The Annals of Statistics
1992, Vol. 20, No. 4, 2071-2086

ASYMPTOTIC COMPARISON OF CRAMER-VON MISES AND
NONPARAMETRIC FUNCTION ESTIMATION TECHNIQUES
FOR TESTING GOODNESS-OF-FIT

By R. L. EuBank! anp V. N. LaRiccia
Texas A & M University and University of Delaware

Two new statistics for testing goodness-of-fit are derived from the
viewpoint of nonparametric density estimation. These statistics are closely
related to the Neyman smooth and Cramér-von Mises statistics but are
shown to have superior properties both through asymptotic and small
sample analyses. Comparison of the proposed tests with the Cramér—
von Mises statistic requires the development of a novel technique for
comparing tests that are capable of detecting local alternatlves converging
to the null at different rates.

1. Introduction. The Cramér-von Mises (CVM) statistic is one of the
most popular tools for testing the one sample goodness-of-fit (GOF) hypothe-
sis. It is even commonly presented in elementary statistics courses. Despite its
popularity, it is known from empirical studies that the CVM test has poor
power against essentially all but location-scale alternatives to the null hypoth-
esis. In this paper we show that there are some simple, even naive, statistics
which are both more informative and better capable of detecting
nonlocation-scale alternatives than the CVM statistic.

Let X,,..., X, be a random sample from an absolutely continuous d.f. F,
and consider testing the hypothesis H,: F = H for H some specified abso-
lutely continuous df. Set V, = H(X,),i = 1,...,n, and let ﬁn be the empirical
df. of the V,. Then the CVM statistic for H, is

2 _ (YD _ _ G,
(1) C2= fo (D,(u) u) du njzl Gm)?
with
(2) @ = _i (V)
for
(3 p;j(u) = V2 cos jru.

The @, in (2) are called the components of the CVM statistic. Note that
they also provide a test for H,, since the null hypothesis is equivalent to
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Eq;, =0,j=1,2,....Inparticular, 4,, and d,, tend to be most sensitive to
location and scale departures from the null, respectively [Durbin and Knott
(1972) and Eubank, LaRiccia and Rosenstein (1987)]. The a in for j > 2 are
useful in detecting higher frequency alternatives to the null than those of the
location—scale variety. As noted by Durbin and Knott (1972), the severe down
weighting of the @, in (1) for j > 2 would appear to explain the poor power
properties for C; 2 agalnst nonlocation—scale alternatives that is generally
observed in s1mulat10n experiments.

The CVM statistic is an example of an omnibus test statistic. Such statistics
are designed for situations, where the alternative hypotheses are vague and
therefore need to be consistent against all alternatives. If, instead, specific
alternatives are of special interest, directional tests can be developed which
focus their power in the direction of these alternatives. This strategy has the
drawback that the resulting tests will generally not be consistent against all
alternatives and will have poor power against alternatives other than those
they were designed to detect.

Neyman smooth tests [Neyman (1937)] represent a compromise between
directional and omnibus tests. An example of a smooth type test is

(4 -nLa,

for m some fixed positive integer. While this test will obviously be inconsistent
for alternatives having Ed;, =0, j = 1,..., m, one might hope that a judi-
cious choice of m would lead to gains in the power of T, ,, relative to that of
C? for many alternatives due to the uniform weighting of the components in
(4). Similar statements can be made concerning other smooth and omnibus
tests. In support of this we note that there are numerous empirical studies
[e.g., Kopecky and Pierce (1979), Miller and Quesenberry (1979) and Rayner
and Best (1986)], where smooth tests have been shown to be more powerful
than common omnibus test statistics over a wide range of realistic alterna-
tives.

One goal of the present article is to shed some light on why smooth tests
can have superior power to omnibus tests in many cases of interest. Although
our analysis focuses on C? and statistics such as T,,,, we believe the basic
principles carry over to much more general settings and therefore have more
wide reaching implications.

The viewpoint of GOF taken in this article parallels that of Parzen (1979):
Namely, testing H, is equivalent to testing d(«) = 1, where d is the compari-
son density function

(5) d(u) =f(H Y(uw))/h(H " (u)), 0<u<l,

with A the H density and H™ () = inf{x: H(x) > u}. Thus one method for
testlng H0 is to estimate d using a consistent estimator d and then compare
d to 1 using some suitable metric. This has the advantage that when H, is
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rejected d furnishes useful information as to why rejection occurred. In fact,
d(H(x))h(x) provides an estimate of the true density for the data.

One natlAlral estimator of d in (5) is the truncated Fourier (cosine) series
estimator d,, = 1 + L™ ,d;,p;. Using the squared L,[0, 1] norm as a measure
of distance then glves the test statistic n/i(d,( u) — 1?du for H,. This
coincides with 7),,, in (4) except now m has the interpretation of a smoothlng
parameter for the density estimator. Thus, we can use data-driven methods
such as cross validation for selecting m and would anticipate that m needs to
grow with 7, at some suitable rate, for d,, to be consistent.

In Section 2 we show that if n, m — « at appropriate rates and T, ,, is
recentered and rescaled appropriately, it will have a normal limiting distribu-
tion under both H, and Pitman type alternatives approaching the null at rate
m'/%/Vn . In contrast, C2 has nontrivial power against alternatives approach-
ing the null as fast a 1/ Vn . Despite the disparity in rates for local alterna-
tives, we demonstrate that, in a certain asymptotic sense, 7, ,, can be expected
to have superior power to C2 for higher frequency Pitman type alternatives,
thereby giving an analytic explanation for the empirical results previously
cited.

In Section 3 we propose another omnibus test for H, and derive its
asymptotic distribution theory. The test is based on the estlmate d(u) =
1+ X2 1d;,p;/(1+Aj% of d(u). Here A > 0 is a smoothing parameter to be
determlned by the user or, possibly, by some suitable bandwidth selector. The
specific statistic that is considered is S,,, = n/{(d(«) — 1)?>du. If A > 0 at an
appropriate rate, S,, can detect alternatives converging to the null as fast as
1/ Vn A8, For suitably chosen m and A the Pitman asymptotic relative
efficiency of S,, to T,,, is found to exceed 1.46.

Finally, in Section 4, results from a small scale simulation are presented
which demonstrate that the asymptotics of Sections 2 and 3 extend in principle
to finite samples. The proofs of all results are collected in Section 5.

To conclude we note that tests for goodness-of-fit based on quadratic
functionals of nonparametric density estimators have also been considered by
Bickel and Rosenblatt (1973), Holst and Rao (1980) and Ghorai (1980). We will
discuss these further in the sequel.

2. Cramér-von Mises versus sums of components. We begin by con-
sidering the performance of C? and T,,,, under local alternatives to the null.
Thus, it will be assumed that for each n a random sample V,,,...,V,, is
obtained having (comparison) density
(6) d,(u) =1+b(n)é(u)
with 8 € L,[0,1] and b(n) — 0 as n — . Classically, interest has focused on
the case where b(n) = 1/Vn in (6). This derives from parametric statistics,
where parameters can be estimated with vz consistency. However, our tests
are based on nonparametric estimators for which v consistency is no longer a
possibility. Thus, we allow for more general alternatives with an initial goal
being the characterization of b(n) for T,,,
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For C? it is known that if 5(n) = n~/2 in (6), then [Shorack and Wellner
(1986)]

© (Z.+8,)
(7) 2o, ¥ B
-1 (Jm)

113 ”»

where ‘-, ”’ signifies convergence in distribution, the Z; are iid N(0,1)
random variables and

(8) 5, = jola(u)pj(u)du

with p; defined in (3). B
Let x2(b) denote a chi-squared random variable with a degrees of freedom
and noncentrality parameter b. Now for fixed m, and b(n) = n=1/2,

m 9 m
Tnm —d Z(Zj+6j) ~X'2n( 26.12)
j-1 j-1

Thus, a test based on this statistic will not be consistent against any alterna-
tive for which §; = 0 for j = 1,..., m. Consequently, we must let m grow
with n.

Intuitively if m grows with n, one then has a sequence of approximate
chi-squared random variables with increasing degrees of freedom. Hence, it is
not entirely surprising that T, ,, is asymptotically normal when recentered and
rescaled correctly. The precise large sample properties of T, are summarized
in the following theorem.

THEOREM 1. Assume that § € L,[0, 1] and that m = m(n) - « in such a
way that m5/n% — 0. Then, if b(n) = m*/*/ Vn in (3),

an = (Tnm - m)/Vzm ~d Yl’
where Y, is a N(|6/1>/ V2, 1) random variable.

One implication of Theorem 1 is that an asymptotic a-level test for H, can
be obtained by rejecting the null hypothesis whenever Z,, exceeds Z,, the
100(1 — a) percentage point of the standard normal distribution. This test will
have nontrivial power against alternatives converging to the null at rate
m/*/n . More specifically, its asymptotic power is a monotone increasing
function of |5/1%, with

9) . inf lim P(Z,,, > Z,,/m"/*5/Vn) =1 - ®(Z, - 1/v2),

I8ll=1 n—e

where Z,, is the 100(1 — a) percentile of Z,,, and P(A|b(n)5) denotes the
probability of the event A under the alternatives (6).
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In practice a data driven procedure for selecting m might prove beneficial.
For example, one could follow Hart (1985) and use the minimizer 7 of

2 moGy

Jn ,n
+ + Yy

n n-1 j=1n—1

a

(10) R(m)=—-(n+1) f‘,
j=1

Using arguments similar to those in Eubank and Hart (1992), it can be shown
that Theorem 1 is no longer valid for such stochastic choices of m and that
T, has a nonnormal limiting null distribution. Despite this fact 7, was
found to work well in the simulation study of Section 4.

Ghorai (1980) has studied the limiting distribution of statistics such as T,
under the null hypothesis. Our Theorem 1 represents an extension of his
Example 1 to local alternatives. Bickel and Rosenblatt (1973) give a parallel of
Theorem 1 for kernel density estimators. They show their test can detect
alternatives converging to the null at rate n! =7/2/2 when the bandwidth of
the density estimator is chosen to decay like n~”. If we make the analogy that
a bandwidth is like 1/m for a series estimator, then their local alternatives are
the same as ours when the number of terms in the series is allowed to grow
like n”.

Another example of nonparametric rates for b(n) can be found in Holst and
Rao (1980) who show that the Dixon (1940) test detects alternatives converg-
ing to the null at rate n~'/% The Dixon test can be viewed as a quadratic
functional of a histogram type density estimator with the number of bins
having the same order as the sample size. This corresponds, roughly, to taking
m =n in the density estimator d, =1 + L7 16;,p; and would result in
b(n) = n~'/* in Theorem 1 if the condition m®/n% — 0 were not violated.
Conventional smoothing practices would suggest choosing m < n. For exam-
ple, optimal rates of growth for m in d, are of the order n'/® and n'/%
corresponding to comparison densities with square integrable derivatives and
square integrable second derivatives with periodic first derivatives, respec-
tively. Both rates satisfy the conditions of Theorem 1 and give local alterna-
tives of the order n %% and n~%2° that are much closer to the n~1/2
parametric rate.

From (7) and Theorem 1 it may appear that the CVM test will be more
effective than T,,, in detecting alternatives that are close to the null. How-
ever, this is not entirely true. For example, it is easily shown that
lim;_lim, . P(C? >c,,lp;/ Vn) = a, where c,, is the 100(1 — ) per-
centile of C2. Hence
(11) ” iﬁlfl lim P(CZ>c,,|6/Vn) = a

sll=1 n—w
and unlike Z,,,, the asymptotic power of C?2 is not monotone increasing in

15112, In fact, letting
- 2
o2 — (Z; +9;)
)’

)

we have the following theorem.
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TueoreM 2. For each j =1,2,... let §; be a constant, and set A) =
8;p,(*). Further, let B be an arbitrary element of (a,1) and let c, be the
100(1 — a) percentile of C?. Then, lim, _,, P(C? > ¢ |A)) = B, if and only if
8, ~ Aj for some constant A.

This theorem and (11) are indicative of the inability of C2 to detect higher
frequency alternatives to H,. Further, along with (9) they give an indication
that the power of T,, might be competitive with that of C? at higher
frequencies. We now describe a stronger result along these lines.

Our interest will be focused on alternatives corresponding to certain subsets
of the collection of square summable sequences [,. For each integer m and
constants 0 < y; < y, < « define

© m
(12) €.(v1,7v2) = {c = (cq,Cp,.-.) €y X Cjz <7ys X ‘3]2/.1'2 = 71}'
j=1 j=1
Then we are able to establish the following result.

THEOREM 3. Given B € (a, 1), there exist values of v, and vy, such that if
m2/n > 0

m
(13) lim  inf P[C2>c,.| X cjp;/Vn| =B
n—o ce—gm('yl,‘yz) j=1
and
m
(14) lim inf P|Z,,>Z,|m"* ¥ cp,/Vn|=B.
n— ce{m(yl’YZ) Jj=1

One can show that (13) and (14) hold with equality if we allow different
choices of y; and v, for C,ft and T,,,. It is unclear whether this remains true
for the situation of the theorem, where both tests are studied under the same
alternatives. Nonetheless, we can still regard Theorem 2 as indicating that C?
and Z,, will have comparable power for alternatives of the form d,(u) =
1+ n~12gm jeipi(u) and d,(u) = 1 + m'/4n~Y /227 c;p;(u), at least for B
near 1. However, the higher frequency portions of these two alternatives
(corresponding to p; with j > m'/*) will actually be closer to the null for Z,,,
than for C2. This result gives some theoretical justification for the experimen-
tal conclusion that smooth type tests have better power than CVM type
statistics for many nonlocation-scale alternatives.

Rosenblatt (1975) and Ghosh and Huang (1991) compared the Bickel and
Rosenblatt (1973) test to others that are capable of detecting alternatives
converging at parametric rates. They show that the Bickel and Rosenblatt
statistic can be more effective in detecting alternatives to uniformity that have
sharp peaks at some finite number of points. Such densities can also be viewed
as high frequency alternatives. Thus, one might consider their results as
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further evidence that the Cramér-von Mises statistic is not effective against
higher frequency departures from H,.

To conclude this section we note that our basic results can be extended,
with some additional labor, to include other CVM type statistics and
location—scale composite hypotheses. One can show, for example, that a paral-
lel of Theorem 1 holds for the components of the Anderson-Darling statistic if
m®/n? - 0.

3. Another omnibus test. Motivated by the connection between estima-
tion of d(-) and the test statistic T),,, discussed in Section 1, we now propose
another possible test for H,. This procedure is shown to be preferable to T, ,,
on the basis of Pitman asymptotic relative efficiency.

The statistic to be considered is
S,=nYy —2" _ A>o0.
i=1 (1 +Aj?)

It is easy to see that S,, = n/i(d,(u) — 1) du, where

d(u)y-1+ % np,(u)
o1 1+ 142
is an estimator for the comparison density d(u). This estimator is similar to
those considered in Wahba (1977) and stems from work on spline smoothing.
Methods discussed in Wahba (1981) can be modified to obtain adaptive proce-
dures for choosing A from the data.

S,,, can also be viewed as a type of compromise between 7T,,,, and C2. While
T,, gives equal weight to the first m components and ignores the rest,
roughly speaking, S,, uniformly weights the first A ~'/? components and
down weights the remaining ones.

The asymptotic distribution theory for S,,, is provided in our next theorem.

THEOREM 4. Assume that & € L0, 1] and that n — 00,’ A —> 0 in such a
way that nA%>/* — o, Then, if b(n) = 1/n'/2\/8 in (3),

S = Eoa(l + A7)
"o 1/2

{2mn,(1 + 037

where Y, is a N(161°/1/21,,1) random variable and 1, = [§(1 + y*)~*dy.

ZnA =

—d Yz,

The theorem states that for suitable sequences of A’s one can test H, by
rejecting if Z,, > Z,. The resulting test will have nontrivial asymptotic power
against alternatives converging to the null at the rate 1/ Vn A%,

The square root of A is essentially a bandwidth for the estimator d and
plays the same role as 1/m for Z,,, in Section 2. Thus, we may align the local
alternatives in such a way that Pitman asymptotic relative efficiencies can be
computed.
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COROLLARY . Assume the conditions of Theorems 1 and 4 hold and let
m ~ Cpn? and A2 ~ Cgn™" for some 0 <y < 1. Then, the asymptotic rela-
tive efficiency of Z,,, to Z,,,, is (CpCg/15)/ 2™,

Assume that d has a square integrable derivative. Then ‘“optimal’ choices
for m and A are provided by taking y = 1/3, Cp = [|18'lI?/721'/% and Cg =
[72L, /181713 with 1, = [&(1 + y2)~2dy. The asymptotic relative efficiency
then becomes (1173 /1,)3/% = 1.46. So, S,,, leads to a test that can be asymptot-
ically over 40% more efficient than T, .

It is also possible to establish a parallel of Theorem 3 for comparing S,,
and C2. The alternatives to be considered will now be of the form d,(u) =
1+n" 227882 e, +Aj%)p; and d,(u) =1+ n" 2L ¢, jp,; for Z,,
and C?2 respectively. The same essential conclusions hold for this case.

4. Finite sample comparisons. To determine if the asymptotic results
of the previous sections reflect the finite sample properties of our tests for
fixed alternatives, a simulation experiment was conducted. A variety of alter-
natives were examined along with different choices for m and A.

All our experiments were based on samples of size 50. To detect the
sensitivity of S,, and T,,, to the selection of A and m, several values were
examined for these parameters. Specifically, A = 107! and 1072 and m = 3, 6
and 9 were used. Since n =50, A = 10~ ! and 10~ 2 correspond roughly to
uniform weightings of the first three and five Fourier coefficients, respectively.
We also considered the performance of T,; with 7 the minimizer of (10) to
see the effect of a stochastic choice for m.

Critical values for C2 were taken from Shorack and Wellner (1986). Appro-
priate 5% and 10% level critical values for T,,,, S,,, and T, were then found
by simulation from the null distribution of these statistics. In doing this 5000
replicate samples of size 50 were used.

Once appropriate critical values had been determined the basic experiment
was replicated 1000 times. A different random seed was used for each case.
The results are shown in Tables 1-3 as the proportion of rejections in 1000
samples of size 50 for each test.

TaBLE 1
Proportion of rejections in 1000 samples with n = 50 and a = 0.10 for cosine alternatives

Tnm aniz th Cr%
(p, J) m=3 m=6 m=9 A=10"1 A=10"2
0.5,1) 0.664 0.530 0.444 0.609 0.757 0.569 0.795
0.5,2) 0.658 0.538 0.445 0.563 0.626 0.559 0.346
(1,3) 1.000 0.998 0.995 0.999 0.992 0.997 0.614
(1,4) 0.141 1.00 0.998 0.997 0.867 0.999 0.311
(1,8 0.094 0.130 0.998 0.983 0.145 0.935 0.118

1,9 0.117 0.113 0.995 0.983 0.139 0.829 0.119
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TABLE 2

Values of p for which T,,,, and C2 have equivalent empirical power

2079

m=3 m=6 m=9
i e mVii e mVi/j p  mVi/j P(CE>eulp=1
2 0.800 0.860 0.900 0.783 0.900 0.658 0.985
3 0.480 0.577 0.520 0.522 0.580 0.439 0.614
4 — — 0.330 0.391 0.380 0.329 0.311
5 — — 0.250 0.313 0.270 0.263 0.195
6 — — 0.190 0.260 0.220 0.219 0.153
7 — — — — 0.140 0.188 0.125
8 — — — — 0.110 0.165 0.118
9 — — — — 0.110 0.146 0.119

Our first type of alternative was included to observe the behavior of T,,,,,
S, C2 and T, ,, against high frequency alternatives to H,. The null density
for this case was the uniform with cosine alternatives,

d;(x;p) =1+ pcos(mjx).

The choice of p determines the distance of the alternative from the null
density, while j can be manipulated to obtain higher or lower frequency
departures from uniformity. For Table 1 we chose j =1, 2, 3, 4, 8 and 9, and
for each j, p was selected so that reasonable comparisons between the tests
could be made.

The results in Table 1 for the cosine alternatives are as predicted by the
asymptotic analysis. That is, for each value of m the power of T,,, is both

TABLE 3
Proportion of rejections in 1000 samples with n = 50 and a = 0.05 for beta and sine alternatives

Tnm anﬁ SnA Cr%

(a,b) m=3 m=6 m=9 A=10"1 A=10"2

Beta Alternatives
3,3) 0.997 0.993 0.968 0.982 0.995 0.993 0.809
(2,2) 0.735 0.644 0.537 0.608 0.666 0.664 0.206
(1.5,1.5) 0.267 0.203 0.157 0.209 0.208 0.207 0.060
(0.5,0.5) 0.735 0.834 0.813 0.836 0.734 0.873 0.410
(2,3) 0.985 0.972 0.917 0.951 0.992 0.974 0.967
3,2 0.990 0.966 0.915 0.945 0.993 0.972 0.958
(1.5,2) 0.689 0.570 0.466 0.561 0.718 0.609 0.555
(2,1.5) 0.665 0.546 0.447 0.548 0.717 0.598 0.556
(0.8,1.5) 0.916 0.827 0.751 0.857 0.955 0.868 0.964
(1,0.5) 0.979 0.979 0.977 0.977 0.991 0.986 0.988

Sine Alternatives
j=2 1.00 1.00 1.00 1.00 1.0 1.00 0.872
j=4 0.397 0.986 0.998 0.999 0.416 0.998 0.115
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stable and high over the first m frequencies. It then drops off dramatically.
The same remarks hold for the power of S,,, although the drop in power is
more gradual. It therefore appears that both T,,, and S,, can have excellent
power against trigonometric type alternatives if m and A are chosen correctly.
On the other hand, the power of C? decays drastically for j > 1. The adaptive
test T, ; appears to have power near that of the best of the three tests based
on deterministic selection of m without their associated drops in power.

The second part of the simulation was aimed at detecting the degree to
which the implications of Theorem 3 would be realized in finite samples.
According to the theorem, T',,, should have about the same power against
d,(-,m'/*/j) as C? has against d ,(-,1) for m'/* <j < m. Table 2 records the
values of p for which T,, has the same (or greater) empirical power under
alternative d;(-, m'/*/j) as C? obtained against d (-, 1). For example, when
m = 4, we see that C? has power 0.311 against d (-, 1) while 7,4 had power
at least that large against the alternatives d (-, 0.33). This is actually better
than predicted by Theorem 3 since 0.33 < m'/*/j = 0.391, in this case. The
values of p in the table are frequently less than m'//j and in all cases less
than 1 so that T, is in fact detecting alternatives that are closer to the null
than those for C?2.

Finally, cases in which the alternative did not lie in the direction of any
specific cosine function were considered. Since d(-) is a density on [0, 1] a wide
class of alternatives is provided by choosing d(-) to be a beta density d(u) =
(T(a + b)/T(@)T(B)u* Y1 — u)®~1. To obtain multimodal alternatives we
also considered comparison densities of the form d(u) = 1 + sin(mju) with
j =2 and 4. The results of these experiments are reported in Table 3. For
some cases where d(-) was J shaped or skewed unimodal (i.e., @ # b) C2 had
slightly higher power than the nonparametric function estimation type tests.
However, when d(-) was either symmetric, U shaped or multimodal (@ = b for
the beta and all the sine functions), T,,, S,, and T, all significantly
outperformed C2.

In summary the experimental results support the asymptotic analysis. They
indicate that, for anything but lower frequency alternatives to H,, either S,,,
or T, are to be preferred to CZ2. However, the power of both S,, and T,,,
can be quite dependent on the choice of A and m. The simulation suggests
that it may be feasible to use data driven methods for choosing the smoothing
parameters to overcome this problem.

5. Proofs. In this section we establish Theorems 1-4. We begin with
some notational preliminaries.

For any density of the form (6) we denote its df by D,J(u) =
u + b(n)[{8(¢) dt. The local alternatives being considered are then sequences

of random samples V,,,...,V,, with df’s D,. We also use the notation
¢ =27_(jm)"? and

in all that follows.
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Proors oF THEOREMS 1 AND 4. The proofs of Theorems 1 and 4 rely on two
lemmas. The first lemma can be verified by direct calculation while the second
is a consequence of Proposition 3.2 in de Jong (1987).

LeEmmMA 1. For local alternatives of the form (6):

(@) a;, = 0(b(n), uniformly in j,
. L 3 (1 +0(b(n)))/n, j==Fk,
(ii) Cov(ajn,a,m) = 0(b(n)/n), %k,
uniformly in j and k and

(i) [o(p;(u) — a;,)*d (u) du = OQ1) uniformly in j.

Lemma 2. Let {Y;,}l.y, n=1,2,... be a triangular array of random
variables that are iid within rows. Set w;;, = w;;,(Y;,,Y;,) + w;;(Y;,,Y,,)
for some function w;;,(-, ) and assume that Ew;;,|Y;, =0 for all i,j <n.

i Jjn
Define
w(n) = > Wijns
l<i<j<n
2 _ 2
o(n)”=Varw(n) = )} Ew},,
l<i<j<n
_ 4
G, = > Ew;;,,
l<i<j<n
_ 2 2 2 2 2 .2
Gy = P [Ewijnwikn + Ew;;,wip, + Ewkinwkjn] )
1<i<j<k<n
and
G = Z [Ewijnwiknwljnwlkn + Ewijnwilnwkjnwkln

l<i<j<k<l<n
+Ewilnwiknwjknwjln]'

Then, if Gy, Gy and Gy are all of smaller order than o(n)*,
w(n)/o(n) -4 N(0,1).

The proof of Theorem 1 now proceeds in the following fashion. Write
m
Z, = (n Y (G, - ajn)2 - m)/v2m +R,
j=1
with
m m
R, = [Zn Y (@, —a;,)a;, +n) a?n] V2m .
j=1 j=1

We handle the first term using Lemma 2 and show that R, —, 5112 / V2,
where “ =, ”’ denotes convergence in probability.
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To see that R, —p |I5]>/ V2, note that

ER. —n m o a?, nb(n)? i‘: 52 % 87 15117
= = o = —_ S —
T V2m vem 207 T4 V2 V2

while the variance of R, is O(m~'/2 + m®%/Vn). The result then follows
from Chebychev’s inequality.
Now write

n i (G —a0) = m)/‘/ﬁ = (wy(n) + w(n))/V2m
j=1

for

_ i : 2

wy(n)=n ! Z Z (PJ(Vzn) - ajn) -—m
i=1j=1

and

w(n) = Z Wi jn

l<i<j<n

with

2 m
Wijn = ; ;1 (ps(‘,ln) - asn)(ps(an) - asn)'

We see that w,(n)/ Vm —p 0 since Ew,(n) = O(m®*/Vn) and Var w(n) =
O(m®2/n), by Lemma 1. The random variable w(n) satisfies the conditions of
Lemma 2 and tedious calculations reveal that o(n)? = 2m(1 + o(1)), Gy =
0((m/n)%), Gy = O(m?/n) and Gy = O(m). For example, we have
16
Ewi2jnwi2kn = ‘n"4‘ Z Z Xl: ZEAriArjAsirAsjAliAlkAtiAtk
r s t
13
with A,, =pV,,) — a,,. Now use the independence of the Vj,, the
Cauchy-Schwarz inequality and Lemma 1 to see that this expression is
O(m?/n*) if m®/n% - 0 and verify our claim for Gy;. Thus, Theorem 1 has
been proved.
The proof of Theorem 4 proceeds along similar lines. Set e, = o, @+
AjD72 ey, = TN+ A7 L = [5( +y2)~2dy and 1, = [5(1 + y®) " *dy.

Then write
2
n(Gjn = @jn)
Z,, = nY I —e.| /2, +R,
g j=1 (1 +/\j2)2 ! 2
with
G, —@;p)0ip n az,
R, = 2nz—(L—J—)21—+nZ—J——2 2e,, .
=1 (1 +Aj%) i=1 (1 +2j?)

We first show that ER, — ||5||2/ V2L, .
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Arguing as in Wahba (1975) we can show that e;, = A~'/?],(1 + o(1)) with
0(1) » 0 as A — 0. Therefore,

n n
ER, ~\4n Y a2, /(1 + Aj2)°Y20, = ¥ 82/(1 +Aj%)"/21, .
j=1 j=1

Let g, = X7_,8;p; and observe that lg, — gl + (A /m®lg'll? is minimized
over all functions g with g’ € L,[0, 1] by g,, = 7_,8,p;/(1 + A;j?). Thus, for
any g with g' € L,[0,1], llg, — g,.I” <llg, — glI° + (A/7)llg’|”. In particu-

lar, we have |lg, — g,.1° < (A/7lig,|I> < (A/m)6]1. Therefore,
n
Y 6%
j=1

<|lg, — &ull + 22, — &urlllI8] = O(YX).

To finish the first part of the proof note that nX"_(d;, — a,,)a;,/ yea,
has zero expectation and variance of order A/, Consequently, R, —p
18117/ /21 .

Now set w;;, = 2/n)Z;_1(p(V;,) — @, XPp(Vin) — a,) /(1 + AR?)?,
w(n) =Ty, <.W;j, and define w(n) = n" 'L} ,w;;, — e,,. Using Lemma
1 and the fact that £7_,(1 + Aj?)~* = O(A~/?) for k = 1,2,..., we find that
Ew{(n) = O(1/ Vn 2%/8) and Var w(n)/e,, = O(1/ Vn A%/®). So, wy(n) »p 0
if nA%4 > o,

To employ Lemma 2, calculations reveal that o(n)®>~A~"12%, G,=
0(nA)~2), Gy = 0((nM)™Y) and Gy = O(A~1/2). This completes the proof of
Theorem 4. O

n o2
- 82/(1 + Aj?)
j=1

Proor or THEOREM 2. The sufficiency of &; ~ Aj follow from the inequal-
ity
P(C? > ¢|8;) = P((2; + 8;)" > e (jm)’)
=1- (D(‘/ij - Sj) + <I>(—1/gj‘rr - SJ»).
Take §; = \/Z jm — ® X1 — B) to get B as a limiting lower bound.

To see the necessity of the condition set C¢ = £7_,Z?/(j7)* and note that,
for any ¢ > 0,

p(c?> ca|AJ~) <P(C}>c,— 2% |Z; +8;|/jm <¢&) + P(|Z; + 8| /im > ¢)
<P(C¢>c,— &%) +1—Q(gjm = §;) + ®(—¢ejm — 3;).

If |8, grows slower than j this upper bound limits to P(CE¢ > c, — £). Now
let £ tend to zero to finish the proof. O

Proor oF THEOREM 3. We begin by establishing (12). For this purpose let
8,(-;¢) = L%_,jc;p;. Then, for ¢ € €, (v,7,),

P(Cf > cnaln_1/28m(-;c)) > P(Anm > (2%, — yl)/2ln_1/28m(-;c))
with A,,, = L™ Vn(d,, —je;/ Vn)e;/j.
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Now A,,./Vn is the average of n iid random variables Y.,
Lrelp (V) —je;/Vnl/j,i=1,...,n. The Y,, have mean zero and vari-
ance of order X e?/i% + 0(m3/ 2/ 1/_ ), because I%_;c? < y,. Also,

(B, < ¥ (%)[/:ij(u) —je; V(1 +n~V%, (use)) du

Jj=1

1/3

Since
1 . 3 1/3
(/0 |p;(w) —je;/Vn | (1 +n=1%,,(u;c)) du) — 1+ 0(m¥2/Vn),

EIY,, | < (yym%) (1 + O(m*2/Vn)),

uniformly over ¢ € €, (y,,y,). An application of the; Berry-Esseén theorem
[Serfling (1980) page 33] then shows that

P(ﬁ Zn) Y,,/(Var Y;,)"? > t) -1+ ®(2)
i=1

sup
t

< (72720)1/2(1 + 0(m3/2/\/77))/\/;('yl 4 0(m3/2/1/;7))3/2’
for each value of n. Thus,
P(Aup 2 (%00 = v1)/28,,(-50)/Vn )
21- ¢((w Cra = 71)/2(Var ¥;,)'/%) + 0(n~"?)

uniformly over c¢ € ¢,(y,, vy). Taking limits we then find that
lim, ,,inf,c, . . P(C? > c,,In""?5,(-;¢)) is bounded below by the
smaller of 1 — ®((w®lim ¢, — v,)/2y/y;) or 1 — ®(7%lim c,, — ¥1)/2y/72)
and (12) has been shown.

To prove (13) set 3,,(-;¢) = L7 1¢;p,(-) and observe that

P(Zym = ZJm/*,,(-5¢) /Vn)

> P(n( il(djn - ajn)2 - m)/1/2_m

R, 27, - yl/mmwam(»c)/ﬁ)
with

nY, = f S(Pi(Vin) = ¢;m 4/ ) /Y 2nml

| L.[ng

Now EY,=0 and VarY, = O(1/ Vmn) uniformly in c. Consequently, it
suffices to work with A,,, = (X7 (d;, — a;,)* —m)/V2m.
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Let Uy, U, ... be iid uniform (0, 1) random variables and take G, to be the
empirical d.f. of U,,...,U,. Defining the functional L by
/ V2m

for P(u) = \/§~ sin7ju and G € L,[0, 1], an integration by parts reveals that
A,, =LGn(D, — D)) with D, the empirical d.f. of VipsooosV,,. Since
L(/n(D, - D,)) and L(G/n (G, D, — D,)) have the same distribution, we can
restrict attention to the properties of L(vn (G, > D, — D,)) in what follows.

A direct calculation using the Gateaux derivative of L shows that

IL(Gy) - L(Gy)| _
< (40/\/’;{)SUPS|G1(S) - G2(8)|(sups|G1(s) - Gz(s), + sups|G1(s),).

It is known [Csorgd and Révész (1981) Theorem 4.4.1] that there exists a
sequence of Brownian bridge processes {B,(-)} such that sup,|G,(s) — B,(s)|
= O,(log n/ Vn). Thus, we obtain

|L(Vn(G,*D, - D,)) - L(B, * D,)| < 0,(log n/Vnm).

Similarly, using the modulus of continuity of the Brownian bridge process
[Csorgé and Révész (1981) Theorem 1.4.1] and the fact that suplt — D, (¢)| <
m!/*(yye)*/?/Yn, we find that |L(B,°D,) — L(B,)| = 0,(log n +
log m)/m!/*/n). We note in passing that these calculations can be used in
place of Lemma 2 in the proof of Theorem 1.

Combining all our approximations we find that, given ¢ > 0, there exists an
n, such that for all n > n,,

L(G) = g(folg(u)c;(u)du) /(jw)z—m

2

Xm — M Y1 o(1)
P(Z,,>Z,|m"* (-;e)/Vn)=P|~"—x—>Z - —= +¢| +
(nm alm m( c)/ n) /_zm = a /2 £ 82

with o(1) > 0 as n — « uniformly over ¢ € €,,(y,,y,) and x2 a central
chi-squared random variable having m degrees of freedom. By taking the
infimum, letting n — o and then letting ¢ — 0, the desired result is obtained.

O
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