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INVARIANT DIRECTIONAL ORDERINGS

By E. L. LEBHMANN' aAND J. RoJo?

University of California, Berkeley, and University of Texas, El Paso

Statistical concepts of order permeate the theory and practice of statis-
tics. The present paper is concerned with a large class of directional
orderings of univariate distributions. (What do we mean by saying that a
random variable Y is larger than another random variable X?) Attention is
restricted to preorders that are invariant under monotone transformations;
this includes orderings such as monotone likelihood ratio, hazard ordering,
and stochastic ordering. Simple characterizations of these orderings are
obtained in terms of a maximal invariant. It is shown how such invariant
preorderings can be used to generate concepts of Y, being further to the
right of X, than Y, is of X. -

1. Introduction. The concept of statistical order which compares two
random variables or distribution functions has many uses in both applied and
theoretical statistics. In reliability theory, the concepts of increasing failure
rate, increasing failure rate on the average, and new better than used, compare
distribution functions F and G in terms of the function ¢ = G~ 'F [Van Zwet
(1964), Barlow and Proschan (1975) and Loh (1984)]. The monotonicity of the
power of monotone rank tests is considered by Lehmann (1959) and Doksum
(1969). Comparisons of distributions based on tail heaviness or skewness were
treated respectively by Rojo (1988, 1992) and MacGillivray (1986). For some
extensions to the multivariate case see, for example, Lehmann (1952, 1955),
Whitt (1982), Keilson and Sumita (1983) and Karlin and Rinott (1983) and, to
the comparison of stochastic processes, Pledger and Proschan (1973) and
Whitt (1981).

In this paper, attention will be restricted to univariate directional orderings
which are concerned with the question of whether one distribution is in some
sense to the right of the other. In this connection many different ordering
concepts have been proposed, of which we mention the following:

(A) Stochastic ordering. The random variable Y is said to be stochastically
larger than X if their distribution functions G and F satisfy

(1.1) F(x) = G(x) forall x,
and this will be denoted by F < G.
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(B) Monotone likelihood ratio (MLR). When F and G have densities f and
g with respect to some common dominating measure u, and

(1.2) g/f is nondecreasing,

the pair (F, Q) is said to have monotone likelihood ratio, which we denote by
F<..G.

(C) Hazard ordering. A cdf F is said to be smaller than G in the hazard
ordering (F <, G) if

&(x) f(x)
(1.3) 1= G(x) <7 ~F(x) for all x.

Here f(x)/[1 — F(x)] is the “mortality” of a subject at time x given that it
has survived to this time. If the densities f and g exist, condition (1.3) is
easily seen to be equivalent to

e 1-Fx)
( . ) 1-G (x) 1S nonincreasing.

(D) Restricted definitions. It is not always appropriate to require that the
comparisons (A)-(C) hold for all values of x. For example, in a comparison of
lengths of lives of women and men, one may want to restrict the comparison to
childhood or perhaps to ages past childbearing. We consider two cases of such
relations:

(i) Definitions (A)-(C) for all x exceeding a specified x,.
(ii) Definitions (A)-(C) for all sufficiently large x.

(E) Comparisons based on a single functional. One population of heights,
ages, incomes, etc. is frequently considered to be larger than another such
population if it is larger ‘“‘on the average,” or if the median of the first
population exceeds that of the second. More generally, a rather weak compari-
son of two distributions can be defined in terms of some measure u of location,
that is, by seeing whether w(F') is larger or smaller than u(G).

Examples (A)-(E) seem to constitute a rather haphazard collection. The
purpose of the present paper is to present a more systematic way of defining
and studying such orderings and to obtain simple characterizations of the
orderings discussed above subject only to very general restrictions on the
distribution functions F and G such as continuity or being strictly increasing.
Possible approaches are suggested by two well-known rather obvious charac-
terizations of stochastic ordering, namely, that (1.1) holds if and only if

(1.5) F ' G(x)] <x forall x
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or if

Epy(X) < Egy(X) for all nondecreasing functions ¢, where
here and below F~'(u) = inf{t: F(¢) > u}.

The following are natural extensions of these characterizations:

(1.6)

1. Let F < G when ¢ = F~!G is a member of some specified class of func-
tions. For discussion of such an approach see, for example, Oja (1981) and
Loh (1984).

2. Let F < G when

Ep[¢(X)] < Egly(X)]
for all ¢ belonging to some specified class [see, e.g., Whitt (1980)].
Unfortunately it turns out that neither monotone likelihood ratio nor
hazard ordering can be characterized in either of thesé ways. We develop here

an alternative approach which will provide a fairly simple characterization of a
large class of directional orderings including (A)—(C).

2. Invariant directional preorderings. In this section we restrict at-
tention to the class of distributions F defined as follows:
(2.1) F = {F: F is continuous and strictly increasing on (—,®)}.
We shall later weaken this restriction.

A preorder of the distributions F € F is a set S of ordered pairs (F, G) in
F X F satisfying
(2.2) (F,F)eS forall F€F
and
(2.3) (F,G) €S and (G,H) €S implies (F,H)€S.
When (F,G) € S, we say that F <g G or X <g Y, where X and Y are
random variables with distributions F and G, respectively.

DErFINITION. The preorder S is invariant (under monotone transforma-
tions) if
(2.4) X <gY implies ¢(X) <5 ¢(Y) foral ¢y €V,
where ¥ is the class of all strictly increasing continuous functions ¢ with
([;(—oo) = —oo, ¢;(+oo) = + oo,

It is easy to see that (A)—(E) in Section 1 all satisfy (2.2) and (2.3). Examples
(A)—(C) and (D)(ii) also satisfy (2.4) but (D)(ii) does not.

When X is distributed according to F, the distribution of y(X) is Fy ',
and in terms of S condition (2.4) becomes
(2.5) (F,G)eS = (Fy Gy ')eS foralyeV.
To see the simplification resulting from (2.5) consider the orbits under the
group of transformations ¢ € ¥ in the space F X F of pairs (F, G):

(2.6) O(F,G) = {(Fy~',Gy™Y): y € V).
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It follows from the definition of the orbits and (2.5) that (F, G) € S if and only
if the whole orbit O(F, Q) is contained in S. Therefore, to characterize an
invariant preordering S, it is sufficient to list the totality of orbits in S, and
for that purpose it is convenient to have available a suitable labeling of the
orbits, that is, a maximal invariant under V. It is easy to see that such a
labeling is provided by -

(2.7) k(u) =GF Yu), O<ucx<l.

On the one hand, % is invariant under ¥ since Gy~ Y(Fy~1)~! = GF~!; on the

other hand, if G, F ' = G,F; !, we have F[ 'F, = G{'G, = ¢, and thus F, =

Fop~' and G, = G~ ! so that (F,, G,) and (F,, G,) lie on the same orbit.
For any F,G € F, it is seen that £ = GF~! has the following properties:

k(0) =0 and k(1) =1, and on (0,1) % is, continuous and

(2.8) strictly increasing.

While MLR and hazard ordering cannot be characterized in terms of F~'G,
they have very simple characterizations in terms of 2 = GF 1.

THEOREM 1.

() F <, G = k() is convex;
(i) F <, Ge1-k Y1 - p)is star-shaped,
(i) F<,Ge k(u)<uforall 0 <u <1

Proor. The proof of (i) follows easily by noting that the derivative of % is
k' = gF~'/fF~! and recalling that % is convex if and only if %’ is nondecreas-
ing. To prove (ii), note that (1 — 2~ '(1 — u)) is star-shaped if and only if
(1 — FG~'(#))/(1 — t) is nonincreasing in ¢ or, equivalently, if F/G is nonin-
creasing, where F denotes 1 — F. Then it is easy to verify that the latter
condition is equivalent to (1.3). The proof of (iii) is trivial. O

THEOREM 2. Inclusion relationships among (1)-(iii) are given in the follow-
ing diagram:

k(-) convex < MLR < 1-Fk~ X1 — u) convex
k(-) star-shaped 1- k"Y1 — u) star-shaped < F <, G
G /F nondecreasing G /F nondecreasing

k(u) <u

F<_,G

—st
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Proor. The nontrivial aspects follow from the well-known fact that, for
functions going through the origin, convexity implies star-shapedness. O

3. Characterization of sets of k-functions defining preorders. It
was pointed out in Section 2 that the partial order (D)(i) is not invariant. On
the other hand, for example, (D)(i) applied to (A) has a k-analogue

(3.1) k(u) >u forall u > u,,

which clearly is invariant. It is easy to translate (3.1) into a condition on the
pair (F, G); the condition is simply

(3.2) G Yu)=>FY(u) foralu>u,.

This example shows that it is sometimes convenient.to start with a preorder
of the k-functions and from it to derive the equivalent ordering rather than
the other way around. To be able to do so, we need to know when the set

S ={(F,G): k(F,G) € K}

is a preorder. Clearly the set S will satisfy (2.2) if and only if the function
k(u) =u for all 0 < u < 1 is in K. To satisfy (2.3), K must satisfy

GF-'eK and HG'€eK = HF'ek.

But if GF~! =k, and HG™! = k,, then HF ! = k,(k,) so that (2.3) will hold
provided K is closed under composition.

Thus K corresponds to a preorder provided it contains the identity function
and is closed under composition.

As an application consider the problem of finding a preorder that is stronger
than monotone likelihood ratio. In k-space, a natural strengthening of convex-
ity is to require that

(3.3) ED(u) >0 forall0 <u<landalli=1,...,n.

The identity function obviously satisfies (3.3) and it is not difficult to show
that the class K defined by (8.3) is closed under composition. The conditions on
(F, Q) corresponding to (3.3) do not appear to have any simple interpretation.
As an illustration of (3.3), consider the following examples.

ExampLE 3.1. Let £(u) =u”, n > 3. Then kX (u)>0,0<u <1, for i =
1,2,3,...,n. Moreover, it is easy to see that k(u) = u™ implies that G(¢) =
(F(¢))", and hence the nth order statistic X, in a random sample of size n
from F satisfies (3.3) so that X < X, in the sense of (3.3).

ExamPLE 3.2. In the normal location case, say with F(x) = ®(x), G(x) =
®(x — 6), 6 > 0, we have MLR so that % satisfies (3.3) with n = 2; however, it
doés not satisfy (8.3) with n = 3.

A location family satisfying (8.3) for all n is given in the following example.
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ExampLE 3.3. Consider the extreme value location family of distributions
with densities given by

(3.4) fo(x) = e =",
For 6 > 0, it is easy to see that
(3.5) k(u) = F,Fy Y (u) =1- (1 —u)*,

where A = e7% < 1. It then follows that k(u) satisfies (3.3) for every positive
integer n.

ExampLE 3.4. Consider the family of exponential distributions with density
(1/a)e™*/%. To see that this is ordered in the sense of (3.3) for all n, we need
only note that if X is distributed according to (3.4), then the distribution of e*
is exponential with scale parameter a = e’. Since any invariant order is
unaffected by a monotone transformation, (3.3) follows from Example 3.3.

4. Extension to a larger class of distribution functions. At the
beginning of Section 2 we restricted attention to the class F of distribution
functions which are continuous and strictly increasing on (— o, »). This is too
restrictive and we shall now extend the theory of the preceding sections to the
class F* of distributions F whose support is an interval (which may change
with F and which may be finite, semiinfinite or infinite), on which F is
assumed to be continuous and strictly increasing.

If the support of F € F* is the interval (a, b), the quantile function F~' is
continuous and strictly increasing on the open interval (0, 1) and satisfies

lim F~Y(u) = a, lim F~'(u) =b
u—0 u—1

and
F71(0) = —o, F71(1) =b.

The nature of 2 = GF~! depends on the relative positions of the supports
(a, b) of G and (c, d) of F. Seven different situations are possible:

1. a=c, b=d. In this case k increases strictly and continuously from
k(0) = 0 to £(1) = 1 as it does when @ = ¢ = —», b = d = . No changes
are needed.

2. a <c¢ <d <b. k increases strictly and continuously
from (0, G(c)) to (1, G(d)).

3. ¢ <a < b < d. k increases strictly and continuously
from (F(a),0) to (F(b),1).

4. a < c < b <d. k increases strictly and continuously
from (0, G(¢)) to (F(b), 1).

5. ¢ <a < d < b. k increases strictly and continuously
from (F(a),0) to (1, G(d)).

6. b<c. k(u)=1for 0 <u <1 and k(0) = 0.

7. d<a. k(u)=0for 0 <u <1and k(1) = 1.
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The type remains invariant under the transformations ¢ € ¥ defined in
(2.4). So does the nature of the carriers C and D of F and G, that is, whether
each of C and D is finite, is semiinfinite with a finite right endpoint or left
endpoint or is infinite in both directions. As a result, although % remains
invariant under the transformations of ¥, it no longer is maximal invariant.
Consider, for example, the pairs (F, G) with F = G. They all correspond to the
single function k(u) = u for all 0 < u < 1, but they do not constitute a single
orbit since the cases C = D = finite, C = D = infinite, etc. all have different
orbits. Thus the maximal invariant must take account of the nature of C and
D; in addition, with respect to the types (6) and (7) defined in the preceding
paragraph, it must distinguish between the types

6(a) b<cand6(b)b=c
and
7(a) d <a and 7(b) d = a,

which also cannot be transformed into each other.
If the assumptions made at the beginning of this section are further
weakened, the complexity of the maximal invariant will increase even further.
There is an alternative way of handling a weakening of the assumptions
such as that at the beginning of Section 2, and this is to enlarge the group ¥
of transformations defined in (2.4). However, this approach also runs into
difficulties and we therefore consider no further extensions here.

5. Ordering the orbits. An invariant preorder S allows us to go a step
further. We can say not only of certain pairs (F, G)—the pairs in S—that
F < G, but also for certain quadruples (F;, Gy; F,, G,) that, according to the
ordering <g , G, is further away from F, than G, is from F,.

To fix ideas, consider distribution functions F; and G,, with F; <5 G, and
define F, = F;¢y~ ! and G, = G4~ ! for ¢ € V. Since (F, G,) and (F,, G,) are
in the same orbit, we say F; and G, are at the same distance from each other
as F, and G,. That is, all pairs on the same orbit are equally distant. On the
other hand, if F|; <g G, <5 G,, we say that G, is further to the right of F,
than G, is. This last situation implies that G, = F,¢~! and Fi¢~' <g G, for
some monotone . Extending this argument to the case of the quadruple
(F,,G,; F,,G,) with (F,,G;) € S, i = 1,2, we say that G, is further to the
right of F, than G, is of F, if F, = F(y ') and G(¢ ') <g G, for some
¢ € V. In terms of k, = G,F] ! and k, = G,F; !, this is equivalent to requir-
ing that k,(k7') € Kg, and this motivates the following definition.

DeFINITION.  Let (Fy,G), (F,, G,) € S. Then G, is said to be further to the
right of F, than G, is of F, if

(5.1) (ki ko) €8,
where £, = G,F', i =1,2.

12
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Since k., k, are distribution functions, (5.1) is equivalent to the condition
that k,(k7') € Kg, that is, k; <g k,. It also follows trivially that &, <g k, if
and only if k, = kg(k,) for some k; € Kg. Thus, for example, when S
represents stochastic ordering, G, is further to the right of F, than G, is of
F, if GoF;X(uw) < G,F{ (), 0 <u < 1. If S represents monotone likelihood
ratio ordering, G, will be further to the right of F, than G, is of F, if
G, F; Y(u) = h(G,F (u)) for some convex function k. This is illustrated by
the following two examples.

ExampLE 5.1. Consider the location family F(x — 6), and define G, =
F(x — 0,) and G, = F(x — 6,) with 8, > 6, > 6. Then F <, G, and F < G,.
Moreover, k, <, k,, where k;, = G,F~! and k,=G,F~! so that G, is
further to the right of F than G, is. .

ExampLE 5.2. Consider the family of beta distributions F,, with densities
fa(x) =ax*"',  a>0,0<x<1.

Then F, <, F, and F, <., F; when a; <p; and a, <pB,. Moreover,
when B,/a, > B,/a;, Fy F_ 'F, F; ' is convex and hence Fj is further to the

right of F, than F; isof F, .

6. Distances between ordered distributions. The qualitative distance
relation, introduced by (5.1) on pairs of distribution functions (F,G) € S by
comparing their corresponding k-functions raises the question of whether
there exists a metric d(F,G) which is consistent with the approach using
k-functions. To be consistent, such a metric must satisfy the following two
conditions: Since the k-functions are invariant under monotone transforma-
tions, the distance d(F, G) must also be invariant under monotone transfor-
mations. Formally, we shall require (i) that

d(F,G) =d(Fy~',Gy™") forally € ¥
and (i) that if k, = G;F7' € Kg, i = 1,2 with k; <g k,, then
ds(Fy,Gy) <dg(F,,Gy).
Condition (ii) immediately implies the additional desirable requirement that if
the ordering S, is stronger than S,, then
ds(Fy,Gy) <dg(F,,Gy) = dg(F,F) <dg(F,,G,).

A metric that satisfies (i) and (ii) above when S is stochastic ordering—and
hence also for any stronger ordering—is provided by the supnorm d,. Since

do(F,G) = sup|G(x) — F(x)| = sup |GF () —ul= sup |k(u) - ul,
x O<u<l1 O<u<1

d, s invariant under monotone transformations. Also, if %, k2, € Kg with

k{(u) < ky(u) for all u, then

do(Fy,G,) <do(F,,G,).
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ExampLE 6.1. Let G(x) = F(x — 60), 6 > 0, so that F <, G. Then
do(F,G) = sup {u—F[F'(u) -]}

O<u<l1

If F' is unimodal with a density f which is symmetric about ¢,, the supremum
is attained at ¢ = ¢, + 6/2, and hence

0 0
F =Flto+ =] —Flt,— =|.
do( ’ G) (tO 2 ) ( 0 2 )
Having defined a distance function consistent with stochastic ordering, we

next consider the orderings:

S;: hazard ordering
S,: the ordering in which F <g G if k(-) is star-shaped
S;: MLR ordering

and for each i = 1,2,3 define a distance function d; consistent with S; as

follows:
d(F,G) = sup ln((_;__(x)) :
x F(x)
dy(F,G) = sup ln(G(x) )‘
= x F(x) ||
ds(F,G) = s1:p ln(izi;) .

It is clear that d,, d,, and d, satisfy the invariance condition (i) given above.
That they also satisfy condition (ii) follows from the following theorem.

THEOREM 3. If ky, ko, ky(ki") € K, then
d,(F,,G)) <d,(F,,G,), i=1,2,38.
Proor. Clearly, the membership of k,, ky and ky(k7!) in Kg, i =1, 2 or
3, implies that
(6.1) k(u) <u, ko(u) <u and ky(u) = ky(u).
We now proceed by cases.
(1) For the S; ordering, (6.1) implies that

G;(x) GF Y (u) .
(6.2) dy(F;,G;) =In sup F}J.(x) =1In B =, s 1,2,

~and that ky/k, is nondecreasing. This latter implication is equivalent to
z;-2 F, 5 ()

(89 G1F1_1(u)

is nonincreasing in « .
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Therefore, G, Fy; (u)/u > G,F7 "(u)/u and the result for S, follows from
(6.2).
(ii) For the S, ordering, condition (6.1) implies that

u
6.4 dy(F.,G;)=In sup —————,
€4 (5 ) Osuzl G, F ' (u)

and the fact that ky(k;') € K s, implies that k,/k; is nondecreasing and
hence

u u
= ,
G,F;'(u) ~ GiFi'(u)
The result then follows from (6.4) and (6.5).
(iii) In the case of S;, (6.1) together with the condition that &’ is nonde-
creasing for j = 1,2, implies that
(6.6) dy(F;,G;) = max{—In £;(0%),In k;(17)}.

But %,(u) = ky(u), together with %;(0) = 0 and £;(1) = 1, j = 1,2, imply that
k(0%) > £y(0%) and & (17) < k%(17), and now the result follows from (6.6). O

(6.5) 0<u<1.

ExampLE 6.2. Let G(x) =e™™ and F=[e ** +e7*]/2, x> 0. Then

F <, G and we have
d(F,G GACON JS
, = sup|ln—= =In
1 ) xp F(x)
and
&(x) (5)
do(F,G) = sup|ln =In|—=]|.
AT G = s ‘ 2
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