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ASYMPTOTIC PROPERTIES OF THE BALANCED
REPEATED REPLICATION METHOD
FOR SAMPLE QUANTILES!

By Jun SHAO AND C. F. J. WU
University of Ottawa and University of Waterloo

Inference, including variance estimation, can be made from stratified
. samples by selecting a balanced set of subsamples. This balanced subsam-
pling method is generically called the balanced repeated replication method
in survey data analysis, which includes McCarthy’s balanced half-samples
method and its extensions for more general stratified designs. We establish
the asymptotic consistency of the balanced repeated replication variance
estimators when the parameter of interest is the population quantile. The
consistency results also hold when balanced subsampling is replaced by
random subsampling. As a key technical prerequisite, we prove a Bahadur-
type representation for sample quantiles in stratified random sampling.

1. Introduction. An important problem in the analysis of survey data is
the estimation of variance of nonlinear statistics from complex survey data.
Traditional methods as reviewed in Wolter (1985) include the linearization
(Taylor) method, the jackknife, the method of random groups and the balanced
half-samples method. More recently bootstrap-like methods have been pro-
posed and studied by Rao and Wu (1988) and Sitter (1992a, b). Gurney and
Jewett (1975) extended McCarthy’s (1969) balanced half-samples method from
two primary sampling units (psu’s) per stratum to p psu’s per stratum, p
being a prime.

Most theoretical results on the asymptotic behavior of these methods are for
estimators that are smooth functions of a vector of means, for example,
Krewski and Rao (1981), Dippo (1981) and Rao and Wu (1985). When the
parameter of interest is the quantile of the finite population, not much is
known about the theoretical behavior of various methods for estimating the
variance of the quantile estimator. First we review these methods. An obvious
method is to substitute the unknown quantities in the variance formula (2.8)
by their sample analogs. Its consistency can be established as in Francisco and
Fuller (1991) by using a pointwise consistent estimator of the density function
at the quantile 6,. The method is, however, not practical for most survey data
because it requires a concentration of observations around 6, in order for the
density at 6, to be estimated with some precision. To circumvent this problem,
there are two realistic alternatives. One is to use Woodruff’s (1952) confidence
intervals for quantiles to derive new variance estimators [see Francisco and
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Fuller (1991) and Rao and Wu (1987)]. Francisco and Fuller proved the
asymptotic properties of these variance estimators. Woodruff’s ingenious
method of inverting the sample distribution function makes it unnecessary to
estimate the density at 6,. Another alternative for variance estimation is the
balanced half-samples method for two psu’s per stratum and its extensions to
general stratified designs, but little is known about their asymptotic proper-
ties. The simulation study of Kovar, Rao and Wu (1988) does not provide any
conclusive evidence on the relative events of these two estimators.

The main purpose of this paper is to prove the asymptotic consistency of a
general class of variance estimators based on a balanced selection of subsam-
ples, which include as special cases the methods by McCarthy, and Gurney and
Jewett. This general method for selecting a balanced set of subsamples is
generically called the balanced repeated replication method.

First we discuss the framework for our asymptotics. We assume a sequence
of superpopulations indexed by %, from which a sequence of finite populations
are drawn at random. Formally, let L, be the number of strata of the kth
finite population, L, > L,_,, N,, be the size of the Ath stratum of the kth
population and

Lk
N, = Z Np
=1
and
w, — Nen
kh Nk *
Without loss of generality we assume N, > ck for some c. We do not make any
explicit assumption on L,; that is, L, can be bounded or goes to infinity. Let

{H,,, h=1,..., L,, k=1,2,...} be an array of distribution functions. De-
fine the kth superpopulation to be

L,

Fk = Z thHkh'
h=1

The kth finite population is {X,,,..., Xun,» h=1,...,L,}, where
Xp15 ..y Xy, are drawn randomly with replacement from H,, and indepen-
dently across the strata. Note that a subscript & should be included in X,,; but
is omitted for simplicity. Denote a particular array {X,;,, i =1,...,N,,,
h=1,...,L,, k=1,2,...} by X. For each fixed A, let {yhl,...,yhnkh} be a
simple random sample without replacement from the finite population
{X41,. .., Xpn,,). Assume that n,, > 2 for all £ and h, but are otherwise
arbitrary. Denote the whole sample {y,;,, i =1,...,n,,, h=1,..., L,} by y.
Here n, = X ,n,, is the sample size and f, = n,/N, is the sampling fraction.

Let 0 <p < 1 be a given constant. The p-quantile of the kth superpopula-
tion is

0, = F;, (p),
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where F~Y(t) = inf{x: F(x) > t} for any distribution function F. Let I 4 be the
indicator function of the set A,

1 Nen
Fkh(x) Nkh 1211<Xh,<x)
and
L, L, Ny
Fk(x) = Z thpkh(x) =5 Z Z (Xp, <)
h=1 Ny p-1ic1

The p-quantile of the kth finite population is
6, =F;(p).

The estimators of F,(x) and 6, (or 0k) are, respectively,

W Nph
F(x) = Z Y Iy em
=1 Pk =1
and

6, =F;'(p).
We next consider the resampling plan. Let s, be a subset of {1,...,n,,}
with size r,,, where r,, is smaller than n,,, s =(s;,...,s; ), S, be the
collection of all s for fixed r,,, h = 1,...,0,,, B =1,2,..., dujp =Npp — Tps

=Y,d,, and r, = L,r,,. Note that r, (and resp. d ) is the number of
unlts retained (and resp. deleted) in the subsample s. For a particular choice of
{ron, h=1,...,L,, k=1,2,...}, a collection of sets T, c S, is called bal-
anced if

(1.1) myi; = #{s€Ty:i €s,, j €s,} = constant, i #,
(1.2) Thwij = #{s € T,:i €, j €s,} = constant,

where the constant in (1.1) [and resp. (1.2)] is independent of i and j for each
h and k (and resp. h, A’ and k). It is easy to see that S, is balanced. Any plan
T, satisfying (1.1) and (1.2) is called a balanced subsampling. It includes
McCarthy’s (1969) balanced half-samples and its extensions by Gurney and
Jewett (1975). Further discussion is given in Section 4.

For each s, let

A th
Fg(x) = Z (yh <x)
Trh LES,
and
Lo -1
= (st) (p).

For a balanced T,, we estimate the variance of n'/2(6, — 6,) by the balanced
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repeated replication (BRR) variance estimators

nk A A 2
(1.3) ve(T,) = Y (656
rU1L: Ao, SETk( k k)
or
- ny A 1 A ?
(1.4) 0r(T,) = Y |- — X 63,
ApMy ger, My seT,

where m, is the number of subsets in T, and A, depends on r, and the choice
of T,. Determination of A, will be discussed in Section 4. To prove their
asymptotic consistency, we first establish a Bahadur-type representation for ék
(Theorem 2.1 in Section 2), and the asymptotic normality of 6, (Theorem 2.2
in Section 2). We then give a representation of v, and oy (Theorem 3.1 in
Section 3). As applications of Theorem 3.1, we prove in Section 4 the consis-
tency of vy and 0y for any balanced T, with appropriate conditions on the
resample size. Since the complete enumeration of T, can be prohibitively large,
we can use random subsampling to reduce the computations. Consistency of
variance estimators based on random subsampling is proved in Section 5.

It should be noted that, when {y,,,...,¥,,,} is a simple random sample
with replacement from {X,,,..., X, }, we have results parallel to those for
without replacement sampling. Their difference will be highlighted throughout
the paper.

Note that the jackknife method also satisfies the balance conditions (1.1)
and (1.2). Unlike the BRR, it does not delete unit (or units) simultaneously
from every stratum. It is known that the jackknife variance estimator for the
sample quantiles is inconsistent when the total number of units deleted from
the sample remains bounded [see, e.g., Shao and Wu (1989)].

The following conditions will be used in establishing the results.

ConpITION 1. There are constants 6; and 6, such that
6, <6,<6, forall k
and there are positive constants b, b; and b, such that
(1.5) b, <F|(x) <b, forall kand x € [, — b,0, + b],
where F' is the derivative of F. ’

CoNDITION 2. As k — o, n, — « and there is a positive constant b, such
that

W,.,n
maxiésb0 for all %.

ConprTION 3. {F,, B =1,2,...} are equicontinuous on [6; — b, 6, + b],
where 6;, 6, and b are given in Condition 1.
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A sufficient condition for (1.5) is that b; < H,,(x) < b, for all h,%k and
x € [0, — b,0, + bl. Similarly, a sufficient condition for the equicontinuity of
F, is the equicontinuity of Hj,. Note that if F; exist and are uniformly
bounded on [6; — b, 8, + b], then Condition 3 is satisfied.

2. A Bahadur-type representation for stratified samples. Through-
out the paper we use P to denote the unconditional probability corresponding
to the random element X and P to denote the conditional probability (given
X) corresponding to the random element y. The expectation and variance
taken under P are denoted by E and Var, respectively.

ProposITION 2.1. Under Condition 1, we have
P{|§k —6,| > tk} < 2exp{—2N,t3b%} forallk,
where {t,, k = 1,2,...} is a sequence of constants satisfying 0 < ¢, < b.
Proor. Note that
P{6, > 0, + t,)

= P{P > F (6, + tk)} = P{Nkp =) Y I(Xh,SOkthk)}
hooi

= P{Z Yo Iix, s 0,400 — Ne[1 = Fo(6, + t,)] = N,[Fu(6), + t;) _P]}
h 11

< exp{—ZNk[Fk(Ok +t) —p]2} < exp{—2N,t7b3},

where the first inequality follows from Hoeffding’s (1963) lemma and the
second inequality follows from Condition 1. Similarly, we have

P{ék < Gk - tk} < eXp{—2th2b%}

and thus the result. O

CoROLLARY 2.1. Under the conditions of Proposition 2.1,
8, — 0, = O,(N,; /%) with respect to P,
and ‘

6, — 0, = O(N;2(log N})""*) a.s.P.

Proor. Let t, = cN, /*(log N,)*/? with ¢? > (2b%)~ . Then apply the re-
sult in Proposition 2.1 and the Borel-Cantelli lemma. O

These results imply that 6, and 6, are close when % is large. If the
sampling fraction f, — 0, then the estimation of 6, is asymptotically equiva-
lent to the estimation of 6, since 6, — 6, = 0,(n;'/?). In the sequel we shall
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focus on the estimation of 8,. The same results for the estimation of §, can be
established similarly.

The following lemma extends a result of Bahadur [see Serfling (1980), page
97].

LEmMMA 2.1. Assume Condition 1. Let a, = c,N, /*(log N,)?, q = 1/2,
and

B, = sup I[Fk(ok +x) - Fk(ok)] — [Fu(6), + x) _P”-

|x|<a,

Then as k — o,

B, = O(N;¥*(log N,)*"""?) a.s.P.

Proor. Let c, be the integer part of ¢y N;/*(log N,)?. For [ = —¢,,...,c,,
let my,, = 0, + a,c; ', @y = Fi(nyq_y) — Fi(ny,) and
G =|[Fk(nkl) - Fk(ak)] - [Fk(nkz) _P]l-
Then

Iakll SNk_3/4 sup F];(Bk +x).

|x|<a,

Let y, = d,N, 3/*(log N,)9*V/2 for a constant d, > 0. Then by Bernstein’s
inequality,

Nk)’f
2(y, +|Fu(mw) —pl) |

Following the same proof as in Serfling (1980, pages 98-99), we can show the
result if there is a constant a > 0 such that

P{G, 2 v,} < 2exp{ -

sup Fj(6, +x) <a for sufficiently large %,

|x|<a,

which is ensured by Condition 1. O
LEMMA 2.2. Let t be a constant. Under Condition 1,
(2.1) n;/2|1?‘k(0k +tng %) = Fy(8,) = Fy(0, + tn; /%) +p| -0 a.s.P,
and
(2.2) Y| Ey(6, + tni/?) — F\(6,) — Fu(6, + tn; /%) + F,(6,)] > 0
a.s.P.

Proor. We prove the case of ¢ > 0. The other case is similar. Since we can
use a subsequence argument, we need only to show (2.1)-(2.2) in the following
two cases.
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Cask 1. lim, . f;, log N, = 0. From Bretagnolle’s inequality [see Shorack
and Wellner (1986)], there is a constant C > 0 such that for any z > 0 and &,

(2.3) P{N}?|F, - F,|| = 2} < Cexp{-227,
where || || is the sup-norm. Note that (2.3) implies that
(2.4) |, - F,| = O(N;V2(log N,)'?) as. P.

Hence (2.1) follows since its left side is bounded above by 2nY/2|F, — F,l,
which goes to zero a.s. P. The proof for (2.2) is the same.

Case 2. There is a constant a > 0 such that fr log N, > « for all k. In
this case there is a constant c, such that

tn;'/? < coNy /2(log N,) 2.

Then (2.1) follows from Lemma 2.1 with ¢ = 1/2 and (2.2) follows from (2.1),
Lemma 2.1 and Corollary 2.1. O

We now prove a Bahadur-type representation for stratified samples.

THEOREM 2.1. Assume that Conditions 1-3 hold. Then

p _Fk(ok)
Fi(6%)

in the sense that for almost all array X, the representation (2.5) holds in the
conditional probability P.

(2.5) 6,=0,+ +o,(n;?) a.s.P

REMARKS.
1. Under the same conditions, we can show a similar result that
i _ o B(0) — Fu(0)
0 k = Bk + T
F(6:)
2. Francisco and Fuller (1991) proved (2.5) for stratified clustered samples. In

the special case of no clustering, their conditions are neither stronger nor
weaker than ours.

+o,(n;?) as.P.

Proor. Let
U, =0, +tni;% G, = ni/Q[P - Fk(ak)]/Fé(Gk),
Z,(t) = n¥?[F(dn,0) — Fu(0, )] /FL(0,),

Up(?) = n}e/Q[Fk(wk,t) - Fk(ék)]/Flé(ak),
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and T, = n¥/%(@8, — 6,). From Lemma 2.2 and Condition 1,

E[Z,(t) - G4] = nY?[Fu(8)) = Fy(0n,0) + Fult0) - p] [Fi(82)

-0 as.P.
For ¢t > 0,

Var[ B, (v,,.) - F(61)]
[Fi(8,)]°
szhnk( Nkh — Nyp) 1-Ky,
N Nir — 1) kh [F,;(Bk)]2

thKkh Fk(dfk, ) - Fk(ek)
=< bOZ b2 = bO - b2 )
h 1 1

Var[Z,(t) — G| = n,

where K,, = F,,(, ) — F,,(8,) and the last inequality follows from Condi-
tions 1 and 2. From Condition 1,

Fy(¥) —p <tng'/?  sup  Fy(x) <itn;'/%by
0, —-b<x<0y+b

for sufficiently large k. Hence from Lemma 2.2,

Var[Z,(t) - G,] -0 as.P.
Similarly, for ¢ < 0, Var[Z,(¢) — G,] = 0 a.s. P. This proves that for any ¢,
(2.6) Z,(t) - G,=0,(1) as.P.

By the mean-value theorem, there is a &, , satisfying I¢,, — 6l < ltin, /2

such that

Fo(Yn,0) —p =ty V?Fi(&,)-
Then by Condition 3 and |6, — §k,tl - 0,

nY 2 Fy(be.) = P)/Fi(0:) = tFy(£,,) /Fi(0,) = ¢.

Also, |p — F\(6,)] < max, W,,n,+ = O(n;") under Condition 2. Hence
(2.7) U,(t) —t=0,1) as.P.
For any ¢ and ¢ > 0,
P{T, <t,G,>t+e) =P{Z,(t) <Uyt), G, = t + ¢}

< P{|G, — Zy(t)| = e/2} + P{{U(¢t) — t| 2 e/2} > 0
under (2.6)—(2.7). Similarly, P{T, > ¢ + ¢, G, < t} - 0. Then

P(T,<t,G,>t+¢e) +P{T,<t+e G, <t} =0(1)
for all rational ¢ a.s. P.
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Using the same argument in the proof of Lemma 1 of Ghosh (1971), we obtain

D _Fk(ok)

n’%z/z Bk - ak - F/(o )
E\YE

=T, -G,=0,(1) as.P. O

An application of Theorem 2.1 leads to the following useful result.

THEOREM 2.2 (Asymptotic normality). Assume that Conditions 1-3 hold.
Let c be a positive constant. For any array X satisfying (2.5) and

ng Wth( Ny — Nkp)

GO o P Ny O Fu@n] = e,
we have
(2.9) n/2(9, — 6,)/v}/2 >4 N(0,1),

where —, denotes convergence in distribution under P.

ProoF. Note that v, = n, Var{ £,(6,)/F;(6,)]. Under (2.8), Theorem 3 of
Bickel and Freedman (1984) applies. Hence the result follows from Theorem
2.1. 0O

REMARKS.
1. If f, - 0, then v, in (2.9) can be replaced by
ny, szh N,y ~ ~
(2.10)  of = Fin(0)[1 = Fon(6))].

[Fl,;(@k)]2 n Nrn( Ny — 1)
This follows from

o T N,
Up = Up = —‘[Fk,(ek)]g % khN Fkh(ok)[l Fkh(ek)]

2. If the sampling within each stratum is with replacement, then the result of
the theorem holds with v, replaced by v).

3. The result still holds if 6, in (2.8)-(2.9) is replaced by 6,.

4. For many regular 6,, v, — n,Var(d;) —» 0 as k — x.

3. Representations for BRR variance estimators. From the repre-
sentation in (2.5), m ;! seT(Ok — 6,)? has, as its leading term, the left side
expression of (3.1). It is stralghtforward to show that, for any balanced T, that
satisfies (1.1) and (1.2), the following holds:

ﬁﬂ%)—&wu}z Weidan

Skh
Fi(6:) h T rrTkR ’

1
(3.1) — Y

my seT,
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where m, is the number of elements in T, and

1 1 2 )
s,%h = n—z I(yh,sok> - ;L;: Z I(yh,ﬂk)] /[Fl;(ak)] :

kh_]- i

This sets the stage for proving the following theorem on BRR representation,
from which the consistency of the BRR variance estimators vy and 0y in (1.3)
and (1.4) naturally follows (see Section 4).

THEOREM 3.1. Suppose that T, is a balanced set for each k. Assume
Conditions 1-3, .
(3.2) Ny, <7ry, forallkandh
and there is a constant ¢ > 0 such that

(3.3) limsup F,(—-c) <p/r and limkiank(c) >1—-(1-p)/T
k

Then
1 N ) W2.d
(3.4) — ) (02 - Ok) -y AR 0,(ry') a.s.P,
Mk ser, h TkrTen
and
2
1 N S W2, d
— ) (Hk——ZOS) =Y ——s2, +o0,(r;') a.s.P.
MpseT, Mp seT, * h T krTkR o727
REMARKS.

1. Condition (3.2) is the key condition on the resample size. It implies that
n, < 7r, and r, — « since n, — o« by Condition 2.
2. The first term on the right-hand side of (3.4) is of the order O,(r; ") a.s. P if

Wid _ O(rk_l),

n TkrTkR
which is implied by (3.2) and Condition 2.
3. Condition (3.3) is much weaker than the tightness of F},, £ = 1,2,... .
We first prove some preparatory lemmas.
LEmMA 3.1.  Suppose that Condition 1 holds. Let p = b b/2, where b, and
b are given in Condition 1.

@) If lim, ., f, log N, = 0, then for almost all X, there is a kx > 0 such
that for any t satisfying b <t < bn¥/? and k > ky,

P{nﬁ/z‘ék - 5k| > t} < 2exp<—2p2(tb*1 - 1)2}.
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(ii) If there is a constant a > 0 such that f, log N, = « for all k, then for
almost all X, there is a kx> 0 such that for any t satisfying b <t <
con’/2N; /*(log N,)? and k > ky,

P{n}/?|8, — 6,] > t} < 2exp{-2(b,t - p)?),

where cy > b and q = 1/2 are fixed constants.

Proor. (i) From (2.4) and Corollary 2.1,
since f, log N, — 0. Thus, for almost all X, there is a kx > 0 such that
ny2|F, - F||<p and nY2[6, —0,| <b/2 forall & > ky.
Then
P{nl?|6, - 6,| > t} < P{n¥/?[d, — 0,] > t/2}.
Denote 6, + tn;'/?/2 by ¥y, ; . Note that '
P{ék = ‘/’k,t/2>

Wenny,

= P<P = Fk(¢k,t/2)} = P{% Z I(yh,>w,,,,/2) 2 n,(1 ‘P)}

UIA

Wynny,

= P{ Z E [I(yhz>‘//k,t/2) - E(I(yhz>‘//k,t/2))] = nk[Fk(d’k’t/z) - p]}

n Trn

= eXp{—znk[Fk(¢k,:/2) —P]Z} = exp{—2p2(tb_1 - 1)2},

where the first inequality follows from Condition 2 and a stratified version of
Hoeffding’s inequality (1963, Section 6), and the second inequality follows
from

n%e/2lﬁ'k(¢k,t/2) —p| = nlk/lek(l//k,t/z) —P| - n%e/zli‘k((//k,t/Z) - Fk(l//k,t/z)l
>bit/2 —p=p(th™' - 1).

Similarly, P{6, < 0, — tn,'/?/2} < exp{—2p*(tb~' — 1)?}. This proves (i).
(i) Let ¢, , = 8), + tn; /2. Similar to the proof of (i),

P{ék 2 ¢k,t}

oz

r o Tkn

Wynn,

Z I(yhz>¢‘k,t) = nk(l - p)}

Wynny,

oz

o Men

Z [I(yh,>¢k,t> - E(I(yh»m,t))] = nk[Fk(d)k,t) —p]
13

= exp{ —2nk[Fk(¢k,t) - P]z}-
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From Lemma 2.1 and the fact that n}/2N, ®*(log N,)?*Y/2 - 0,

sup nl/lek(d)k ) = Fu(6,) - Fu(dr,,) + Fk(ék)| -0 as.P,

b<t<{,

where {, = conj 2N 1%(log N,)9. Also, |F,(6,) — p| < N; . Hence for almost
all X, thereis a ky > 0 such that for k> ky and b <t < {,,

ni/zlﬁk(d’k,z) —-p—F,(¢,,) + Fk(ék)‘ <p.
From n}/*[F,(¢,. ) — F,(8,)] = b,t > p, we have

i B i) —p) "= (bst — p)*
and therefore
P{ék > ¢y} < exp{—2(b t -~ p)2}.

Similarly, P{d, < 6, — tn;'/? < exp(—2(b,t — p)?). This completes the
proof. O

LemMa 3.2.  Suppose that Condition 2 holds. For any {t,, k = 1,2,...}, we
have

n3E[ By (t,) - Fy(ty)] = 0(1) a.s.P.

Proor. Suppose that {x,;, i = 1,...,n,,} is a simple random sample with
replacement from {X,;,..., X,y }. Let z,, =n,,L, Ay, <t — F,,(t,) and
Upp = Mpal; i, <t kh(tk) Since 0 < Lopi<tn <L, there is a constant C >
0 such that

Eu3, < CY?n,}t,  Eu}, <Cn;? as.P.
This and Theorem 4 of Hoeffding (1963) imply
(3.5) Ez}, < CY2ny},  Ez}, <Cn,? as.P.
Note that

E[ﬁ'k(tk) - Fk(tk)]4 = E(% thz'ieh)

2 2
E(Z szhzlgh) + E( > thWkgzkhzkg) ]
h h+g

Applying (3.5), we have

2
E( > szhzizh) = E(Z thzkh) + E( > thWkgzkhzkg) < C(Z WkZhni:hl)
A h+g 3



BALANCED REPEATED REPLICATION METHOD 1583

and

2
Z thWkgEZkhEzkg < C(Z thn ) .

2
E( Z thWkgzkhzkg)
h+g

h+g

Then the result follows from
2 2
wi(  Wanit) <0f( X W) - 83
7 h h
under Condition 2. O
LeEmMA 3.3. Assume (3.2) and (3.3). Then for almost all X,

P{max‘@k - Hk‘ > 20} -0,

seS

where c is given in (3.3).

Proor. Let Sa) and s, be the two sets such that 0 @ and 0k<2) are,
respectively, the minimum and maximum among the 6, s € S,. Then

S S
max|0k - 0k| < 0 @ — Gk(l)
seS,

It suffices to show that for almost all X,
P{éZ(Z) > C} - 0 and P{éz(n < —c} 0.

From (3.2), 1 — ﬁ‘k""@)(c) <7l - ﬁ’k(c)]. From (2.4), (3.3) and ﬁ‘k(c) - Fk(c) =
0,(1) as. P,

P{6s® > ¢} = P{1 - Fgo(c) =2 1 - p} < P{1 - Fy(c) = (1 —p)/7} > 0
a.s. P.

Similarly we can show P{f3» < —c} — 0 a.s. P. This completes the proof. O

LemMA 3.4. Let T, be a subset of S, with size m,. Assume Condition 1,
(3.2) and (3.3). Then

2
rk A —~ 4
(3.6) — ¥ (65-6,) =0,(1) as.P.
my seT,

Proor. From Lemma 3.3 and the fact that 6, — 6, = 0,(1) as. P, for
almost all X,

(3.7) P{ —6,| > br 1/2} 5 0.

seT,
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For (3.6), it suffices to show that for almost all X, if {£,} is a subsequence of
integers such that lim; _,, fk, log Nkj = g (including «), then (3.6) holds with
k replaced by k. For simplicity we omit the subscript j in the following.

Case 1. @ = 0. From Lemma 3.1(i), for almost all X, there is a kx> 0
such that for 2 > kyx and any s € S,

(3.8) P{r,ﬁ“]é,’; - §k| > t} < 2exp<—2p2(rfb‘1 - 1)2} for b < ¢ < br;/%
From (3.7), the desired result follows if

2 .
rk N ~ 4
(02 - Bk) Liog-dy<oriry = Op(1),
my seT,

which holds if

2 s 5\
(3.9) riE (0k - 0k) I(|éz-ék|gbr,§/2)l = 0(1),

since 8§ have the same distribution for all s € S,. Note that the left-hand side
of (3.9) equals

4 fo °°t3P{rkl/2|é,§ = Gl ig-sgcoryrny > £}
< 4["tP(r}/?03 - 6,] > t) dt
0
< 4fbt3 dt + 4fb’¢/2t3P{r,}/2|éZ — 0,] >t} at
0 b

+ 4" P12y ~ 6] > ¢} dt

bri/?

<b'+ 8" exp(-202(t/b - 1)%}dt + 4P{|03 - 6,| > b}jb””' £ dt
b

P2
<b*+ 8[00153 exp{ —2p*(¢/b - 1)2} dt + 2b*r} exp{—2p2(r,}/2 - 1)2>,
b
where the inequalities follow from (3.8). Thus (3.9) holds.

CASE 2. a > 0. There is an a > 0 such that r,log N,/N, > «. From
Lemma 3.1(ii) with ¢ = 2, for almost all X, there is an [y > 0 such that for
k>1ly and any s € S,,

(3.10) P{rkl/2|§,’; - 5k| > t> < 2exp{—2(b1t - p)2} for b <t <cya,,

where a, = r}/*(log N,)?/N,!/? and c, is a constant satisfying cja > 2. Simi-
lar to the proof of Case 1, we only need to show (3.9). Note that the left-hand
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side of (3.9) is bounded by

4fbt3dt + 4fbc°akt3P{r,§/2]é,§ — 6, > ¢}t + 4fbr”t3P{r,}/2
0

Colp

63— 6, >t} at

<b*+ sfwt3 exp{—2(blt - p)2} dt
b

bry,

+ 4P([03 - 6,] > co Ny V2 (log N,)?) [ dt

0

(3.11) <b*+ Sfmt3 exp{ —2(b,t - p‘)2} dt + 2b*r}} exp{-2(b,coa, — p)2}
b

)

where the inequalities follow from (3.10). Since r}/%(log N,)?/N,/? > o, there
is a k, such that for & > &,

bicoay = p + cori/?log N, /N2 > coal/?(log N,)">.
Hence for % > k,, the last term: in (3.11) is bounded by
2b*r! exp{—2c2alog N,} = 2b*riN, 28 < 2b4riN; * < 2b%.

Thus (3.9) holds for & > ky = max(k,, ). This completes the proof. O

Proor orF THEOREM 3.1. We only prove the first assertion. The proof of the
second assertion is similar. Note that

iz (és—é)zziz ﬁk(ek)_ﬁks(ok)+Rs_R
my, seT, k k my, seT, F}:(ak) k k
Wi.d 1 2
=2 sih t+ — 2 (R} —R,)
B TerTkh My seT,

+ cross product terms,

where the last equality follows from (3.1) and

R =03 - 6, — [p - B2(0)] [Fi(8,).
R, = ék =6, - [p - Fk(ak)]/Flé(ok)'

Then the result follows from

(3.12) S (R}-Ry)’=o0,(1) as.P,

k seT,
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since the cross product terms are o,(1) a.s. P under (3.12), (3.2) and Condition
2. Note that

2 2
rk 8rk A A 4
— Y (Ry-R)'<s— ¥ (65-6,)

: seT, k seT,
(3.13) . . . 4
8& F3(6,) — F,(8,)
My son | Fi6,)

From Theorem 2.2 and Corollary 2.1,
b,—6,=0,(n;?) as.P.

Then from Lemma 3.4, the first term on the right-hand side of (3.13) is 0,(1)
a.s. P. Note that

E{_ >

My seT,

Beo) - B [ _ [0 - Fuen |
F/(6,) k F;(6,)

for a fixed s € S,. Hence from Lemma 3.2, the second term on the right-hand
side of (3.13) is O,(1) a.s. P. This proves that for almost all X,

(3.14) LS (Ry-R,)* = 0,(1).

my seT,

From Theorem 2.1, r,(R} — R;)? = 0,(1) a.s. P for any fixed s. Let a be any
positive rational number. Then

RE[(R = R Lyyry-ryea)) = 0 as. P
and therefore for almost all X,

r
(3.15) — ¥ (R}~ Ry)’I, rs-r,pca) = 0p(1) for all rational a.
mk seT,

For any ¢ > 0, let X be fixed such that (3.14) and (3.15) hold. Then there is a
positive rational a depending on ¢ such that

P

7‘2
—~ ¥ (Rs —'Rk)4>as} <e.

k seT,

Then

T
P{m_ Y. (R} - Rk)zI[rk(Rg-Rk)2>a] > 5}

k seT,

<P

2
T 4
— 2 (R} — Ry) Iyry-ryp2sa) > @€} <e.
My sem,
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Hence

P{i Y (R:-R,)®> 25}

my seT,
(3.16)
rk 2
<e+ P{— Y (R =Ry I, ri-Ry<a) > &

k seT,

From (3.15), the second term on the right-hand side of (3.16) is smaller than ¢
for large k. Since ¢ is arbitrary, this proves (3.12) and thus the result. O

4. Consistency of BRR variance estimators. We shall establish the
consistency of the BRR variance estimators vy and @y in (1.3) and (1.4) for
any balanced T, and with proper conditions on r,,, d,, and choice of A,.

4.1. Non random resample sizes. We first consider the case of f, —» 0 or
with-replacement sampling within stratum. From Remarks 1 and 2 after
Theorem 2.2, we need to estimate v in this case. Note that

y — 0
E\n, —Skh] = Up>
and

Var

W W, Wi,
ny L _‘Szh] =ni ) n_‘Vfﬂ'(Skh) CniY —— < Cbini?,
Nk h Ten h

where C is a constant and the two inequalities follow from Conditions 1 and 2,
respectively. The BRR estimators v, and i are consistent for. v if

(4.1) At =0(1),
W2 (d
(4.2) R A )s2 =0 (1) as.P
)‘k n ki \ Tre P

and the conditions in Theorem 3.1 are satisfied.

THEOREM 4.1. Assume that the conditions in Theorem 3.1 hold and that
(4.3) n, <cd,,
where c is a constant. Let A, = d,/r, and assume that
dpn

—_)‘k
Tkh

(44) Z Wi
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Then for balanced T,

ve(T,) — vy =0,(1) as.P,
and

Op(Ty) —vg =0,(1) a.s.P.

Proor. We need to check (4.1) and (4.2). Since A, = d,/r;,, (4.1) follows
from (4.3) and (4.2) follows from (4.1), (4.4) and Condition 2. O

In the following we give some examples of r,,, and A, that satisfy (4.3)-(4.4).
The results are stated as corollaries.

CorOLLARY 4.1 (Proportional BRR). Let r, and d, be integers satisfying
(4.3) and A, =d,/r,. Suppose that we can choose r,, to be proportional to
Ny, that is,

Tkh T

4.5 _—= h=1,...,L,.
(4.5) Nyp n’ T

Then (4.4) is satisfied and the result in Theorem 4.1 holds.

In Corollary 4.1, n,, is not required to be divisible by 7,,, nor does it
require the original sampling plan to be proportional allocation. In the impor-
tant special case of n,/r, being an integer, we have the following result.

CoroLLARY 4.2. Suppose that n,, for any h is a multiple of p,, p, being
an integer. Let r,, =n,,/p, and A, =p, — 1. Then (4.3) and (4.4) are
satisfied and the result in Theorem 4.1 holds.

Regarding the selection of T, for Corollary 4.1 or 4.2, one obvious choice is

T, = S,, since S, is balanced. The number of elements in S,, M, = I1 h(’i::),

is usually very large and therefore the computation of vg(S,) can be cumber-
some. In some situations, a balanced set T, with size much smaller than M,
can be found. An outstanding example is the use of Hadamard matrix for
constructing T, when n,, = 2 and r,, = 1. The size of T, does not exceed
L, + 4, where L, is the number of strata [McCarthy (1969)]. When n,, = n is
a prime power and r,;, = 1, construction of T, with economic size is also
available [Gurney and Jewett (1975)]. To allow r,, in Corollary 4.2 to be
greater than 1, we can use a generalization of orthogonal array [see Brickell
(1984)] to construct balanced T,. Construction of these arrays with economic
size needs to be further investigated. Finally we may point out that (4.4) is
generally not satisfied by r,, = 1 and unequal n,,, and consequently the
variance estimators vy, (1.3) and @, (1.4) may not be consistent. By using a
mixed orthogonal array that satisfies the balance conditions (1.1) and (1.2) and
employing internal scalings to account for the difference in the n,,’s, Wu
(1991) obtained alternative variance estimators that are consistent.
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In the following corollary we relax the assumption of constant n,,/r, A
required in Corollaries 4.1 and 4.2.

CoroLLARY 4.3. Suppose that r,, satisfies the following conditions for a
sequence U, € {1,2,...,L,}, k=1,2

(@) max,, cy,ld,, /7, — Al = 0, where A > 0 is a constant;
(b) = heUch » = 0, where Uj is the complement of U,;
(©) dy, < Crk » for h € U;, where C is a constant;

(d) EheU;rkh/rk - 0.

Then if A, = A, (4.3) and (4.4) are satisfied and the result in Theorem 4.1
holds.

Proor. From (a), (c) and (d), d,/r, — A and therefore (4.3) holds. Condi-
tion (4.4) follows from (a), (b) and (¢). O

We now consider the case of nonnegligible fk When f, does not tend to
zero, the asymptotic variance of n'/2(6, — 6,) is v, given in (2.8). Similar
results to those in Theorem 4.1 and Corollarles 4.1-4.3 can be established.
Note that condition (4.2) should be replaced by

— @d———)\(l fan)|sin =0,(1) as.P

Ak h Trn | Tkn g H P T
where f;, = n,,/N,, is the sampling fraction within the Ath stratum. The
proof of the following theorem is similar to that of Theorem 4.1 and is omitted.

THEOREM 4.2. Assume the conditions in Theorem 3.1 and that r;,;, and A,
are chosen so that (4.3) holds, A, = d,/(r, — ¥, funtsn) and

(4.6) Z Wen

dun
— M= fr)| >0
Tkp

Then for balanced T,,
V(Ty) — v, =0,(1) a.s.P,

and
0r(T,) — v, =0,(1) a.s.P.

If the sampling plan is proportional allocation, that is, f,, = n,/N,, then
condition (4.6) is the same as condition (4.4). Hence if r,, are chosen accord-
ing to the methods described in Corollaries 4.1-4.3, vy and § are consistent
for v,. In particular, choosing r,, according to (4.5) is justifiable.

If f,, are different for different strata, choosing r,, to satisfy (4.6) may not
be possible. In the following we consider random resample sizes r,;,, which is a
relatively easy way to obtain consistent BRR variance estimators.
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4.2. Random resample sizes. Assume f, = 0 or with-replacement sam-
pling within each stratum, but allow the resample sizes r;, to be random. This
may be useful when a suitable choice of r,, and A, satisfying the conditions in
Corollaries 4.1-4.3 does not exist. For example, Corollary 4.2 is not applicable
if n,, is not a multiple of p, for any h. Let

(4.7) Wyp = Npp/2
and A, = 1. Choose r,; according to

ryn = [wy,] with probability p,,,
(4.8) L N

ren = 1+ [w,,] with probability 1 — p,,,,
where

(1 + [wen] — wen) [ ]
Wi

Prp =

and [x] is the integer part of x. Note that if n,, is an even integer, then
Py, =1 and r,, =n,,/2 is nonrandom. The following result shows that the
BRR estimators with this choice of r,, are consistent.

THEOREM 4.3. Assume the conditions in Theorem 3.1 and that T, are
balanced. Let A, = 1 and r,, be chosen according to (4.8). Then the result in
Theorem 4.1 holds.

Proor. Since n,/r, <n,/X,ln,,/2] <6, (4.1) holds. It remains to show
(4.2). Let E, and Var, be the expectation and variance taken under the
probability corresponding to the random selection (4.8). Then E (d,,/r.,) = 1.
If n,, is even, Var(r;;}) = 0. For odd n,,, a straightforward calculation
shows that Var (r;;!}) < cn}?, where c is a constant. Then

2
hdkh 52, | = W 9
nkZ —nkZ — Sikh>
h TerTkR h Tkh
and
2

Wihdin s2, | = th e Tk | 4

Var, nkZ = kZ Skh
h MrrTrh kh Thh

<c Z 3 skh < cbiny! Zthskh 0,(1)
h

kh

a.s. P.
Hence (4.2) holds. O

The scheme (4.7)-(4.8) for choosing r,, is especially useful when f, is
nonnegligible. We have a similar result to Theorem 4.3. Its proof is omitted.
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THEOREM 4.4. Assume the conditions in Theorem 3.1 and that T, are
balanced. Let A, =1 and r,, be chosen according to (4.7)—(4.8) with w,,
replaced by n,,(1 — f,,)/2. Then the result in Theorem 4.2 holds.

5. Random subsampling. As pointed out in Section 4.1, balanced T,
with economic size are only available in some special cases. In this section we
study another method for computational reduction: the random subsampling
method. It is useful when a balanced set T, with size much smaller than M, is
not available for a fixed k. Even if a balance set T, with size much smaller
than M, exists, use of the random subsampling may be simpler than the
construction of a balanced set. It can be viewed as a Monte Carlo approxima-
tion to the complete enumeration of S,.

Suppose that

Uk
(5.1) S.= U Sk, >
Jj=1

where S, ; are disjoint subsets of S, and have equal number of elements /,.
Let {T; ,,..., T} ,,} be a simple random sample (with or without replacement)
from {Sk,p e Sk’vk},

Up
(5.2) T = UTY,
j=1

and m, be the total number of elements in Tj. Note that M, = v,[, and
m, = u,l,. Usually m, is chosen to be much smaller than M,. When each
S, ; in (5.1) contains only one element, v, = M, and the method amounts to
taking a simple random sample {s,,...,s, } from S,. This special case may be
called a complete random subsampling method. For i.i.d. samples, Shao (1989)
studied the method and suggested taking m, to be nk for some & > 1
Another special case for n,, = g, r,, = 1 for all » and % is to define S, ;
(5.1) to be a collection of g mutually exclusive subsamples, each of Wthh
contains L, units with one from each stratum. Each S, ; amounts to group-
ing the gL, units into g exclusive subsamples. There are g“*~! such group-
ings to make up the S, in (5.1) with v, = g%+~ . This method is called the
repeated random-group method and the estimator Ug is studied in Kovar, Rao
and Wu (1988).

The following result shows that vg(T}) and 75(T}) can be used to approxi-
mate vg(S,) and T,(S,), respectively. Thus, vg(T}) and 75x(T}) are consistent
variance estimators if vy(S,) and 75(S,) are.

THEOREM 5.1. Let T} and u, be given in (5.2). Suppose that Condition 1
and (4.1) hold and that u, — © as k —> ». Then
vr(Ty) — vr(S) = 0,(1),

and

Op(Ty) — Or(Sk) = 0,(1).
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Proor. Let A% = vgp(Tf) — vgr(S,), P, be the probability corresponding to
the random selection of T} and E, and Var, be the expectation and variance
taken under P,. Then E,(A%) = 0 and

v, 2

Uk _uk nk A A V2
Var,(A}) = ———— Y 0; — 0,] —vr(Sy)
S upp(vy — 1) ;24 seS, )‘klk( * k) S
2 v 2
ns, k A A \2
<5— x| X (65-96
Neljurvy ;=4 ses,w( P b
c?r . 4
< 05 —-90,) =0 (u;! s. P,
u,M, sgsk( * k) p(uk ) e

where c is given in condition (4.1) and the last equality follows from Lemma
3.4. Hence for any ¢ > 0,

P {|A%| > ¢} <e ?Var,(A}) =0,(1) as.P.
Then the first assertion of the theorem follows from
P{|A%| > ¢} = E[P,{|A%| > ¢}] =0(1) as.P.

The proof of the second assertion is similar. O
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