¢ in (3.5) to 2¢ if necessary, it can be assumed that if @, N Q(z,)
# ¢, then 6, € Q(z,). In view of (3.5), (3.3) and the preceding discussion, it is
not difficult to see that 3 a partition {P;, P,, ..., Py} of Q(z;) such that, V i,

E(oigg(xp - Eﬂ(xple—l))z) = E(i?’lf(Rlp(e) M Rzp(B)))

(3.6a) > 02(I(2z,) +Iy(2)) — 2¢
—&(lA; — By| + |A, — By)

+(28 — £)(1A, — ByI* + 1A, - B,%),
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where

(3.6b) I(z) = 11511132,;E(I(x"_k <2y, %, 4<T)),
(3.6¢) I,(z) = lrgrlgrglpE(I(xp_k <z,%, 4>71)),
3.6d = inf i (0 d2(0
(3.6d) p=,_nf  min(E(450)), E(46(0)))-

Note that g > 0 for sufficiently large z; and I(z,) + I,(z;) > 1 as z; > ©
(equivalently, 7 — ).

Suppose ¢ is chosen so that ¢ < 8. Let ¢ = |[A; — A,|/2 > 0. Then max(|A,
— B,l, |Ay — B;]) > ¢. By routine arguments, it can be verified that, for
sufficiently small 0 < ¢ < 1, the RHS of (3.6a) is

(3.7) > 02(I(zy) + Iy(2,)) — 26 — £2/(4B) + Bc® — ec.

For sufﬁciently small ¢ and large enough 7, the RHS of (3.7) is greater than or
equal to 02 + «.

However E((x, — Eg(x,|F,_ ))?) = o2 By the law of large numbers for
(x,) and arguing as in Huber (1967) for N sufficiently large, 6, & P,. Since i
is arbltrary, we conclude that ON & {0 € O: z > z,} for sufficiently large N. By
considering R;,(0) and R,,(0) instead and arguing similarly, it is easily seen
that Claim 1 holds.

STEP 2.

Cramm 2. 3 w > 0 such that, for N sufficiently large, éN lies in Q, =
{0 €Q;: 1A, — By| <w, |A; — B,| < w}.

This can be verified by noting that (x, — Eg(x,|F,_,))* > R, ,(6) + R,,(0)
and arguing as in the previous claim.

Step 3. Let L(0) = E(x,,; — Ex(x,,,)|.%)). Then it can be verified that
L(6,) = 02 and L(8) > L(BO) Vo + 00 From the previous two steps, without
loss of generallty, the domain of 6 can be restricted to (,. Also, it follows from
Lemma 1 that, V 6* € Q,

E( inf (x,,, — Eo(xp+1|9;))2) - L(6*)

6sU

as V, an open ball of 6*, shrinks towards 6*. Thus, proceeding as in the proof
of Theorem 1 in Huber (1967), we have 6y — 0, and Ly(8y)/N — o a.s.
This completes the proof of Theorem 1. O

Proor oF LEMMA 1. Let 6 = (B], Bj, z,q) € Q and n > 0. Define

U(n) = {6* = (C},Cs,u,q) € Q:|C; — Bl <m,i=1,2;8(u,z) <n}.
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Then one can verify that

(3.8) lim E( sup |¢(1?};)(0*) - ¢(1?}3(0)|) =0.

m=0 \greU(n)
This is because if z € # and 6* € U(n), then
2
|62(6%) = 62(0)| = |((Ar =€) - 2,13,y < 2,5, g <T)
—((A, - By) -Zp)zI(xp_q <Su,x, 4< r)l

<2(A; — Byl + n)nlZ,* + (A, - B)) - Zp)°

(3.9)
XlI(xp_q <u,x, g<r)—I(x,_,<2z,x, 4< r)l
< 2(14;, — Byl + n)nlZ,|* + 14, — B,*1Z,?
XI(pr_q -zl <lu - zl).

The case when z = +® is similar and hence omitted. The rest of the lemma
can be proved similarly. O

4. Limiting distribution of the CLSE. As discussed in Section 2, with
no loss of generality, d is assumed known. So, the parameter becomes 6 =
(B}, B}, z) and Q is modified accordingly. We first establish some auxiliary
results.

ProposiTION 1. Suppose Condition 1 to Condition 4 hold. Then fy =
r + O,(1/N).

Proor. Since éN is strongly consistent, with no loss of generality, the
parameter space can be restricted to a neighborhood of 6, say,
(4.1) w(A)={0€Q: B, - Al <A,i=1,2;|z - r| <A},

for some 1> A > 0 to be determined later. First, assume p =d = 1. For
simplicity of notation, assume r = 0. Then, it suffices to verify the following
claim.

CramM 1. V £ >0, 3 K such that with probability greater than 1 — &,
6 € w(A), |z| > K/N = Ly(B,, B,,z) — Ly(B;, B,,0) > 0.
First, consider the case that z > 0. Then

Ly(B,, By,2z) — Ly(By, B,,0)
= L{(x, = B1-2,)" = (5, = B3 - Z,)"}1(0 <x,_, < 2)
> 2¢cy(By— By) - Y. Z,e,1(0<x,_, <z)
+2((2A; =B, — By) - Z,)(B, - By) - Z,I1(0 < x,_, < z).
If A is sufficiently small, then it follows from Condition 4 that the second term

(4.2)
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is greater than or equal to 82 I(0 < x,,_; < 2) for some 8 > 0. The first term
on the RHS of (4.2) is bounded in absolute value by »(|Ze, I(0 < x,_; < 2)| +
|xx,_1e,1(0 <x,_; <z)|) for some constant v independent of N. Define

(4.3) Q(z) =E(I(0<x<2)), 0<z<A.
CiammMm 2. Ve>0,Y 7 >0,3 K> 0 such that, V N,

(4.4a) P(Azsgg/NIZI(O <x, ;<2)/(NQ(z)) — 1| < n) >1—¢,

(4.4b) P(AZSI:%/NIZenI(O <x,_ ;< z)/(NQ(z))| < n) >1-e¢,

(4.4c) P(AZSE?(/NI Y x, 1e,1(0 <x, , <2)/(NQ(2))| < n) >1—¢.

Suppose the above claim is valid for the present moment. Let £ > 0 be given
and 7 > 0 be chosen so that —2vn + §*1 —n) > 0. It follows from the
preceding claim that 3 K(g,n) > 0 such that with probability greater than
1 - 3¢, A > z> K/N implies that

{LN(BI’ B,,z) — Ly(By, Bz>0)}/(NQ(Z))

> —2vn +8%(1—-n) >0

(4.5)

and hence the validity of Claim 1 under the further condition that z > 0.
We now verify Claim 2. Define

(4.6a) Qn(2) = L I(0<x,_, <z)/N,

(4.6b) Ry(2) = Yx,_,e,I(0 <x,_, <z)/N,
(4.6¢) Ry(2,25) = Ylx,_qe,lI(2z; <x,_, <25)/N,
(4.6d) R(z,,2,) = E(Ry(21,2,)).

By choosing A sufficiently small, it follows from (ii) in Remark B that
30 <m <M < wand H, all independent of N, such that, V z, z;, z, in [0, A),

(4.7a) mz < Q(z) < Mz,
(4.7b) var(I(0 <x,_, <z)) < HQ(z),
(4.7¢) E(lx,_1e,ll(2; <x,_; < 25)) < H(Q(22) — Q(21)),

(47d) Var(lxn—len'l(zl < Xp—1 < 22)) =< H(Q(z2) - Q(zl)),
(4.7e) R(21,2,) < H(Q(22) — Q(21)).
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Using Condition 1, it can be verified that V b > 0, 3 H such that V z, 2, 2, €
[-b,b],VN

(4.8a) var(NQy(2)) < NHQ(z),
(4.8b) Var(NRN(zl’ 22)) < NH(Q(z;) — Q(z1)),
(4.8¢) var( NR y(z)) < NHQ(z).

Indeed, for example, (4.8b) follows readily from the fact that, by di-
rect calculation, uniformly for z;,, 2z, € [—b, bl, cov(le;I,l, le,I,_,|) =
O(p*(Q(z,) — Q(z,))) where p is as defined in Condition 1 and I, =
x,1(z; <x, <2,), V k€A In view of (4.7) without loss of generality, let
Q(2) = z. The following facts are pertinent in establishing Claim 2. They
follow from (4.8) and Markov’s inequality. All the following suprema and
summations are taken over all i € .#" and such that all quantities involved are
well defined.
Letb>1, K>0and n >0

(4.9a) P(sup|Qy(b'K/N)/(b'K/N) - 1|>n) <H/(n?K(1-b71)).

For 0 <x <y < bx < A with |Qy(x)/x — 1] <7 and |@Q,(bx)/(bx) — 1| <
n, we have

(1=m)/b—-1<@n(x)/(bx) —1<@n(y)/y -1
<bQy(by)/(by) —1<b(1+m) - 1.

(4.9c) P(sup|Ry(b'K/N)/(b'K/N)|>n) < H/(n?K(1 - b71)).

(4.9b)

P(sup| Ry (b'K/N,b'"'K/N) - R(b'K/N,b'*'K/N)| /
(4.9d)
(b'K/N) > n) < Hb/(n’K).

(4.9¢) sup R(b'K/N,b'*'K/N)/(b'K/N) < H(b - 1).

By first choosing 7 > 0 and b > 1 sufficiently small and then K sufficiently
large, (4.9a) and (4.9b) imply the validity of (4.4a) and (4.9c-e) imply that
(4.4¢) hold. Equation (4.4b) can be similarly proved.

The case of z < 0 is similar and hence the validity of Claim 1. This
completes the proof for the case p = d = 1. For the general case, let Z* be as
in Condition 4. Then, 3 y > 0 such that (A; — A,) - Z is bounded away from 0
for all Z such that |Z — Z*| < y. On the right-hand side of (4.2), replace each
occurrence of I(0 <x,_, <z)by I(0 <x,_; <z; |Z, — Z*| < vy). Then, with
suitable modification, the preceding proof would go through. This completes
the proof of Proposition 1. O
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We now consider the limiting behavior of the normalized profile sum of
squares errors function. Define, for z € %,

I:N(z) = Ly(Byy(r +2/N),Byy(r +2/N),r +z/N)
- LN(BIN(r)’ Byn(r), ")-

Note that since d is assumed known, B,y(r + z/N, d) is simply written as
B,y(r + 2/N) and so on. [The B’s are defined after (2.1).]

(4.10)

PROPOSITION 2. Under Conditions 1-4, (L N(=2), 2= 0}, {Ly(+2), 2= 0}
converges weakly to {L®(2), z > 0}, {L®(2), z > 0}) in D[0, ») X D[0, ), the
product space being equipped with the product Skorohod metric. Here, {LY(2)}
and {L®(z)} are described before the statement of Theorem 2. [See, e.g.,
Kushner (1984, pages 29-33) for a discussion of D[0,x) and the Skorohod
metric.]

Proor. For the sake of simplicity, assume r = 0. Let 1l </ <p and £ > 0.
Since E(x}) <o, x,x, [(-K/N <x,_;<K/N)=0,(N""?). Using this
result and by routine but lengthy arguments, it can be verified that, ¥V K > 0,

(4.11) sup |B;y(2) — B;x(0)| = 0,(N~?), i=1,2.
|z| <K/N

From this, it follows that
(412)  sup |Lp(2) — (Ly(Ay Ay, 2/N) — Ly( Ay, A,,0))| = 0,(1).

|zl <K
For details of arguments leading to (4.11) and (4.12) for the case
p=d=1, see Chan (1988). Owing to (4.12), we shall proceed as if
Ly(2) = Ly(Ay, Ay, 2/N) — Ly(A,, Ay, 0). For z > 0, Ly(2) = Z(A, —A) -
Z (2cqe, + (A, —A) - Z,)I0<x,_; <z/N). It follows from Condition 2
that V 5 > 0, 3 H > 0 such that for any interval I c [—b, b] with length [(I),

(4.13) P(xoel,x,€I) <H(I(I))?, Vkedd.

From this follows the tightness of (L N(—2), z= 0}, (L ~(2), 2> 0}). For a
related argument, see, for example, the proof of Lemma 3.2 in Ibragimov and
Has’minskii [(1981), page 261].

Thus, to complete the proof, it suffices to demonstrate the appropriate
convergence of finite dimensional distributions. Let z > 0 be fixed. Let ¢ =
1/N. Consider the following process indexed by &:

x(t) = Xoyep  0<t<1,
(4.14) X5=0, X, =X.+J5, n=1,
Ji=(Ay—A) - Z,(2c5e, + (Ay —Ay) - Z,)I(0<x,_,<2/N)

Here, [-] denotes the integral part of the expression inside the square bracket.
Define ¢, = (x,,%,_1,...,%,_,). Note that x°(1) = Ly(2) and that J; is a
functional of ¢,. Again, it follows from (4.13) that {x°(¢), 0 < ¢ < 1} is tight in
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D[0, 1]. Applying the direct averaging method, it can be shown that {x°(2),
0 < ¢ < 1} converges weakly in D[0, 1] to {¢(¢), 0 < ¢ < 1}, a compound Poisson
process with rate 7(r)z and the distribution of jump same as the conditional
distribution of (A, — A)) - Z,(2¢cqe, + (A, — A)) - Z)) given x,_, =r,. This
can be done by adapting the arguments given in Kushner [(1984), Sections 2, 3
and 7 of Chapter 5]. As a corollary of the weak convergence of {x2(2)} to the
compound Poisson process, we have the weak convergence of L(z) to L®(2).
Employing the Cramer—Wold device, similar arguments yield the convergence
of finite dimensional distributions of ((Ly(—2), 2= 0}, {Ly(2), 2= 0}) to
those of {L®(2), z = 0}, {L®(2), z = O}).

Now, we outline the adaptation of Kushner’s arguments to the present case.
To prove that {x°(#), 0 < ¢ < 1} converges weakly to {p(¢), 0 < ¢ < 1}, it suffices
to show that the weak limit of any convergent subsequence {x°7(¢), 0 < ¢ < 1}
is a solution to the following martingale problem: For any function f with
compact support and continuous second derivative,

(4.15) x(t) — fOtAf(x(s)) ds  is amartingale,

where Af(w) = w(r)z[/(f(y + w) — f(w))q(dy) and q(dy) is the probability
measure induced by the conditional distribution of (A, — A,) - Z (2¢cee, +
(Ay — Ay - Z))given x,_, = r,. Then the convergence result follows from the
fact that the above martingale problem admits {p(¢), 0 < ¢ < 1} as its unique
solution. In the rest of the proof, we supply further technical details in
verifying (4.15).

Below, E,(-) and P,(-) denote, respectively, the conditional expectation
and the conditional probability of the enclosed expression given {§;, j < m}. It
is also assumed that the probability space is sufficiently large to contain all the
random variables discussed below. Let n, be an integer chosen so that n, —
and 6, =en, >0 as ¢ > 0. Let 2 >d + 1 be a fixed integer. Fix f(-), a
function with compact support and continuous second derivative, and define

1SRt B o F(X50) — F(X5)

n, £

(4.16) Ae(t) =

)

for ¢ € [15,,(l + 1)5,) and set As(t) = [¢ A*(s)ds. It is easily seen that
Epn-i( F(Xj11) — F(X]))
=P, (0 <x;_y<ze)E,, _,(f(X;+df) —f(X;)0 <x;_, < ze).

It follows from Condition 1 and Condition 2 that for any compact set K and
any scalar X, A M,Ve>0,j=1n,

(4.17) P, _x(0<x;_;<ze) <Me
and uniformly for ¢, _, € K,

(4.18) lim P, _,(0 <x;_;<ze)/e =m(r)z+o(e)
Jjo®
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and
im E;, _,(f(X+J7) = f(X)I0 <x,_, <z¢)
(4.19) J=e
=E(f(X+JE) —f(X)I0<x,_4<ze).
It follows from (4.17) that {x°(¢), A°(¢), 0 < ¢ < 1} is tight in D0, 1]. We want
to characterize the weak limit of any convergent subsequence of {x°(¢), A°(¢),

0 < ¢ < 1}. For simplicity, assume that the latter process converges to {x(2),
A(?), 0 <t < 1} with probability 1. We are going to show that

(4.20) A(z) = Af(x(2))

and for arbitrary m,f,s and s; <s, < -+ <s,, <t <t + s and any bounded
and continuous functions A(-),

E{h(x(s,)), j <m) X [ f(x(t +5)) = F(x(t))

—(A(t+5) —A(1)]} = 0.

Equations (4.20) and (4.21) imply that {x(#), 0 <t < 1} solves the above
martingale problem.

Thus, to complete the proof, it remains to verify (4.20) and (4.21). Note that
for any bounded and continuous h(-), we have, as ¢ — 0,

(4.21)

E{h(xe(sj), 1<j<m)
(4.22)
x[f(xe(t +8)) — f(x5(2)) — [t”%(u) du]} - 0.

By using (4.17)-(4.19) and arguments similar to those employed in Sections 2,
3 and 7 of Chapter 5 of Kushner (1984), it can be verified that for any s such
that P(x(-) is continuous at s) = 1,

(4.23) A (s) > Af(x(s))
in probability. From these results follow (4.20) and (4.21). O

Proor oF THEOREM 2. Again, assume r = 0. Using Skorohod embedding,
we may assume for simplicity that the convergence in Proposition 2 is almost
sure convergence. Since 7y = r + O,(1/N), it is readily seen that N(#y — r)
converges weakly to M_ where [M _, M _) is the unique random interval of all
z at which L®(2)I(z < 0) + L®(2)I(z > 0) attains its global minimum.

The asymptotic independence between N(#y —r) and N/2(A,\, — A,
A,y — A,) follows readily from (4.11). Indeed, Proposition 1 and formula
(4.11) imply that

(4.24) A;n=B;n(0) +0,(N"V?), i=1,2,

but B;y(0) is the least squares estimator of A; when the threshold parameter
is known. From this follows the claimed limiting distributions of A’s. O



CONSISTENCY AND LIMITING DISTRIBUTION 533

Acknowledgments. I would like to thank an Associate Editor for many
useful comments and pointing out an error in an earlier draft. I also thank an
anonymous referee for many useful comments and suggestions.

REFERENCES

Cuan, K. S. (1988). Consistency and limiting distribution of the least squares estimator of a
threshold autoregressive model. Technical Report 245, Dept. Statistics, Univ. Chicago.

CHAN, K. S. (1989). A note on the geometric ergodicity of a Markov chain. Adv. in Appl. Probab.
21 702-704.

Cuan, K. 8., PETRUCCELL], J. D., Tong, H. and WooLrForD, S. W. (1985). A multiple threshold
AR(1) model. J. Appl. Probab. 22 267-279.

CHan, K. S. and Tong, H. (1985). On the use of the deterministic Lyapunov function for the
ergodicity of stochastic difference equations. Adv. in Appl. Probab. 17 666-678.

CuErNOFF, H. and RuBiN, H. (1956). The estimation of the location of a discontinuity in density.
Proc. Third Berkeley Symp. Math. Statist. Probab. 1 19-38. Univ. California Press,
Berkeley.

HuBgr, P. J. (1967). The behavior of maximum likelihood estimates under nonstandard condi-
tions. Proc. Fifth Berkeley Symp. Math. Statist. Probab. 1 221-234. Univ. California
Press, Berkeley.

IBraciMov, I. A. and Has'minskil, R. Z. (1981). Statistical Estimation: Asymptotic Theory.
Springer, New York.

KusHNER, H. J. (1984). Approximation and Weak Convergence Methods for Random Processes,
with Applications to Stochastic Systems Theory. MIT Press.

NEVEU, J. (1965). Mathematical Foundations of the Calculus of Probability. Holden-Day, San
Francisco.

NumMELIN, E. (1984). General Irreducible Markov Chains and Non-negative Operators. Cam-
bridge Univ. Press.

PETRUCCELLL, J. D. and WooLFORD, S. W. (1984). A threshold AR(1) model. J. Appl. Probab. 21
270-286.

PeTrRUCCELL], J. D. (1986). On the consistency of least squares estimator of a threshold AR(1)
model, J. Time Ser. Anal. 7 269-278.

Tong, H. (1983). Threshold Models in Non-linear Time Series Analysis. Lecture Notes in Statist.
21. Springer, Berlin.

Tong, H. (1987). Non-linear time series models of regularly sampled data: A review. In Proc.
First World Congress of the Bernoulli Society, Tashkent, USSR 2 355-367. VNU
Science Press, The Netherlands.

DEPARTMENT OF STATISTICS
AND ACTUARIAL SCIENCE

UNIVERSITY OF Iowa

Iowa City, Iowa 52242



