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FIXED SIZE CONFIDENCE REGIONS FOR PARAMETERS
OF A LOGISTIC REGRESSION MODEL!

By YuaN-cHIN IvAN CHANG AND ADAM T. MARTINSEK
University of Illinois

Let (X;,Y;) be independent, identically distributed observations that
satisfy a logistic regression model; that is, for each i, log[P(Y; =
11X,)/P(Y; = 0IX,)] = X7B,, where Y; € {0,1}, X; € R? and Bo €R? is
the unknown parameter vector of the model. The marginal distribution of
the covariate vectors X; is assumed to be unknown. Sequential procedures
for constructing fixed size and fixed proportional accuracy confidence re-
gions for B, are proposed and shown to be asymptotlcally efficient as the
size of the region becomes small.

1. Introduction. For any confidence set (CS), there are at least two
important requirements. The first one concerns the coverage probability, that
is, for a given a € (0, 1), we wish to have P,(§ € CS) = 1 — «, for each 6 € 0.
The second requirement concerns the precision of the confidence set. It is
undesirable to make a uselessly imprecise statement, even if it can be made
with great confidence (as an extreme example, note that the entire real line is a
100% confidence interval for any real-valued parameter). For instance, suppose
X, X,,... are iid. random variables and EX = u, Var(X) = 02 < o, If o2
known, then the fixed sample size confidence interval (CI) with endpoints
X, + d has approximate coverage probability 1 — « pr0v1ded o? = (d?n) /za /2,
where 2, o satisfies @(z, ,,) — P(—2, 2) 1 —a. It is clear that if o?
unknown, then there is no fixed sample size procedure (f.s.s.) that can achleve
this goal—to construct a CI with approximate coverage probability 1 — « and
prescribed width 2d at the same time. Therefore, under such circumstances, a
sequential procedure is the only way to achieve this goal (asymptotically).

The original idea of the fixed width confidence interval appears in Stein
(1945, 1949). In Chow and Robbins (1965), a very useful method for construct-
ing a CI for an unknown mean with prescribed coverage probability and
precision has been presented. In their paper, they proved that the sequential
procedure they presented is asymptotically consistent (the coverage probability
converges to the prescribed probability) and asymptotically efficient (the ratio
of the expected random sample size to the unknown best fixed sample size
converges to 1 as the width of the CI goes to 0). Their ideas have been
extended to higher dimensional cases and to regression models [Gleser (1965),
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Albert (1966), Srivastava (1967, 1971) and Finster (1985)]. In this paper we
consider fixed size confidence ellipsoids for parameters of a logistic regression
model.

Assume that (X,,Y;), i =1,2,..., are independent observations, where Y;
are binary variables, X, are p X 1 vectors and for each i, (X, Y;) satisfies

log{m} = X;Bo>

where B, € R? is unknown. Then

(1.1)

exp(X7B,) .
PlY. =1X,] = =p,, Y |X, ~ Ber(1, p,), f hi.
[ i I t] (1 + exp(xz‘ 0)) pt or ll i er( pl) or each i
Assume further that (X,,Y;), i =1,2,..., are iid. This model is relevant to

observational studies, such as cohort studies. Then an estimate of B, can be
obtained by maximizing the conditional likelihood function. In general, there is
no explicit solution for the conditional maximum likelihood estimator (MLE)
in the logistic regression problem. Therefore, the conditional MLE in this case
has to be computed by an iterative method.

The logistic regression model is a very commonly used statistical tool in
medical applications and other areas. For example, the response variable Y;
may be coded 1 if the ith person we observe is diseased; 0 if not. The
components of X; would then be covariates or risk factors.

We will assume throughout that for any vector subspace V of R? with
dim(V) < p,

(1.2) P(X;eV) <1
It can be shown that if EIIX1H2 < o, then the MLE f}n converges to B, a.s. and
if E|IX||® < w, it is asymptotically normal,
Vn (B, = Bo) = N(0,,%7Y),

where

eXp(X’]I_‘B 0) X T

2818

[1 + exp(XTB,)]
is the unknown Fisher information matrix or covariance matrix of Y;X;
[Stefanski and Carroll (1985), Grambsch (1989) and Chang (1991)].

The asymptotic covariance matrix contains the unknown vector B, so it
usually will be unknown. Therefore, there is no fixed sample size procedure
that can be used for constructing a confidence set with prescribed coverage
probability and precision. Only a sequential procedure can offer the possibility

of achieving both goals. .
"It follows from the asymptotic normality result for 8, that

(B, = Bo) 3u(Bn — Bo) = xX(p), asn -,

(1.3) 3=E
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where 3, = £7_ (exp(X7B,)/I1 + exp(X73,)12)X,;X”. For any d > 0, let
(1.4) R, - {ZeR(2-4,) $,(Z-B,) <a%p),

where A® is the smallest eigenvalue of 3. Then R, defines an ellipsoid with
maximum axis equal to 2d (d > 0), and it is in this sense that the size of the
ellipsoid is fixed. Moreover, for any « € (0, 1),

P{B,eR,} =1 —a,

provided dZ\® = a2(+), where a? satisfies P[yx2%(p) < a’l =1 - a.
a/n)s, -3 almost surely as n — o, which implies that (1,/7)A%> converges
to A®) almost surely as n — oo, Where AP) i the smallest eigenvalue of the
covariance matrix 3. Hence the (unknown) sample size n = a®/d’\?) will
achieve approximate coverage probability 1 — a.

(*) suggests the stopping rule

n a?
(1.5) T, = inf{n > 1: 49 > ?}

and the confidence ellipsoid Ry, where a, - a and R, is defined by (1.4).
Then Ry, has maximum axis 2d. Moreover, we have the following theorems
whose proofs are given in Section 2.

TurEoreEM 1.1. IfE|X,|? < o, then:

(i) T, is finite almost surely, T, is increasing asd — 0 and T; = » a.s. as
d — 0. Moreover, lim, _, , d*T;XP)/a? = 1 a.s.,
(ii) 21/2(BTd Bo) = N(Op, I,.,) asd— O
(iii) (BTd BT de(BTd Bo) 2 x*(p) as d >0 and lim,_, P{B, €
Rz} = 1 — a (asymptotic consistency).

THEOREM 1.2 (Asymptotic efficiency). IfE|X,||* < , then {d?T,: d € (0, 1)}
is uniformly integrable and lim, _, , E[(d?T,;A\?)/a®] = 1.

The third part of Theorem 1.1. states that the coverage probability of the
sequential fixed size confidence ellipsoid is asymptotically, as the size of the
ellipsoid approaches zero, the desired value 1 — a. Theorem 1.2 asserts that
this is achieved with an expected sample size that is asymptotically equivalent
to the nonrandom sample size that would have been used had A? been
known.

REMARKS. For the case p = 1 (logistic regression through the origin, with
no intercept), the moment assumption for asymptotic consistency may be
reduced from 3 to 2, and the moment assumption for asymptotic efficiency
may be reduced from 4 to 2. See Chang (1991, Chapter 3) for details. Chang
(1991) also gives results analogous to Theorems 1.1 and 1.2 for appropriate
two stage procedures.
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The proof of Theorem 1.1. relies on results of Chow and Robbins (1965) and
Gleser (1969) and is not difficult. The proof of Theorem 1.2 is much more
involved. It is natural to try to apply nonlinear renewal theory [see, e.g., Lai
and Siegmund (1977, 1979) and Woodroofe (1982)] to this problem, but it
appears to be very difficult to check the necessary technical conditions for the
implicitly defined ﬁn The proof given in Section 2 involves use of “last times”
(Chow and Lai, 1975), along with concavity and monotonicity properties of the
log-likelihood function and its derivatives.

One crucial difference between our results for the logistic regression model
and previous work on the general linear model, is that in the latter the
asymptotic covariance matrix of the estimate depends only on the design and
on an unknown nuisance parameter o2 [see Finster (1985)]. In the logistic
regression case, by contrast, the asymptotic covariance, matrix depends on the
(unknown) parameter of interest B,.

It is important to note that the ellipsoid Ry, puts bounds on individual
components of B,, and hence with asymptotic confidence at least 1 — a one
can give bounds for the (multiplicative) change in the odds when the value of a
particular covariate changes.

Sequential likelihood estimation problems have been considered by other
authors, for example, Grambsch (1983, 1989) and Yu (1989). In Grambsch
(1983), a sequential estimation procedure using the observed Fisher informa-
tion to define the stopping time and to obtain the required estimation accuracy
has been presented. However, the asymptotic efficiency of the stopping time
has not been established. In Yu (1989), a related problem has been considered.
In his work, he successfully showed that a sequential procedure for construct-
ing a fixed width confidence interval for an unknown parameter, with its MLE
as the center of the CI, is asymptotically consistent and efficient (in the i.i.d.
case). In Grambsch (1989), she extends her results to the multidimensional
case with some applications to logistic regression problems. She proposes a
stopping rule that depends on an estimate of the smallest eigenvalue of the
Fisher information matrix. In her work, she assumes the Fisher information
matrix can be computed as a function of the unknown parameter, and there-
fore so can the eigenvalues. Then, the estimators of the Fisher information
matrix and its smallest eigenvalue can be obtained by plugging in the maxi-
mum likelihood estimator of the unknown parameter. But in order to compute
the Fisher information matrix, one needs to know the underlying distribution
first. In the logistic regression model, this means one ought to know the
distribution of the explanatory variables. In practice, this usually will be
unknown, so the stopping rule in Grambsch (1989) will be very difficult to use.

The stopping rules proposed in this paper are based on the observed Fisher
information matrix and its eigenvalues. Therefore, they can easily be com-
puted by standard routines (e.g., Cholesky decomposition). In addition, by the
methods used here in the proof of asymptotic efficiency, one can also prove the
asymptotic efficiency of Grambsch’s (1989) stopping rule [see Chang (1991)].

Section 3 gives results from a small Monte Carlo study of the sequential
procedure. Section 4 contains a brief discussion of estimation with fixed
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proportional accuracy and estimation of a particular linear combination of the
components of B,.

There are other possible approaches to the fixed precision problem. Instead
of ellipsoids, one could consider spheres, as proposed in Gleser (1965) for the
linear regression case, rectangular regions or more general regions. One
advantage of the approach presented here is its computational simplicity: The
stopping rules corresponding to other regions are much more complicated.
Moreover, the analysis in such cases does not appear to be amenable to the
methods used in the proofs given here.

2. Proofs.
Proor or THEOREM 1.1. (i) follows directly from Chow and Robbins (1965,

Lemma 1). It is clear that (ii) implies (iii). So, only (ii) needs to be proved. Let
1.(B) be 1/n times the log-likelihood function,

1 12
(2.1) 1(B) = ;log[Ln(B)] - L {Y(X7B) — log[1 + exp(X7B)]}.
i=1
By a Taylor series expansion and some rearranging,

(2.2) izﬂ(én—ﬁo)=21/22,:li,,(én—ﬁo)=21/22,:1( z)
i=1

where
exp(X7B,) o
Zi_Yix"_Txp(Xﬁ;O_) i l—].,2,...,
and
exp(Xg'~n) r

S.= 2.4
igl [1 + exp(X;f"Bn)]2

for some B, between B, and B,. Let D, = ('8 )/2(n 15 _)~1. Then
Ty Ty
(2.3) Engz(BTd - ﬁo) = (DTd - 2—1/2)Td—1/2 ;zi + Ty /2342 ;Zr

Using Theorem 1.1 of Gleser (1969) with B,, = I and Kolmogorov’s inequality
(c.f. Woodroofe, 1982, Example 1.8),

Ty
(2:4) T;V?3Z; >, N(0,27)
1

and since D, —» 3~ !/2 a.s. and T; - » a.s., it follows that the first term on the
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right side of (2.3) converges in probability to zero. From (2.4),

Ty

(2.5) T;'?3Y2 Y Z, -, N(0,I),
1

completing the proof. O

Proving Theorem 1.2. We will sketch the proof for the case a, = a. There
are no essential differences between this case and the more general one. The
proof of Theorem 1.2 is complicated, but it involves two basic ideas. First, the
MLE B,, will eventually lie within any given ball around B,, and the last time
B, is outside the ball behaves nicely (in particular, has finite moments).
Second, once B is guaranteed to stay within the ball, a monotonicity argu-
ment can be used to bound /\(1’) below by the smallest eigenvalue of a sum of
ii.d. matrices. The latter is much easier to handle than A% itself.

For any fixed p > 0, let

={B € R”:|IB — B,ll < p},
= {B € R”:1IB = Boll = p}
and define L, to be the last time that 1.(B) —1,(B,) = 0 for some B € dB,, or

(2.6) | L,= sup{n >1:1,(B) —1.(By) 20,38 € 3Bp}.

1,(B) is a concave function in B,V n € N. [Note that ,(8) may not be strictly
concave for small n, but here we only need the concavity of [,(B) for each n,

not strict concav1ty] By the definition of L, if n > L,, then [,(B,) > ! (B)

Ve dB,. Since B is an MLE, ,(8,) > [,(B), V B e dB,. This implies, if
n>L, Bn must be in B . Otherwise, there would be a contradlctlon to the
concavity of the log-likelihood function. Note that L, is the supremum of last
times of the form

sup{n > 1:1,(B) — 1.(Bo) = 0}

for B € B ,- Hence for p > 1, it is the supremum of (and not merely one of)
uncountably many last times for random walks of the type considered by Chow
and Lai (1975). With some stronger moment conditions on X, the last time
random variable L, has the following nice property.

PROPOSITION 2.1. For [ > 1, if EIX,I”**? < w, then there is p > 0 such
that ELf, < oo,

The proof of this proposition will be given at the end of this section.

The stopping time 7T, depends on the smallest eigenvalue of the unknown
covariance matrix. Usually, there is no explicit solution for the eigenvalues. To
overcome this difficulty, we define another last time variable [see (2.10)].
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Let B, ; denote the jth coordinate of B, for j = 1,..., p. Define

(2.7) B, = Bo + (sgn(Bo,1)p; - - -,Sgn(ﬁo,p)P)T’
X, |l -
(2.8) M, = exp(IX.11- 18,1) sX, X7, fori=1,2,...,
[1+ exp(IX,]l - 18,11)]
and
29) g exp(IIX,ll - 1B,1I) X,X7T|.
[1 + exp(IIX,[I - 11,1I)]

Let A, be the smallest eigenvalue of ¥.7_; M, and A, the smallest eigenvalue of
M. Under the assumptions on X;, A, > 0. Define the last time random variable

U —nA
(2.10) L, = sup{n >1:Z7 )Y (M, - M}Z < £, 3Z RP,|Z|| = 1}
i=1
or
n nai
2.11) L, =sup{n>1:2Z7 M-M)Z>—23Z<R?|Z|=1}.
A i 2
i=1

By using the same techniques as in the proof of Proposition 2.1, we can show
that L, has the following nice property.

LEMMA 2.1. Forl > 1, if E|IX,I?**? < «, then EL. < o.
We know that the smallest eigenvalue of L7_{M; — M},
AP( Y (M, —M}) = inf ZT Y (M, - M}Z.
i=1 lZil=1 ;-1

All the matrices M;, i =1,2,..., and M are symmetric and ¥X7_;M; =
Y*_{M, — M} + nM. By the results of Wilkinson (1963) and Golub and
van Loan (1983), A, = A (X7_{M; — M}) + nA,. Therefore,

i=

n
n>L, >VZcRP with |ZI = 1,27 ¥ {M, - M}Z >
i=1

n
= inf ZT Y (M, — M}Z > 3 -

Z||=1 =
(2.12) 12 1
i —nA,
= A, X (M, -M}| > 2
i=1
—nA ni
P P
=), > +na,= 2

Before we get into the proof of Theorem 1.2, we need the following
monotonicity properties.
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PropErTY 1. Let B, be fixed. Then for any B € B, and any X € R?,
IX7Bl < IXTBol + IXII- 1B = Boll.

ProPERTY 2. For ¢ >0, let f(¢t) =e'/(1 + e')% Then (d/dt)f(t) =
(ef(1 —e’))/(1 +e")® <0,V t > 0. That is, f(¢)is decreasing in ¢ for ¢ > 0.

ProPERTY 3. The function f(¢) (as defined in Property 2) is an even
function, so exp(X7B) /(1 + exp(X7B))? = exp(IX7B]) /(1 + exp(IXTB|))2.

By Theorem 1.1, (d2T;A?)) /a® — 1 a.s. as d — 0. Hence, to prove asymp-
totic efficiency, it is sufficient to show that {d?T,: d € (0, 1)} is uniformly
integrable.

ProoF OF THEOREM 1.2. Let p > 0 be such that EL, < w. Then,
(2.13) T, < max(LP, L)) + TdI(Td>max(L Ly

If n > L, then B, € B,. Hence, )XTB | < I X;l| I)B I < I1X,11]8,l, where B, is
defined as in (2.7). Let E = Y7 M, Then ¥, =3,,+ £, -3 .1 From
Properties 1-3 and Lemma A 3 of Chang (1991), the term inside the bracket is
a nonnegative definite p X p matrix. By the results of Bellman (1960) and
Srivastava (1967), 0 <A, < /A\(,{’). It follows from this observation, together
with (2.12), that on the event {T; > max(L,, L))}, T; < 2a®/d?\, + 1. Hence,
from (2.13), we have

2.14 T, <max(L,,L,) + 2a2/d2)t + 1.
d A

Since E(L ) <wand E(L,) < o, it follows from (2. 14) that {d2T,: d < 1} is
uniformly 1ntegrable and hence lim d—o E(@2T;XP) /0 = 1. O

We turn now to the proof of Proposition 2.1 and Lemma 2.1. The proof of
Proposition 2.1 is based on the following lemmas, and the proof of Lemma 2.1
follows by the same technique.

Let H(B) = E log(1 + exp(X¥B)). Then

) _ exp(X{B)
H'(B) = E_mx—p—(ﬁﬂ—)xll,
exp(X7B
H"(B) =E &, T) SX,XT |
_(1 + exp(XIB))

For any B € B »» by Taylor expansion,

(2.15) H(B) = H(Bo) + H'(Bo)" (B~ Bo) + (B - Bo) H'(B*)(B - Bo),

where g* € L(B, By) ={BERP:B = tB + (1 — t)B,, t € [0, 1]}. Let A(B*, B) =
B - BO)TH”(B*)(B Bo)/2. Then, under our assumptions on X,;, H"(pB) is
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positive definite, V 8 € R”. A(-, - ) is a continuous function on the compact set
(B, X 9B,), hence for small enough p, there is an m > 0, such that

lnfﬁeaB ﬁ* B A(ﬁ ﬁ*) =
Equatlon (2 15) can be wrltten as

(2.16)  [H'(Bo)"B - H(B)| - [H'(Bo)"Bo — H(Bo)| = —A(B*, B).
Write

- 1 - .
L(B) = 1.(Bo) = — X {¥:XTB ~ log[1 + exp(XB)] }

i=1

_% § (Y,X78, — log[1 + exp(X7B, )]}

— [H'(Bo)"B ~ H(B)] - [H'(Bo)"Bo — H(B,)]
(2.17a) + %é VX, - H'(Bo)}" (B - Bo)
(2.17b) + %é}l {log[1 + exp(X7B,)] — H(B,)}
(2.17c) + ;11‘ En: {H(B) — log[1 + exp(X7B)]}.

~.

Let a,, b, and c, denote the terms (2.17a), (2.17b) and (2.17c), respectively.
Then,

—1,(By)=20=a,+b,+c, zA(B*,B)

=a,+b,+tc,>=m.

1 (B
(2.18) (F)
Let L,, L, and L, be last time random variables defined as

(2.19a) L, = sup{n >1:3B €4B,,

{ i YX; - nH,(Bo)} (B - ﬁo) = n%l_}’

i—1

n m
(2.19b) L, = sup{n >1: Y {log[1 + exp(X7] o)] —H(Bo)} = ng},
i=1

L, = sup{n >1:3 B €4B,,
(2.19¢)

o8

{—log[l + exp(XlTB)] +H(B)} > n%}

i=1
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LEMMA 2.2. Forl > 1, if E|X,|I'*", then EL. < c.
LemMa 2.3. Forl > 1, if EIIX, """ < o, then EL} < c.

Lemmas 2.2 and 2.3 follow from Chow and Teicher [(1978), Corollary
10.4.4] and, in the case of Lemma 2.2, || — B,ll = p. For details, see Chang

and Martinsek (1991).
To prove EL! < «, we need to apply Taylor expansion several times. First,

(2.20) H(B) =H(Bo) + H'(Bo)" (B — Bo) + %(B - ﬁo)TH”(B*)(B — Bo)s

where g* € L(B*, B). Again, by Taylor expansion,

Zn: log[l + exp(XTﬁ)]
(2.21a) = f‘, log[1 + exp(X7B,)]
i=1
n exp(XTBO) XT(
(2.21b) g, W(Xﬁo) i (ﬁ — Bo)
1 n exp(X7B}) .

2.21 - X7 (B = Bo),
(2.21¢) + (B o) Bt e (B = Bo)
where B € L(B, B,) depends on (X,,...,X,). Hence,

n(2.17c) = nH(B) - > log[1 + exp(X7B)|
i=1
(2.22a) = nH(Bo) — ¥ log[1 + exp(X7B,)]
i=1
, m exp(X7B,) X7
(2.22b) +nH'(B0)" (B - Bo) — z T+ exp(XTp,) © 7 (B = Bo)

+-(B - Bo) nH"(B*)

l\’Jll—‘

(2.22¢) exp(X75%)

[1 + exp(X7B} )]

Ma

XT (B~ By)-
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In addition,

2 X (2.22¢) = (B - BO)T{nH”(B*)

_[ i exp(X7B%) 2XinTJ} (B - 8y)

i=1 [1 + exp(X7B%)]

23a) = (B - Bo) (nH"(B,) — - opXB)
(2.23a) (B = Bo) {nH (Bo) [lgl [1+ exp(XiTﬁo)]2

X7 ”(B - Bo)

(2.23b) #n(B - o) [H'(B*) — H'(B)] (B - Bo)
. “ xp(X7B,
(pep| £ | el

[1 + exp(XTﬁo)]

exp(X7B}) .
- X,XT V(B - B,).
[1 +exp(XiTB§)]2} l l}(ﬁ bo)

m
><3}’

- m
(2.25) L.,= sup{n >1:3B 4B, (2.22b) > nm},

(2.23¢)

Define

(2.24) L, =sup

n>1:(2.22a) > n3

- m
(2.26) L,=supin>1:3B¢€ 3Bp, (2.23a) > nm},

(2.27)

(2.23b) + (2.230) > nm}

By Chow and Teicher [(1978) Theorem 10.4.3], EL}; < « if E|IX,['*! < . For
L., by the same arguments as for Lemma 2.2. and by Chow and Teicher
(1978), EL., < o, if E|IX,['*! < c.

Lemma 2.4. Forl > 1, sz||x ¢+ < oo, then ELL, < o,

Lemma 2.4 can be proved using Chow and Teicher [(1978), Theorem 10.4.3]
and [|B — B,ll = p. For details, see Chang and Martinsek (1991).

LeEmMa 2.5. Forl> 1, if EIX,I***P < w, then EL., < o.
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The proof of Lemma 2.5 is much more delicate than the proofs of the other
lemmas. It depends on a careful analysis of the behavior of various eigenvalues
as p — 0. For details, see Chang and Martinsek (1991).

LeEmMMA 2.6. Forl> 1, if EIX |I*“*Y < o, then EL. < .

Proor or LEmMA 2.6. From previous discussion, by applying Chow and
Teicher [(1978) Theorem 10.4.3] directly, EL!, < » and EL., < . By the
definitions, it is clear that

L,<max{L,,i=1,...,4},
hence by Lemmas 2.4 and 2.5,
(2.28) E}, <. ~ o

Proposition 2.1 now follows easily from Lemmas 2.2, 2.3 and 2.6, combined
with the inequality

L, <max(L,,L,,L,) as.

The proof of Lemma 2.1 is similar to that of Lemma 2.4 and is therefore
omitted [for details of the proof, see Chang (1991)].

3. Simulations. In this section, some Monte Carlo simulation results are
summarized. Three different kinds of covariate variables have been studied:
bivariate normal with independent components, bivariate normal with positive
(p = 0.5) correlation coefficient and bivariate normal with negative (p = —0.5)
correlation coefficient. In all cases, we chose B = (0.1,0.2) and compute the
B,, by the Newton-Raphson method. Three choices of a, were tried: a, = a,
a,=a(l—-1/2n)and a, = a(1 — 2/3n). 1000 trials were used in each case.
The results are summarized in Tables 1-3.

TaBLE 1
Expected sample size and coverage frequency; 95% confidence ellipsoid; a, = a*

Expected sample
Distributions d size (s.e.) c.p. (%) Best f.s.s.
Normal (independent) 0.5 29.94 (0.212) 98.5 3.95
0.3 44.40 (0.257) 97.6 10.99
0.1 114.82 (0.423) 96.1 98.89
Normal (p = 0.5) 0.5 54.01 (0.303) 97.9 8.79
0.3 84.89 (0.392) 96.5 24.41
0.1 236.51 (0.642) 95.6 219.69
Normal (p = —0.5) 0.5 53.89 (0.304) 98.0 8.65
0.3 84.31(0.389) 96.0 24.06
0.1 234.84 (0.665) 95.7 216.23

*2d, width of maximum axis of confidence ellipsoid; s.e., standard error of expected sample size
based on 1000 trials; c.p., coverage probability; best f.s.s., best fixed sample size.
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TaABLE 2
Expected sample size and coverage frequency; 95% confidence ellipsoid; a, = a(1 — 1/2n)*

Expected sample
Distributions d size (s.e.) c.p. (%) Best f.s.s.
Normal (independent) 0.5 12.71 (0.219) 97.1 3.95
0.3 21.48(0.247) 96.5 10.99
0.1 110.13 (0.381) 95.9 98.89
Normal (p = 0.5) 0.5 217.17(0.287) 96.4 8.79
0.3 50.26 (0.391) 95.9 24.41
0.1 225.32 (0.671) 95.3 219.69
Normal (p = —0.5) 0.5 26.88 (0.281) 96.6 8.65
0.3 49.91 (0.399) 95.6 24.06
0.1 221.47(0.669) 95.1 216.23

*2d, width of maximum axis of confidence ellipsoid; s.e., standard error of expected sample size
based on 1000 trials; c.p., coverage probability; best f.s.s., best fixed sample size.

When the best fixed sample size is relatively small, all three choices of «,,
produce expected sample sizes that are too large, although the relative discrep-
ancy decreases as d becomes small, in accordance with the preceding theo-
rems. The choices a, = a(l — 1/2n) and a, = a(1 — 2/3n), especially the
latter, substantially outperform a, = a. For larger best fixed sample sizes (i.e.,
smaller values of d), the agreement between asymptotic theory and simula-
tions is much better. Again, the choices a, =a(l —1/2n) and a, =
a(l — 2/3n) do better than a, = a, and they produce results that are very
close to the theoretical values.

It is known in related situations (see Muirhead and Chikuse, 1975) that the
bias of the smallest sample eigenvalue is of order 1/n, which suggests correct-
ing a, and hence a2, by this order, as in two of the choices above. Even such
corrections may not produce good results when the best fixed sample size is

TABLE 3
Expected sample size and coverage frequency; 95% confidence ellipsoid; a, = a(1 — 2/3n)*

Expected sample
Distributions d size (s.e.) c.p. (%) Best f.s.s.
Normal (independent) 0.5 10.18 (0.234) 96.9 3.95
0.3 16.17 (0.251) 96.4 10.99
0.1 108.29 (0.401) 95.6 98.89
Normal (p = 0.5) 0.5 13.79 (0.291) 96.3 8.79
0.3 30.16 (0.390) 95.6 24.41
0.1 221.13 (0.661) 94.9 219.69
Normal (p = —0.5) 0.5 14.11(0.301) 96.4 8.65
0.3 29.39 (0.396) 95.5 24.06
0.1 218.54 (0.674) 95.1 216.23

*2d, width of maximum axis of confidence ellipsoid; s.e., standard error of expected sample size
based on 1000 trials; c.p., coverage probability; best f.s.s., best fixed sample size.
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small, although it is clear from the simulations that they will help. At least in
such cases the procedures are conservative, so that one can count on the
coverage probability. On the other hand, simple corrections like those above
produce good results for smaller values of d, that is, when greater precision is
desired.

It is clear that the best choice of a, depends on the underlying distribution
and on B, (both assumed unknown). Note, for example, that for large d,
a, =a(l —2/3n) provides a much bigger improvement over the other two
choices when the covariates are correlated, rather than independent. Based on
the simulation study, we recommend choosing a,, to increase to a at rate 1/n,
and a, = a(l — 2/3n) seems like a reasonably good ad hoc choice. In cases
where the experimenter has some idea of the distribution of the covariates,
simulations similar to the ones described here, for a.variety of B,’s, may be
helpful in choosing the design parameters a,,.

4. Some related fixed size confidence sets.

4.1. “Fixed proportional accuracy’ confidence ellipsoids. In the one di-
mensional case, when B, (assumed to be nonzero) is near the origin, one may
wish to have a smaller confidence interval than that for a B, which is far away
from the origin. One approach is to require that the confidence interval specify
B, to within a certain fraction of its true value (fixed proportional accuracy).
However, the fixed proportional accuracy problem in the higher dimensional
case is a little more complicated. By modifying the idea in the one dimensional
case, we may first wish to define a confidence ellipsoid as

L= {ZeRr:(Z-4,) $,(Z - B,) <d®L,IB,I).

If all the coordinates of B, are small (in absolute value), then this could be an
appropriate way to define the confidence ellipsoid. But if only some of the
coordinates are small and some of them are relatively large, then the above
definition of the confidence ellipsoid does not give us any improvement in
accuracy of the estimates of small coordinates. To rectify this situation, first
assume that all the coordinates of B, are nonzero. (Otherwise, we can just
eliminate those coordinates from the model and reduce the dimension of the
model.) Now, define

r,-{ZeRr: (Z- 8.)"3.(2-8,) < d*,b,), forde(0,1),

where b, = min,_;_,|B8,;|. T, defines an ellipsoid with maximum axis less

than or equal to 2dvy/ b,.
For any given a € (0,1) and d > 0, it is desired to have

(4.1) P[B,eT,]=1-a.

Since B, — B, almost surely, b, » b = min, _;_,IBy,;l as. as n —» », and
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therefore

(4.2) (Ba = Bo) " 3u(Bu — Bo) /B >+ x*(D) /b.

Hence, to satisfy (4.1), one should have n = a?/APbd?, where a? is defined as
before. Here both A?> and b are unknown, so it is impossible to decide the
sample size in advance. This suggests a stopping time

. 0
(4.3) Ty = inf{n >1:1,06, = ﬁ}

The following theorem can be obtained by similar arguments to those in the
previous section. For details, see Chang and Martinsek (1991).

THEOREM 4.1. Suppose E|X,||® < o and all the coordinates of B, are
nonzero. Then:

() lim,_,,bd®\P7,/a® = 1 a.s.
i) limy o PBo e T} = 1 - a.

Moreover, if E|IX|[* < o,
(i) lim, _, o E[bd®2XPr;/a?] = 1.

4.2. Confidence interval for a linear combination of B,. In practice, we
may be interested only in a particular linear combination of the components of
B,, rather than the whole vector. That is, for some C € R, [|[Cl| # 0, we would
like to construct a fixed width confidence interval for CTB,. 1t follows from the
asymptotic normality of B, that, as n — «,

(4.4) Vn (CTB, — CTB,) - N(0,CTS7C).

If 3, were known,then for a given d > 0, and « € (0, 1), [CTﬁn -d, CTB,, +d]
could be used as a confidence interval for C7g8, with approximate coverage
probability 1 — «, provided that

nd?
(4.5) — =CT37'C,

za/2

where z, , is defined as before. Because 3, is unknown, a sequential procedure
is needed. Equation (4.5) suggests the stopping rule

2
(4.6) Ty =inf{n>1:CT3$;C < —5—}.

za/2

We have the following results:

TueoreM 4.2. IfE|X|? < o, then:

@) lim,_,d2?T] /(22 ,CT37'C) =1 a.s.
(ii) limy_, o P{CTBo € [CTBry —d, C"Bpy +dl} =1 — a.
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Moreover, if E|X||* < =,
(iii) lim, o E[d?T) /(2% ,CT371C)] = 1.

Theorem 4.2 is proved by dominating the stopping rule 7} by a version of
the stopping rule T;. For details, see Chang and Martinsek (1991).
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