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ON REACHING A CONSENSUS USING DEGROOT’S
ITERATIVE POOLING

By GusTtavo L. GILARDONI! AND MURRAY K. CLAYTON

University of Illinois, Chicago and University of Wisconsin-Madison

We consider a group of & experts each having a subjective probability
distribution for a parameter 6. If the members of the group are allowed to
know the others’ opinions and they appreciate the others’ skills, it is likely
that each expert will modify his distribution to account for this new
information. This process can be continued indefinitely leading to an
iterative pooling process. The main issue is whether the experts’ distribu-
tions will converge towards a common limit or consensus.

Several authors have considered this iterative process when the experts’
distributions at a given stage are linear opinion pools of the distributions at
the previous stage. In this paper we extend the model for the specific case
where the experts use logarithmic opinion pools and, more broadly, for
pools in a wide class that generalizes both the linear and the logarithmic
pools. It is shown that the consensus properties in the logarithmic pool case
are essentially the same as in the linear pool case, and that this fact
uniquely characterizes both pools in the wide class mentioned above.

1. Introduction and notation. We consider a group of % experts
E,...,E,, k> 2, each having a subjective probability distribution P;,, 1 <
i <k, for a certain parameter 6 € ®. We will assume that the experts’
probabilities have a Radon-Nikodym derivative with respect to a given mea-
sure v, and denote this derivative or density by f;, = dP,,/dv.

DeGroot’s Iterative Pooling Scheme, in spirit a formalization of the Delphi
technique for expert panels, can be described as follows: Feedback is allowed
among the experts and, after learning f;,, j # i, E; will modify his density f;,
to fi1 = T(fi0s-- -, fro), where T; is a given pooling operator, 1 < i < k. After
this first stage is completed, feedback is allowed again: E; will modify his
density to f;5 = Ti(fi1,.--, fr1), 1 <i < k. This process is continued indefi-
nitely, and thus the iterative scheme is defined by the recursive equation
fine1=T«f1n,..., frn) for n > 0.We will say that the experts reach a consen-
sus if there is a density f,, such that lim, f;, = f, for every i.

This kind of iterative scheme is discussed in DeGroot (1974) in the case that
the expert’ pools T, are weighted arithmetic averages or linear opinion pools

12

(LinOP’s). Earlier discussions of a similar scheme appear in work of French
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(1956) and Harary (1959). In the LinOP case we have
k
(1.1) fins1= L Wi;fin, 1<i<k,nz0,
j=1

where the w,;’s are weights that E; assigns to E;’s opinions, w;; > 0, X;w;; =
1,1 < i, j < k [for a discussion of the LinOP see, e.g., Genest and Zidek (1986)
and Genest and McConway (1990)]. In this setting, if £, = (f,,,,..., fz,) and
W is the matrix with entries w;;, then (1.1) becomes f, = Wf,_; = --- =
W"f,. It is clear then that a sufficient condition for a consensus to be reached
is that W” converges to a matrix having identical rows, that is, that the
Markov chain with transition probabilities W has only one recurrent class
which is aperiodic. Furthermore, the final consensus will then be a LinOP of
the experts’ initial densities f;, with weights =, where 7 = (7,,...,w,) is the
only stationary probability vector associated with W [DeGroot (1974), Theo-
rems 2 and 3]. It is worth noting here that the same results obtain not only
when the experts opinions are represented as probabilities or densities, but
also when they are represented as points in a convex subset of an arbitrary
linear space. The iterative model using LinOP’s has been further studied by
Lehrer and Wagner (1981), Chatterjee (1975), Chatterjee and Seneta (1977)
and Berger (1981) among others. In this paper, we will consider extensions of
DeGroot’s model to pools other than LinOP’s. More precisely, we examine
pools T, which are:

12

(i) Modified weighted geometric averages or logarithmic opinion pools
(LogOP’s) with weights w;, ;, when the iterative process is given by

w
I1; finm

Jo(I1, fjn) dv
(i) g-Quasi-linear opinion pools (g-QLOP’s) with weights w, ;,

g ' (Zwi;8(fin))
f@g_l(zjwijg( fln)) dv

where g is a continuous, strictly monotone function. Note that, since
(a + bg) " Yy) =g "y — a)/b), the g-QLOP is identical to the (a + bg)-
QLOP for any b # 0. Therefore, we can assume without loss of generality that
g is strictly increasing. In both cases we assume that W = (w,;) is stochastic,
that is, w;; > 0 and X,w,; =1 for all i. [See, e.g., Genest (1984a,b) and
Winkler (1968) for discussion of this latter restriction.] Also, we define 0° = 1
throughout this paper.

Some properties of the g-QLOP’s in (1.3) are discussed in Gilardoni (1989).
For instance, by choosing g(x) = log(x + ¢) for a given, small ¢, they can be
used as an alternative to LogOP’s that avoids the extreme behavior of the
LogOP, discussed below, when the experts’ densities have different support.

ijs

(12) fi,n+1=Ti(f1n""7 fkn) = n=>0.

(13) fi,n+1=Ti(f1n""’fkn) = nZO,
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Lehrer and Wagner (1981) considered what they called a quasiarithmetic
averaging function of fi,,..., [p, as g‘l(iji ,8(f;0)), and established a
limit theorem for iterations of such pools. The g-QLOP’s (1.3) deal with a
modified version of the quasiarithmetic averaging functions that takes into
account the restriction imposed by the fact that [, f;, = 1. Also, note that the
g-QLOP reduces to the LinOP when g(x)=x and to the LogOP when
g(x) = log x.

Given a stochastic matrix W with entries w;,;, we will denote the entries of
W by wP. Following Seneta (1981) we will say that the stochastic matrix W
is regular if the Markov chain with first step transition probabilities W has
only one recurrent class which is aperiodic or, equivalently, if W has the
eigenvalue 1 with multiplicity 1. For a general reference on the Markov chain
properties used in the rest of the paper the reader is referred to Karlin and
Taylor (1975, 1981). Also, if g, and g, are two measurable, real valued
functions on O, the notation g; = g, means that g, equals g, up to a set of
v-measure zero.

In Section 2 we show that DeGroot’s results apply when the experts’ pools
are LogOP’s. A rather surprising result in this extension of DeGroot’s scheme
is that the LinOP and LogOP are uniquely characterized in the class of
£-QLOP in terms of the form of the final consensus. This result is shown in
Section 3. Finally, a few concluding remarks are given in Section 4.

2. The LogOP case. We begin this section by considering the iterative
process defined by (1.2) when the densities f,, have identical supports.
Without loss of generality we can assume this support to be ® and f£;,(8) > 0
for every i and every 6 € 0. In this case we have the following theorem.

THEOREM 1. Suppose that the densities f;, have support ©,1 <i < k, and
that W is regular. Then a consensus is reached. The consensual density is
given by

(2.1) PR -
. T Je(IT fig) dv’
where 7 = (1, ..., ;) is the unique stationary vector associated with W, that
is, the unique solution to the system of linear equations
aW =,
(2.2) mot e+, =1

Proor. Fix 6, € O and define ¢,,(0) = logl f;,(0) /f;,(0,)]. It is straightfor-
ward from (1.2) that ¢, ,,; = X,;w;;¢;,. Iterating this gives ¢;, = L,w{Pd;,.
Therefore, from Theorems 2 and 3 in DeGroot (1974) we have that lim , ¢,, =
Ym0 = b say, for every 1 < i < k. Now, since f;,(0) = f;,(6,)explo;, ()},
and using the fact that f;, integrates to 1, we have that f;,(0,) =
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[/ exp(¢;,) dv]~ L. Therefore,
exp(;,) exp(¢..)
feXp(d)zn) dV limn,[exp(d)in) dv ’

provided that the limit of the denominator of the rightmost term exists. To
show this we only need to prove that lim, [exp(¢,,)dv = [exp(é,) dv. But
this follows from dominated convergence and Hélder’s inequality, since

exp(in(0)) = exp[zw<”>¢,o(e>]

(2.3) hmf

IO YO W A O
Hj[fjo(oo)]wfi') - min; f5(8) min,- 0(00)

NoTE. By using a similar argument it is possible to state a stronger version
of this theorem in terms of a sort of uniform convergence: If B is any
measurable subset of @, then lim, P,,(B) = lim, [5f;, dv = [ exp(¢,)dv/
fo exp(¢.,) dv.

Using Theorem 1, the numerical examples in DeGroot (1974) are easily
extended to the LogOP case. The following example shows an application of
Theorem 1 in a somewhat different setting. It makes use of an important
property of the LogOP, namely, that it preserves the structure of exponential
families.

ExamMpLE 1. Assume that W is regular, and let the initial densities be
members of the same exponential family, f;,(8) o H(6)exp(X{_in, Q.(9)),
where v is Lebesgue measure. Theorem 1 implies that the final consensus will
be a LogOP of the initial densities f;, with weights ; given by (2.2). Simple
algebra then shows that the consensus itself belongs to the same exponential
family with “natural parameters” given by n, = X,mm, ,1<s <t

We end this section with a few comments regarding the LogOP when the
densities f;, do not have identical supports. First, note that in the LinOP case
or the LogOP case with identical support, the experts corresponding to tran-
sient states in the associated Markov chain are irrelevant for the determina-
tion of the consensus (since m; = 0 if the ith state is transient). This is no
longer true in the LogOP case if the hypothesis of identical support is dropped,
since the LogOP possesses the zero preservation law ‘““to a dramatic degree”
[French (1985)]. Specifically, if E; believes at the initial stage that a set B has
probability 0, then at the next stage E; will also assign probability 0 to B,
provided that w;; > 0. This makes it p0531ble for a transient expert to veto
events as long as there is at least one positive entry in the corresponding
column of W7, It should be clear that the idea we used to prove Theorem 1
cannot be applied directly, since when allowing ¢;, = —~ we will lose the
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linear structure that was needed in order to apply DeGroot’s theorems.
Sufficient conditions appear in the following theorem, whose proof may be
found in Gilardoni (1989).

THEOREM 2. Suppose that W is regular. Let B;, be the support of the
initial density f;, and I the set of indices corresponding to recurrent states, and
suppose that v(N;<;B;p) > 0. If () B;y > N;c B,y for every j &I, or (i)
w;; > 0 for every 1 < i, j <k; then a consensus is reached. The consensual
density is given by (2.1), where 7 is the unique solution to (2.2).

ExampPLE 1 (Continued). Assume that all the experts’ weights are positive,
and consider initial densities f;,(6) o H(6)exp(Xi_n, Q(0)I(a;, < 6 < b;y),
where I(A) denotes the characteristic function of a set A and v is Lebesgue
measure. Theorem 2(ii) implies that a consensus will be reached provided that
a, = max; a;, < min,; b;, = b,. The consensual density will be given by
fL0) o« H(@)exp(L,_1n,Q,(0))I(a,, < 0 <b,), where n, =L, mmn, ,1<s<t.

3. A characterization of the LinOP and the LogOP. We now turn to
the problem of studying the form of the final consensus in the g-QLOP
setting. [Some preliminary results on whether a consensus will be reached in
the g-QLOP setting have been given in Gilardoni (1989), and will not be
pursued here.] As mentioned before, in the case that g(x) = a + bx or g(x) =
a + blog x, the g-QLOP coincides, respectively, with the LinOP and the
LogOP. Therefore, in those two cases, Theorems 2 and 3 in DeGroot (1974)
and Theorem 1 here can be expressed in the following way: If the densities f;,
have the same support and if in addition W is regular, then the consensus
density is

g (X,m8(f0))
3.1 0 — ’
(31 f Jo& (Z;m;8(fj0)) dv

where 7 is the unique solution to (2.2). This equation is good news for the
experts, for then the final consensus can be seen as a LogOP (LinOP) that is a
sort of compromise between the different LogOP’s (LinOP’s) sponsored by
each individual member of the group. It is also good news for the statistician
or decision-making professional who is consulting with the experts, for then he
would not have to go through a numerical implementation of the iterative
process in order to obtain an approximate consensual density, but he could
resort instead to the exact (and easy to compute) consensus (3.1). A natural
question is then whether there are any g’s, other than linear and logarithmic,
for which the final consensus is (3.1). The surprising answer is, under quite
general conditions, no. In the rest of this section we will show that the above
mentioned property uniquely characterizes the LinOP and the LogOP in the
class of g-QLOP’s.

Before proceeding we need to introduce some additional notation and
terminology. The measure space (0, o7, v) will be assumed to be such that
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v(®) is finite. We will say that (0, &7, v) is at least tertiary if there exists a
measurable partition A,, A,, A; of ® with »(A,) > 0, r = 1,2, 3. The space is
at least binary if there exists a partition A;, A, with the above property. It is
binary if it is at least binary but it is not at least tertiary. Also, throughout
this section g will be assumed to be an increasing function such that both g
and g~ ! have continuous first derivatives. The function g will be said to be
k-Markovian if the process defined by (1.3) yields the consensus (3.1) for every
regular 2 X £ matrix W and for all initial positive densities f,,, 1 <i <&,
where 7 is, as before, the unique solution to (2.2). Observe that the assertion
that g is k-Markovian implicitly assumes that lim, f;, exists, 1 <i < k.

We will begin considering the case where ® = {6,,...,0,} is finite, s > 2,
and all the subsets of ® are measurable. Let v, = v({,}), and assume without
loss of generality that 0 < v, <v, < -+ <v,. Let a;,, =f;,(6,), 1 <i <k,

1 < r < s. Then (1.3) becomes
g_l(zjwijg(ajrn))
Etytg_l(zjwijg(a’jtn))

It is easy to show that if g is k-Markovian, then g is /-Markovian for [ < k.
We begin, therefore, by characterizing 2-Markovian functions.

(32) a’ir,n+1 =

LEMMA 1. Let ® be finite, s > 2, &/=2° and suppose that g is 2-
Markovian. Then

1908 (@120) [8(@311) — Wp8(@210) — (1 — wyp)&(a110)]
= anog/(auo)[g(azm) — W98 (@330) — (1 — wyz)8(ayz0)],

where “ = means “ for every a,,, suchthat 0 < a;,, <v,'and L,v,a;.,=1,
i=1,2;1<r<s,and for every 0 <wy, < 1.”

(3.3)

Proor. The final consensus must be the same whether we start the
iteration with a;,, or with «a,,;, provided they satisfy the recursion (3.2).
Therefore, we must have that

& (m18(ay,0) + m28(as0))
Ztvtg_l(ﬂ-lg(altO) + 7T2g(‘12t0))
_ g '(mg(ay,q) + mg(as,))
g N (mig(ay) + mag(ag))’

where 7, = (1 — wy)/(1 —wy; + 1 — wyy) and 7y = 1 — 7. By differentiat-
ing both sides of (3.4) with respect to w,; and taking limits as w,; 11 we
obtain, after some straightforward but rather tedious algebra, that

-1 8(ai0) — 8(az0) 8(a1.0) — 8(ag)
Q1ro Was

(3.4)

&'(a1r0) 8'(ayr0)
_ . g(ay0) — 8(ag) -y, &(ay0) — 8(as)
—wzzzt: ! &' (ay0) ; ! &'(ayo) '
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Since the right-hand side in this identity is independent of r, this implies that
_1[ &(a110) — &(a210) _ &(ay10) _g(azu)]
22

2110

&'(a110) &' (a110)
— gl {w 8(a1z0) — 8(agm) _ g(ag) _g(a221)]
1o e 8'(a1z0) &' (a130) ’

which is equivalent to (3.3). O

LEMMA 2. Let O be finite, s > 2 and &= 2°. Define u = v(0) =X, v,,
and suppose that g is 2-Markovian. Then g satisfies the identity

(3.5) [auog/(auo) - a120g'(a120)] ZVrg(auo) - Mg(ﬂ_l)} =0.

Proor. Taking derivatives with respect to w,, and limits as w,, 11 in (3.3)
we obtain

8(ag0) — 8(a1)
8'(ag,0)

g(a,o) —&g(ayo)
&'(as0) '

The lemma now follows after choosing a5, =p L, 1<r<s. O

— 1208 (@120) @ 2108 (2 210) X,
r

= —a1108'(@110) @2208 (@ 290) Z v,
r

The next lemma will prove that in order for the identity (3.5) to hold, we
must have that at least one of the terms in brackets be identically zero.

LEMMA 3. Let © be finite, s > 2, o&/= 2% and suppose that g is 2-
Markovian. Then either

(3.6) xg'(x) = yg'(¥)
for every (x,y) € S or
— VX — VoY

) =ug(n™1),

for every (x,y) € S, where S = {(x,y): 0 <x,y; vix + vy < 1}

1
(8.7) vig(x) +vog(y) + (n— vy — Vz)g(

m— v~ vy

Proor. Let S; =S Nn{(x,y): x <y}, Sy =8 Nn{(x,y): y <x}, and denote
by A and B the sets of points in S such that (3.6) and (3.7) hold, respectively.

In (8.5) choose @ ;g =%, @190 =y and a;.o=(u —v; —vy) (1 —vx —
vyy), 3 <r <s. Then we have that for every (x,y) € S either (3.6) or (3.7)
holds, or equivalently that A U B = S. We need to show that either A = S or
B = S. The rest of the proof will be split into several steps.
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(i) A U B%°= S, where B? is the closure of the interior of B.

Because of the continuity of g, g7, g’ and (g~'), both A and B are
relatively closed in S. Therefore S — A is an open set contained in B, and
hence it is contained in B°. It follows that S — A c B° or equivalently that
S cAuU B° L

(i) Either AN S, =Qor BN S, = @. o

Suppose neither of the two equalities is true. We know that (AnSp)u@B°
NS;) = 8;, and that both AN S; and B° N S, are relatively closed in S;.
Since S, is clearly connected, there must exist (u,v) € AN B°N S,. Let
(u,,v,) € B® be such that lim («,,v,) = (&, v). Since (¢ ,,v,) € B® we can
differentiate (3.7) with respect to both x and y to obtain that v,g'(x,) —
vig((—vu, —vy,)/(p—v,—vy) =0 and vyg8'(v,) —v,g'(1 —vu, —
vov,)/(u — vy — vy)) = 0. Therefore g'(u,) = g'(v,) and by continuity
g'(u) = g’'(v). But since (u,v) € A implies that (u, v) satisfies (3.6), it follow
that » = v, which contradicts the fact that (u,v) € S,.

(iii) Either AN S,=QJorB°N S, = .

This follows by a similar argument as in step (ii).

(iv) Either A=S or B=S.

Suppose that A O S,. Now (3.6) is symmetric in (x, y), and since v, < v, we
have that (y, x) € S, whenever (x,y) € S;. It follows that A > S;, and since
A is closed we must have that A = S. L

Alternatively, if A does not contain S,, (i) and (iii) imply that B° does. We
claim now that B = S. For, if B # S, there must exist («,v) € B N S;. Then
(z,v) € AN S,, and by the symmetry just discussed, (v,u) € A N S,. There-
fore (v,u) € A N B° N S,, which is a contradiction. [See the argument in (ii).]

O

We are now in the position to completely characterize the k-Markovian
functions when O is finite and has at least three elements.

THEOREM 3. Let O be finite, s > 3 and /= 2°. Then g is k-Markovian,
k=2, if and only if either g(x) =a + bx or g(x) =a + blogx for some
a,b # 0, where “ =" means here “ for every x € (0,v;1).” Equivalently, g is
k-Markovian if and only if the g-QLOP’s are either LinOP’s or LogOP’s.

Proor. That the conditions in the theorem are sufficient for 2-Markovian-
ity follows from Theorems 2 and 3 in DeGroot (1974) (for the LinOP) and from
Theorem 1 here (for the LogOP).

To prove necessity, observe that if (3.6) holds, then clearly xg'(x) = & for
some b, so g(x) = a + b log x. Otherwise, (3.7) must hold. Differentiating with
respect to x and with respect to y we obtain that g'(x) = g'(y) for every
(x,y) € S. Thus, g'(x) = b for some b, hence g(x) =a + bx. O

Finally, we extend Theorem 3 to general ® [with v(®) < »]. Suppose that
there exists a measurable partition A,,..., A, of ® with 0 <v, < -+ <,
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where v, = v(A,), and define the initial densities to be f;, = X;_1a;.0l4,
where the a;,(’s satisfy 0 < a;,o and X,v,a;,0=1,1 <i <k,1 <r <s. Then
it is straightforward to show that the iterative process (1.3) mimics the finite
case, in the sense that f;, = X,a;,,I,, where the a,,,’s are given by (3.2).
Therefore, for g to be k-Markovian, 2 > 2, one of the identities in Theorem 3
must hold.

THEOREM 4. Let (0, o7, v) be at least tertiary. Then g is k-Markovian if
and only if either g(x) = a + bx or g(x) = a + blog x for some a,b, where
“=" means “ for every 0 < x < a = sup{1/v(A): v(A) > 0}.”

Proor. Again, sufficiency follows from Theorems 2 and 3 in DeGroot
(1974) and from Theorem 1 here. The considerations before the theorem
constitute essentially a proof of the necessity part, with the following addition.
If 0 < B < a is arbitrary, there must exist a partition A;, A,, A; of ® with
0 < »(A,;) < B~ . Therefore one of the identities in Theorem 3 must hold for
0 < x < B, and this is true for every 8 < a. O

It should be noted, at least as a mathematical curiosity, that although
several results characterizing the LinOP and the LogOP are known [cf.
McConway (1981) and Genest (1984a,b)], to our knowledge Theorem 4 is
unique in the sense that it characterizes both the LinOP and the LogOP.

In the case that O is binary, a result similar to Theorem 3 holds, but the
identity g(x) = a + bx has to be replaced by a weaker symmetry. For the sake
of space, we will only state the theorem here. A proof is given in Gilardoni
[(1989), pages 66-76].

THEOREM 5. Let © = {0, 0,} and o/= 2°. Then g is k-Markovian, k > 2, if
and only if either

i) vi&8(x) + Vzg(Vz_l(l - le)) =pg(p™")
or

(ii) g(x) =a +blogx forsomea,b +0.

Nortes. It is straightforward to show that if g satisfies condition (i) in
Theorem 5, then g is k-Markovian (no hypothesis other than continuity and
monotonicity of g are needed). The set of functions satisfying (i) clearly
includes the set of linear functions. When » is counting measure, condition (i)
becomes a symmetry condition: g(x) + g(1 — x) = 1 for x = (0, 1).

The condition in Theorems 4 and 5 that the consensus (3.1) be reached for
every set of initial densities f;, and for every weight matrix W (implicit in the
definition of k-Markovian functions) is strong, but it is not easy to relax. The
next example will address this point. In particular, note that Theorem 4 is not
in general true if we define k-Markovian functions as those for which the
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consensus (3.1) is attained for every set of initial densities but for given, fixed
weights W

ExampLE 2. Using the notation for the finite case, let » be counting
measure, k = 2, g(x) = x'/%2 and 0 < w,;; = wy, < 1. Then the denominator of
Qi ny1 in (3. 2) is w? + A —w;)? + 2w, (1 — w; )L ay,,a5,)"? which is
independent of i. Since g (and hence g~1) satisfies g(u/v) = g(u)/g(), it
follows that

1/2
(wz(il)alio + wiay

L (wPals + w(")al/z)

1/2

a

irn =

Now lim, w{}’ = 1/2, and by continuity it follows that the consensus will be
given by lim n Qirn & (0.5a%/2 + 0.5a%/2)?, which is exactly what the right-hand
side of (8.1) gives in this situation.

4. Concluding remarks. The importance of interaction prior to the
formation of group decisions has been widely recognized in the literature [see,
e.g., Press (1978)]. Lehrer and Wagner [(1981), especially Chapters 1-5] have
also argued that it plays an important role in the determination of consensus
in society. Although a formal application of the iterative methods described
here might not be practical, it forms a conceptual basis for defining the
consensus as the result of iterative modifications of the densities (i.e., f, =
lim, f;,). Alternatively, consensus can be defined as the result of a consensual
pooling operator T* obtained from the experts’ pools T; [i.e., (2.1) where T* is
a LogOP with weights m;).We have shown that the LogOP has essentially the
same property as the LinOP in the sense that these two alternative ways of
looking at the consensus are equivalent. Of course, although Theorem 4 states
that the two representations of consensus are equivalent only for the LinOP
and for the LogOP, one could, in any case, adopt (3.1) as the definition of
consensus. [A good case for this can be made following the idea in Lehrer and
Wagner (1981), page 128.] Moreover, in many numerical examples that we
have considered, with g neither linear nor logarithmic, the right-hand side of
(3.1) provided a surprisingly good approximation to the iterative consensus.
Based on this, we conjecture that, if g is a smooth function in some appropri-
ate sense, a tight bound can be found on the difference between the final
consensus and (3.1).

Acknowledgments. We are grateful to the referees for their helpful
comments.
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