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WEAK CONVERGENCE AND ADAPTIVE PEAK ESTIMATION
FOR SPECTRAL DENSITIES!

By HaNS-GEORG MULLER AND KATHRYN PREWITT
University of California, Davis

Adaptive nonparametric kernel estimators for the location of a peak of

the spectral density of a stationary time series are proposed and investi-

- gated. They are based on direct smoothing of the periodogram where the
amount of smoothing is determined automatically in an asymptotically
optimal fashion. These adaptive estimatqrs minimize the asymptotic mean
squared error. Adaptivity is derived from the weak convergence of a
two-parameter stochastic process in a deviation and a bandwidth coordinate
to a Gaussian limit process. Efficient global and local bandwidth choices
which lead to adaptive peak estimators and practical aspects are discussed.

1. Introduction. In many instances of spectral analysis of a stationary
time series, interest focuses on the location of a peak of the spectral density,
the ‘“peak frequency.” One possibility is to derive estimates of the peak
frequency from estimates within a suitable parametric model, either in time or
frequency domains. However, parametric assumptions often are not easy to
justify or require difficult choices like the determination of the order of an
autoregressive model. Therefore, time-honored nonparametric methods like
direct smoothing of the periodogram and then reading off the desired peak
frequency have kept a prominent place in the repertoire of the time series
analyst. These smoothing methods, however, depend critically on the degree of
smoothing used, and this paper addresses the question of how to choose the
smoothing parameter for the estimation of peaks in such a way that adaptive
peak estimates are obtained. Since the peak frequency is a local concept, the
desired bandwidth choice will have to be an inherently local one; what happens
far away from the peak in question should not unduly influence this band-
width choice. Adaptive peak estimation means that employing certain data-
dependent bandwidths guarantees the same asymptotic distribution of the
estimated peak frequency as if the optimal, but unknown bandwidths, which
minimize the asymptotic mean squared error of the peak frequency, would
have been chosen.

We consider kernel type estimates for spectral densities which are kernel-
smoothed periodograms, in contrast to lag window smoothers. Smoothing of
periodograms has been considered for a long time for the purpose of spectral
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1330 H.-G. MULLER AND K. PREWITT

density estimation; see, for instance, Grenander and Rosenblatt (1957), Parzen
(1957), Alekseev and Yaglom (1980) and Priestley (1981). For kernel estima-
tors of spectral densities, the problem of local bandwidth choice, in particular,
bandwidth choice for spectral peaks, seems not to have been addressed so far.
Global bandwidth choice was considered recently in terms of adapting cross-
validation for spectral densities [Hurvich (1985) and Beltrao and Bloomfield
(1987)].

The asymptotic normality of the estimated peak coordinate was established
for lag window type estimators by Newton and Pagano (1983). For smoothed
periodograms, this will be one of the consequences (Theorem 3.2) of our main
result (Theorem 2.1) on the weak convergence of a two-dimensional stochastic
process. The asymptotic basis for the proposed local bandwidth choice is
provided in Theorem 3.1, and two practically efficient methods are justified by
Theorems 4.1 and 4.2 below.

Newton and Pagano (1983) express the opinion that nonparametric methods
for peak frequency estimation are at a disadvantage since no bandwidth choice
methods exist as compared to the autoregressive peak frequency approach. In
the latter, a parametric autoregressive model is fitted first, and the correspond-
ing spectral density and peak frequency are obtained for this fit [see Ensor and
Newton (1988)]. Several well-established methods exist for choosing the order
of an autoregressive model [compare, e.g., Hannan and Quinn (1979) or
Shumway (1988)], so that this approach can be carried out in a data-dependent
automatic manner. While this provides a viable and in many instances satisfy-
ing solution to the spectral peak estimation problem, there are instances where
this parametric approach entails relatively larger mean squared errors as
compared to an adaptive nonparametric method, as will be demonstrated by
means of a simulation study in Section 5.

Section 2 contains notation, basic assumptions and the presentation of
Theorem 2.1, our central result. The diverse applications of this result, notably
the feasibility of adaptive estimation of frequency peaks by efficient global
bandwidths (Theorem 3.2) and by efficient local or variable bandwidths (Theo-
rem 3.3) and the asymptotic normality of peak frequencies derived from
smoothed periodograms (Theorem 3.1) will be discussed in Section 3.

Section 4 presents two methods to achieve this efficiency (Theorems 4.1 and
4.2). The second of these results implies that adaptive frequency peak estima-
tion is achieved when at each point where the spectral density is to be
estimated local bandwidths are chosen which are consistent estimators of the
asymptotically optimal local bandwidths for estimation of the first derivative.

Proofs and auxiliary results are compiled in Section 6 and some results on
the practical performance of the proposed methods as compared to parametric
modeling are discussed in Section 5.

2. Main result. We introduce the necessary notation and state the as-
sumptions that are basic for all of the following. Let X(¢),# =0, +1, +2,bea
real-valued strictly stationary process with zero expectation for which all
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moments exist. In addition, assume that for all r > 0,

Y [1 +|mj”|cum(X(t tmy),..., X(t+m,_ ), X(t))] <,

j=1,...,r—-1,

where cum(X(¢ + m,),..., X(t + m,_,), X(¢)) is the joint cumulant of order
r; see Brillinger (1981), Chapter 2. In addition, assume that given some integer
k > 2, the autocovariance function ¢(m) = E(X(t) X(t + m)) satisfies

L le(m)|m**t <o,
m= —@
that is, the spectral density

=)

1 .
f(A) = o Y. c(m)exp(—irm), 0<A<2m,

satisfies
(F1) fe €+ ([0,27]).

Assume that a peak of f is located at some 6 € (0, 7] with the following
properties:

f(A) <f(8) forall A + 6,

(F2)

f(e) =0, f®0) <o, FED9) # 0.
Consider frequencies A, = (2mj)/n, j=1,...,n — 1, and the periodogram
values

n—1 2

Y. exp(—iA;1)X(1)
1=0

1
1) =57

We discuss the following kernel estimators of f(A):

n 1 n—lldj A—u
(2.1) f(A,s) = b(—s)—j_lj;HK(W)duI()\j),

where d; =(A; +4,,1)/2, j=1,...,n —2,d,=0and d,_, = 27. Here K
is a kernel function of order k, satisfying

K e ¢\(R),

(K1) Do e 1 .
K® is Lipschitz continuous on R, support (K) = [-1,1],

(K2) K e, ,,
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where

0, 0<j<k,j+#v,
A, =18 € C([-1,1]): [g(x)x/dx={ (1)),  j=u,

#+ 0, Jj =k,

The bandwidth sequence b(s) for these estimators is defined to be
b(S) — sn*l/(2k+3),

with a free parameter s. It will be seen that this is the optimal rate of decay of

the bandwidth for the purpose of peak estimation. The central application of

our main result (Theorem 2.1 below) is the efficient choice of the parameter s.
Defining the estimator 6(s) of the peak coordinate 0 by

(2.2) é(s) = inf{A e [0,27]: f()\,s) = supf(x,s)},
we find in Theorem 3.1 below that for fixed s > 0,
nk/(2k+3)(§(s) _ 0)
—s*fE0(6) B, 2mf(6)°
F®0) s ()

defining B, = [(— 1)*/k![K(v)v* dv. Therefore, the asymptotic mean squared
error of 6(s) is

(2.3)

- N fK(”(v)zdv),

FED0)BL T 1 2mf(6)”
() s® F@(p)°

which is seen to be minimized by

(2.4) As.MSE(d(s)) = s%( [K<1>(v)2 dv,

% 37Tf(0)2fK(1)(U)2dv 1/2k+3)
(2.5) s = kf(k+1)(0)2B,§
We will show that As.MSE(6($))/As MSE(8(s*)) > 1 as n > w if § -, s*,

that is, that any such procedure is efficient (Theorem 3.2).
Let any oy, 0,7 satisfying 0 <o, <s* <o,<® and 7> 0 be given.
Throughout this paper we set
y, = nt/@k+3)

Define the sequence of stochastic processes
(2.8) L(s,t) =¥ F(0 +ty,hs) = F(6,8)], (s,8) € oy, 03] X [~7,7]

in the two variables s (the ‘“‘bandwidth” variable) and ¢ (the ‘“deviation”
variable). Obviously, {, € €(loy, 05] X [—7, 7).

A related, but simpler process in only one ‘“deviation’ variable was consid-
ered in the context of estimating modes of densities from i.i.d. data by Eddy
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(1980). In the following, = denotes weak convergence of stochastic processes.
Our main result is the following theorem.

THEOREM 2.1. Under (F1), (F2), (K10)) and (K2),
(2.7) Lu(s,t) = (s, t) on E([oy,05] X [—7,7]),

where {(s,t) is a two-dimensional Gaussian process characterized by the
following properties:

2

(2.8) E({(s,t)) = %f@)(e) + tskf ;D (9) B,

(2.9) cov(£(sy,41), {(55,85)) = (St%)—z-zwf(e)zfz{m(:_l)xm(siz) dv.

The proof requires several auxiliary results and is deferred to Section 6. The
limit process ¢ can be written equivalently as

[(5.1) = =F@(8) + ts*F*+1(0) B,
(2.10) 2
U

+ 5—2-(217)1/2,0(0)[1«”( - ) dW(v),

where W denotes the Wiener measure.
Various applications of this result are discussed in the following section.

3. Adaptive frequency peak estimation. Let (F1), (F2), (K1) and (K2)
be satisfied for all of the following. Consider the mapping u defined on
€ (0, 03] X (—x,)) by

w()(5) = inf{t(s)ip(s,t) = sup w(s,r))

re(—owo,©)

for ¢ € €0y, 05] X (=, )). Since the limiting process { is a random parabola
with fixed second derivative [see (2.10)], the mapping w is measurable and
continuous at ¢ (2.7), considered as an element of €((o}, g5] X (—,®)),
equipped with Whitt’s metric [compare Theorem 5 of Whitt (1970) and Eddy
(1980)].

By a standard expansion argument [see, e.g., Parzen (1962)], in conjunction
with Lemma 4.2 below, one can show that

(3.1) sup yn(é(s) - 0) = 0,(1),

01<8<0y

which implies that it is actually sufficient to consider the mapping u on spaces
¢ (o, 03] X [=7,7]), 7 finite; however, for convenience we consider in the
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following {,,,{ as elements of €([o, 0,] X (—o,®)). Observe that (2.10) im-
plies

_Skf(k+1)(0)Bk (277_)1/2]0(0) (v
(32) w0 = — g~ g KOS ) W),
and according to the functional mapping theorem,
(3.3) m($,) = u(f).

Observe that {,(s,t) is maximized whenever 6 + 2y, ! = 6(s), where 8(s) is
the peak frequency estimator (2.2). This means that

(3.4) w(£)(8) = v,(6(s) = 0).
From (3.1)-(3.4) we get the following result.

THEOREM 3.1. For fixed s in [0y, 0,],
nk/(2k+3)(é(s) _ 0)

(3.5) stfE+D(0)B, 2mf(0)
BER O BT

This result for a fixed bandwidth sequence complements a result by Newton
and Pagano (1983) on the asymptotic normality of peak frequency estimators
derived from lag window spectral density estimates.

From (3.5) we obtain the expression given in (2.4) for the asymptotic MSE,
that is, the MSE as derived from the limiting distribution, and its minimizer is
seen to be s* (2.5). This implies that the optimal asymptotic MSE for kernel
frequency peak estimators is given by

As.MSE(6(s*))

[Kﬂ)(u)2 dv].

kE+3 9 9 2k/(2k+3) )
(3.6) - (If(k+1)(0)Bk|6/(2 )(27Tf(0) fK(l)(v) dv) /f(2)(0) )

3 \2k/2k+3) Ok \3/2k+3)
x| | = +|—= :
) 5]

The goal of optimizing the estimators thus naturally leads to the following
two problems:

1. Optimization of the kernel function by minimizing the leading constant of
(3.6) with respect to the kernel. The optimal kernel in this sense would be the
solution of the variational problem

‘fK(v)vkdv 3([K<1>(v)2dv)k = min

(3.7)
subject to K € .4, ,, K(—1) = K(1) = 0.
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Problems of type (3.7) are discussed in Granovsky and Miiller (1991) and
explicit solutions are given there under an additional side condition which
restricts the number of sign changes of the kernel function. For example, if
k=2 in (38.7) and the kernel K@ is restricted to have at most one sign
change, the solution is the kernel K(v) = (15/16)X1 — v*2? on [-1,1].

2. Of even greater practical importance is data-dependent bandwidth choice.
Ideally, such a bandwidth selection procedure would have the property that
the asymptotic optimal MSE (3.6) is in fact achieved. A fully data-dependent
bandwidth choice with this property is efficient, and a peak frequency estima-
tor employing such an efficient bandwidth choice and therefore achieving (3.6)
is adaptive. Obviously, s* itself is not a possible choice, since it depends on the
unknowns f(#) and f**1(9).

The remainder of this section is devoted to demonstrating that all band-
width choices § with the property $ —, s* are efficient. In the following
section, feasibility of such bandwidth choices will be investigated.

THEOREM 3.2. Any bandwidth sequence b(8) = §n~1/@*+3 which satisfies
(3.8) § — s*

is efficient, and 6(8) (2.2) is then adaptive, that is, achieves the optimal
asymptotic MSE (3.6) of 6(s™*).

Proor. We need to show
(3.9) £(8,8) = {(s*,t) on€([—7,7)),

since then u({,(8,¢)) =4 u(l(s*,t)) by the functional mapping theorem [see
Billingsley (1968)] and lLim £ (y,(A(3) — 6)) = lim -#(y,(8(s*) — 6)) as n — o,
where .Z(X) is the distribution of X. But (3.9) is a direct implication of
Theorem 2.1, since bivariate tightness implies that for all £ > 0 there exist
n,8 > 0 such that

P( sup |£.(s,¢) —{n(s*,t)|>n) <e,

tel—7,7], [s—s*| <8

which implies that {,(8,¢) = {,(s*,¢) + 0,(1), where 0,(1) is uniform in ¢. O

Theorem 3.2 provides a class of efficient bandwidth choices which we call
“global” bandwidths b(s) = sn~1/2k*3); these bandwidths do not depend on x
respectively ¢, and hence do not vary locally. An alternative is the choice of
local or variable bandwidths. This seems to be a reasonable approach since the
peak frequency itself is a local phenomenon. Furthermore, by using varying
bandwidths, adaptivity can be achieved without initial pilot estimators for 6
which are required for ‘“global” bandwidth choices in order to obtain pilot
estimators for f(6), f**Y(8) according to (2.5).
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Define a local bandwidth spectral density estimator

o 1 n—1 d, A—u
(310) f()\,S()\)) = W}gl LJIK(W) duI()\J),

A €[0,27]. Given estimates §(A) for s(A), we define a corresponding peak
frequency estimate by

A

G d=it{a F(50) = e 7(80))).
ye<lo,27]
In terms of processes ¢, such a choice corresponds to

(3.12) §(¢) =§(0+tyn_1), t € (—w,x),

where for 6 + ty, ! < 0 resp. > 2, we set the argument equal to 0 resp. 2.

THEOREM 3.3. If for all T > 0, with §(¢) as defined in (3.12),
(3.13) sup |§(t) — s*|=0,(1),
tel—r,7]

then 6 (3.11) is adaptive.

PrOOF.  As in the proof of Theorem 3.2, we need to show that { (5(¢),t) =
{(s*, t). This is implied by

P(sup 4,(5(1),1) ~ (%, 0)] > ¢

SP( sup  [{,(s1,t) — Lu(sa, )] > 5) +P(sup |§(¢) — s*| > 8).
t

[s;—sgl<8,t

O

4. Efficient bandwidth choices. A straightforward approach to achieve
efficient bandwidth choice according to Theorem 3.2 is to estimate the un-
knowns f(8), f**1(6) in the optimal bandwidth constant s* (2.5) by pilot
estimators of f, f**Y and 6. Consider derivative estimators

v

(4.1) f(A, b,

for fXA), 0 <v <k + 1, where we require K, € .#, _#+1- The proofs of the
following auxiliary results are deferred to Sectlon 6.

LEMMA 4.1.  Assume that 0 <v <k + 1, f€ €**(0,27)), K, € .4, ,,
and b, —» 0. Then

(4.2) Ef®(X,b,) > fP(})

uniformly on any compact set contained in (0,27). For 0 <v <k, A € (0,2m),
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if nb?*1 - o nb2**3 — 1?2 for some 0 < n < o, then
(rb2 ) (F (A, B,) = FA(1)
—>_@/I/(an+1f‘k+1)(/\),2rrf()\)2ny(v)2dv).

For v=~Fk + 1, A €(0,2m), if nb2k*3 > «, then

(4.3)

(nb2E3Y %A, b,) — Ef (A, B,))

(44 ﬁgw(o,zwch)szy(v)de).

LEMMA 4.2. Assume that 0 <v <k +1, fe ¢**10,27)), K, € .4, .,
is Lipschitz and b, —> 0, nb2*? — . Then for any 0 < § < ,

(4.5) sup | FO(A,b,) = FO(M)] = 0,(1).

d<A<2m—-48

LEMMA 4.3. Assume that 0 <v <k + 1, fe €*%0,27)]), and K, €
#, .1 is Lipschitz continuous. Then

(4.6) by ly, =
implies that

(4.7) FO0 + ty; 1, b,) — F(8,0,) —,0 uniformlyint € [-7,7].

From now on, all considerations are restricted to A € [§, 27 — 8] for some
small & > 0. We first consider the efficiency of global bandwidth choices, that
is, adaptivity of 6(s) (2.2) via (3.8). Abbreviating f®X(A) =f®XA,b,), we
observe

[78) = F(0) | <[ F(8) = FO(B) [ +] F(8) — F(8)]
and 6 — » 0 according to Theorem 3.1, as long as a global bandwidth estimator
with b(s) = sn~1/@**3 s fixed, is chosen. Lemma 4.2 then implies

(4.8) FO8) -, f®(0) for0<v<k+1,
and hence we have the following result.

THEOREM 4.1. Assume that for an arbitrary value s, € [oy, 03], fC,s)
(2.1) is employed to obtain 6(s,) (2.2) and f**1(0(s,), b,,,) (4.1) to estimate

(), where K, € #), 1 1.1 and b,,, satisfies b, = 0, nbZt{* - w.
Then, with s* as defined in (2.5),

1/(2k +3)

37 (8(s0), 50) JKV(v)” dv
kf(k+1)(é(30), bk+1)2BI§

(4.9) §=
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that is, provides efficient global bandwidth choice for frequency peak estima-
tion. The corresponding peak frequency estimator

(4.10) 6 = inf{A: f(x,8) = sup f(y,s?)}

y€ls,2m-8]

is adaptive.

This implies that adaptive peak estimation according to Theorem 3.2 is
feasible and can be achieved by the two-step procedure provided in Theo-
rem 4.1. .

An alternative one-step method which does not require a preliminary
estimate of 6 can be obtained via Theorem 3.3 and Lemma 4.3. It is motivated
by Lemma 4.1: Consider the case v = 1, obtain the asymptotic mean squared
error from (4.3) and observe

(_1)k+1
(k + 1)!

(-1)"
k!

By = JE®P()v*tdv = JE(v)v*dv = B,

Then the optimal local bandwidth for the first derivative at any point A is
b*(A) = s*(A\)n~V/@E+3 with

1/(2k+3)

(4.11)

)

. 37 f(A)* KD (v)? dv
S (A) = ( kf(k+1)(A)2B’§

so that interestingly s*(6) = s* where s* is given by (2.5). Therefore, we
define

(4.12) 6= inf{)\: f(A,8(1)) = Sup 6]f(y,§(y))},
y€lé,2m—

where

1/(2k+3)

(4.13) 8(A) = (37Tf()" bo) [KP(v)” dv

ka(k+1)(A’ bk+l)zBZ

Observe that § (4.12) is of type (3.11). The estimator f(x, (1)) can be
interpreted as a spectral density estimator with locally varying bandwidths
which are consistent estimates of the optimal local bandwidths for estimating
the first derivative of the spectral density.

In order to demonstrate adaptivity of the peak frequency estimators 6
(4.12), one needs to establish condition (3.13) of Theorem 3.3 for 3(A) (4.13).
But (3.13) would follow immediately from

(414)  sup |fD(6 +ty;L,b,) - FO(0)] —,0 forl=0,k+1.

te[—-r,7]
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Now (4.14) follows from Lemma 4.3 (4.7) and Lemma 4.1 (4.2)-(4.4), if

by =0, nbi*¥* >,  limsup(nbd*?) < e,
(4.15)

b,., 0, nb{kDCRED/E 0 g5 p - w,

We have shown the following result.

THEOREM 4.2. If (4.15) is satisfied, the bandwidth choice §(A) (4.13) is
efficient and the peak frequency estimator 0 (4.12) is adaptive.

In applications, confidence intervals for adaptive estimators 6 (4.10) or
(4.12) are sometimes of interest. The asymptotic distribution of these estima-
tors is given by Theorem 3.1 (3.5), replacing s by s* (2.5). Uniformly consis-
tent estimators for the unknown limiting bias and variance are then available
according to Lemma 4.2, and asymptotic 100(1 — a)% confidence intervals can
be constructed by inserting such estimates.

5. Simulation examples. In the following, practical versions of the
“global”” bandwidth choice method of Theorem 4.1 and of the “local’’ band-
width choice method of Theorem 4.2 are developed. The mean squared errors
of corresponding peak location estimates are compared with those obtained by
fitting autoregressive models with automatic order selection; as the order
selection method, Akaike’s information criterion [AIC, Akaike (1973)] is used.
The mean squared errors for the various methods and examples considered are
estimated from 400 Monte Carlo runs per example.

Choosing % = 2, define R(b,) = T, f(7;,b9)*/L ; f¥(r;,b,)? and an initial
global bandwidth by

117
. 37 (KD(v)?dv 1 .
N S R I PN
2 B
where 0 =7, <7, < -+ <7, = 27 are equidistant on [0, 277] for some large

m, which was chosen to be m = 300 and b, is a small starting bandwidth.
Then, in obvious notation, the “global’”’ adaptive bandwidth for peak estima-
tion is defined as

2
v 0.6

)

1!%(1)(,)))1/7 Ald

(5.1) by, = BH(f(é(B), 13)2/(,&3)(@'(13), b)

whereas “local” adaptive bandwidths for estimation at points 7;, 1 <j <m,
are defined as

(5.2) b.(r;) = ISH(f(rj,z‘;)z/( f<3>(71,5)21%(b0)))1/7 Al4

The truncation serves to stabilize the otherwise high variability of global
and local bandwidth choices (4.9) and (4.13). The estimated local bandwidths

v 0.6
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13100( ) are subjected to an additional smoothing step with a simple five-point
smoother, with weights (2/15,3/15,5/15,3/15,2/15). Kernels used were
0(x) B/4X1 — x?) to estimate 7 and kernel K (x) = (315/32)(18x —
60x3 + 42x°) to estimate f®, both restricted to [—1, 1.
The following models were cons1dered

I X(t)=X(t—-1) - 09X(¢t - 2) +¢(¢),

a stationary autoregressive process of order 2 with characteristic roots near
the unit circle and the values 6 = 1.0148, f(6) = 22.0369 and f®(9) =
—3.1405 x 104

II X(t) = X(t—1) — 0.6X(¢t —2) +&(t),

another stationary autoregressive process of order 2 with characteristic roots a
little further away from the unit circle and values 6 = 0.8411, f(6) = 1.7052
and f®(0) = —1.3088 x 102
I X(t) =1.387X(¢t—-1) — 0.471X(¢t — 2) — 0.127X(¢t — 3) + &(¢),
a stationary autoregressive process of order 3 with values 6 = 0.4112, f(9) =
9.7645 and f®(0) = 5.0156 x 103,
X(t) = 1.906X(¢t — 1) — 1.981X(¢ — 2) + 1.349X(¢ — 3)
~ 0.791X(t — 4) + 0.352X(¢t — 5) — 0.09X(¢ — 6) + &(2),
a stationary autoregressive process of order 6 with values 6 = 0.6827, f(8) =
5.9194 and () = —6.8074 x 10>
X(t) = 1.84X(t — 1) — 1.44X(¢ — 2) + 1.12X(¢ — 3) — 1.07X(¢ — 4)

+ 0.88X(t —5) - 0.87X(¢t —6) + 0.87X(¢t —17)
A% - 0.73X(t —8) +0.6X(t—9) — 0.63X(¢t— 10)

+0.63X(t —11) — 0.53X (¢t — 12) + 0.4X(¢t — 13)

- 0.36X(t — 14) + 0.22X(¢t — 15) + &(2),
a stationary autoregressive process of order 15 with values 6 = 0.2834, f(0) =
6.909 x 10% and f®(6) = —5.7252 X 10°
\%! X(t)=13X(t—1) - 0.7X(¢t — 2) +&(t) — 0.7e(¢t — 1),

an autoregressive moving average process of orders 2 and 1, ARMA(2, 1), with
values 0 = 0.6966, f(9) = 1.7869 and f®(9) = —3.2158 X 102

For all processes, (¢), t = 0,1, ..., were simulated as independent .#10, 1)
pseudo-random variables. For each Monte Carlo run, n = 100 data points were
generated for each of these processes, and an autoregressive process was fitted
with order selection according to the AIC, considering orders up to 30. Then
the location of the maximum of the corresponding spectral density was com-
puted, denoted as the AIC estimate. Peak estimates based on methods
(5.1)—GLOB estimate, and (5.2)—LOC estimate, were obtained by choosing
b, = 0.2, which corresponds to approximately six points in the initial smooth-
ing window. As long as extreme values are avoided, the results do not depend

v
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TaBLE 1
Mean squared errors averaged from 400 Monte Carlo runs, for AIC-based autoregressive (AIC),
global bandwidth (5.1)-based (GLOB) and local bandwidth (5.2)-based (LOC) spectral density
peak location estimates for models 1-VI with n = 100. Small numbers denote powers of 10 by

which to multiply

Model AIC GLOB LOC
1 AR(2) 2.455 2 2.108°8 217278
II AR(2) 5.700~2 3.993 2 4.04372
III AR(3) 2.10172 3.104°2 3.1862
IV AR(6) 6.48172 6.1262 6.017°2
V AR(15) 8.92378 . 7.13673 7.17773
VI ARMA(Z2, 1) 1.130°1 1.13472 1.115°2

critically on the choice of b,. We found that the nonparametric procedures
required considerably less computing time than the AIC-based autoregressive
fits.

The results are shown in Table 1. It is evident, that the nonparametric
adaptive methods work well when compared to autoregressive modeling, in
particular for less well behaved models. The global method (5.1) appears to be
slightly advantageous.

6. Auxiliary results and proofs. A sequence of lemmas is given which
leads to the proof of Theorem 2.1. It is assumed that (F1), (F2), (K1) and (K2)
are satisfied. We first investigate the moment structure of processes ¢,,.

LEMMA 6.1.

2

t
E{ (s,t) = Ef(Z)(O) + sk tf*+*D(9) B, + o(1),
where the o-term is uniform in (s,t) € [oy, 03] X [—7,7].

Proor. According to Brillinger (1981), Theorem 5.2.4,
d, 6+ty,;l—u 0—u
K|l ——— | -K|{——|;d
fd{ b(s) b(s) )|

x{ﬂh)+0@fﬂﬂ

vy "l
E{n(s,t) = b(s) Zl[
o

—A,+B,.

For the remainder term, due to the Lipschitz continuity of K, |B,| =
O(n~**+2/@k+3) yniformly in s, ¢, owing to the fact that K has compact
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support [—1, 1] which implies

1/(2k+3
(6.1) Z [J Loy <bsyuo- u+zy;1|<b(s))dv = O(n~ /39
Jj=1

uniformly in s, . Furthermore, using the Lipschitz continuity of f on [0, 27],

by an analogous argument,
0+ty;l—u K 0—u d
b(s) b(s) || 1)

2m
A M)f {

— O( n—(k+2)/(2k +3))

uniformly in s, ¢. Therefore, by substitution and Taylor expansion,
mwsn—YJ'KwﬂﬂWO—ww»uﬁw

dv + o(1)

+ —2—f<2>(0 —ub())(tv ) + O((tvi 1))
=C,+D,+E, +o(1),

where the o-term is uniform in s,¢z. Now E, = O(t3y,') =0(1), D, =
(t2/2) f@(0) + o(1), where the o-terms are uniform in s, ¢. The result follows
by another Taylor expansion of f® around 6 in C,, using the moment
conditions on the kernel function and observing f¥(9) = 0. D

Define now processes ¢,(s,t) = {,(s,t) — E{,(s,?),

0+ty,l—u 0 —u
62 DT b“)z/'{ b(s) )_K(Mw)}“
x{1(x,) - BI(3,)}.

LEMMA 6.2.
cov(¢, (sl,tl) £a(82,t3))

(6.3) 2f(mfm% )Kmﬁi

( . 2) dv +o(1)

uniformly in sy, ty, Sy, ty.

Proor. Defining

(64)  Wi(s,t) = bz’;)fddf {K

0+ty, ' —u Kf)—u 4
b(s) )_ (Mw)}”’
we find

(6.5) |W,(s,t)| = O(n~*+D/@k+3)  yniformly in j, s, ¢.
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With (6.1) this implies

n 1
|W(S t)l _ O(n(k+1)/(2k+3))

j=1

cov({,(51,t1), {n( 89, 83))

cov(b,(51,t1), P.(S2,t3))

n—1
(6.6) = X Wi(sy, t)W(s,t2){F3(A;) + O(n71)}
j=1
+ "il Wi(s1, ) Wi(s3,8,)0O(n71)
b
A, +B,

according to Brillinger (1981), Theorem 5.2.4 where A; = 27 /n. By (6.5), we
find B, = O(n~'/®**3) uniformly in s,,t,, s, t,, and’

=T W51, 1) W50, 83) F2(0,) + O(n )

Jj=1

uniformly. Observing

VVJ-(S,t) _ fd (1)( b( ) )du + O(n72k/(2k+3))

d,_

we obtain for the leading term of A,

n—1
Z ‘Vj(sl7 t1)VVj(s2: ts) f2()‘J)
j=1

tltzyn 0—u
G0 = ey b(sQ)Z,ZJd (b(sl))d”

d, 60—
x[ K<1>( - )duf (A,) + O(n~k-D/@k+3)

whence the result follows by a simple integral approximation and transforma-
tion. O

Turning now to the asymptotic normality of processes ¢, at a point, we
employ the method of cumulants, following Leonov and Shiryaev (1959),
compare Brillinger (1981).

LEMMA 6.3. For fixed (s, ¢)),...,(s,¢t), k > 1,

K "k

(6.8) (Bals1:81)5- > Bul5002)) — 27(0,C),
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where C = (c;;), 1 </, j < k with

S2mf (0)[1{(1)( )K(l)(s )dv

c.. =
J
l (SLSJ)

Proor. For any given constants y;, 1 <i < k, define Z,, = L%_,y;¢,(s;, t;).
It is sufficient to show that all cumulants of order r > 3 vanish asymptotically.
Define W,(s, t) as in (6.4) and

J(s,t) = {j €{l,...,n = 1}t Lo y<unuqo—vitvi=bennid, o d,) O}~

Observe that for the cardinality [J| of "J = Uy _,J(s,,¢,), [J| = O(nd), or
lJ| = O(n2%+D/@+3) Then we obtain for the rth order cumulant of Z,
r>0:

n—1
cum(Z,,...,Z,) = Y ]_[ Z y“ W,(s,,¢,)cum(I(A;),..., I(;))
(6.9) Gt
_ O(nfr(k+l)/(2k+3)) Z Cum(I()\jl),---,I()\j,)),

according to (6.5). Define
n—1 n-1
d(A) = Y X(t)e ™, A(A) = Y e=@ma/mr,
t=0

t=0
Following Leonov and Shiryaev (1959) [see Theorem 2.3.2 of Brillinger (1981)],

cum(I(Ajl), e, I(’\jr))
6100 = oy () d-0,), o d(3,)(-A,)

:O(nf")z Cpl e Cpp’
P

where the last summation is over all indecomposable partitions p = (p;,...,p,)
of the table consisting of the two columns (—j,,..., —j,) and (j;,..., j,) and

=[r; i=1,...,m}, C, = cum(d(A, ) d(A )), as in the proof of
Theorem 7.4.4 of Brllllnger (1981). Accordlng to Theorem 4.3.2 of Brillinger
(1981), C,, = O(IXA(Z 74;,,) + 1) and

m,
if ) r;=kn,k=0,+1,2,...,

(6.11) A( y )\m) e
=t 0, otherwise.

Therefore, in obvious notation,
P

P
11]10‘” = L n70() rac " y=ny)

s=0
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and, observing that (6.11) imposes at least ¢ — 1 linear constraints on the
partitions contributing to n9,

(6.12) Y aum(I(),..-, I(4)) =0(n) L f |JI"~ " Pna

Grseeos J)EJ" p q=0

Observing that we may assume p < r, we obtain

Z cum(I(Ajl)yw-’I()‘jr))

= O(n max br—p+1) — O‘(nb) = O(n2(k+1)/(2k+3))‘

O<p<r

This together with (6.5) implies cum(Z,, ..., Z,) = O(n@ "k+D/@k+3)) _,
for r > 3, that is, asymptotic normality. O

Next we show tightness. In order to apply a criterion of Bickel and Wichura
(1971), we require bounds on fourth moments of differences.

LEMMA 6.4. There exists a constant ¢ such that
(6.14) E(¢,(s,t) — d),,(s,tl))4 <c(ty—t)* uniformlyins € [0y, 0,).

Proor. Define

wj(s,tl,t2)

(6.15) 0+ tyy, ' —u 0+ty,'—u
sl [( ) ”d

and observe that by Lipschitz continuity of K,
(6.16) |w;(s,ty,t,)| = O(n~**D/C D)) —¢,| uniformly in s.

Let M, be the rth-order cumulant of

n—1

(6.17)  b,(s,t3) — (s, t) = 21 w;(s,t1,t5)(1(X;) — EI(A;)).
j=

For r = 1 we find M, = 0; for r > 2,

(6.18) | M, | = O(n@ XA D/@RED) ) — 1, [,

according to (6.13) and (6.16). Therefore, |M,l = O(Dlt, — t1|2, M, =
O(n@-rXk+D/@k+3) ¢ |* where the O-terms are uniform in s. Observing

E(b,(s,t)) — bo(s,t,)) =M, + 4M;M, + 3M2 + 6 M,M2 + M}
<|M,|+ 3MZ,

the result follows. O
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LEMMA 6.5.

(6.19) E(¢,(s,,t) — ¢>n(sl,t))4 <c(sy —s,)* uniformlyint [—7,7].
Proor. Define

(6.20) W;(8q,89,t) = Wi(sg,t) — Wi(sy,t),

where W, is defined in (6.4). Proceeding analogously as in the proof of Lemma
6.4, werﬁrst establish a bound on w;. All O-terms are uniform in sy, s,, ¢

|’1’j(31’32:t)|

d

< n(2k+1)/(2k+3)(/’ J du

|32_1_311|

0+ ty ! 0—u
b(s3) )‘K(b(sz))

J—1

0+ty ' —u 0—u
B LI TR
(6.21) d, b(s2) b(sy)
X 0+tyn1—u) K(()—u))|d
_ AL I I u
b(s1) b(sy) )|
— sy — sllo(n—(k+1)/(2k+3))
+ O(n~2/@k+3) sup |H,(sg,t,u) — H,(sy,t,u)|,
uel0,27], tel—7,7]
where

H, (s, t,u) =K

0+ty, ' —u 0—u
b(s) ) K( b(s))'

Define Iy(s, ¢, u) = Loy <bspuqoreysi-u<oey 2nd Io(s,u) = Lio—u) < 265y
Observe that for sufficiently large n, I(s, ¢, u) < I,(s, u), uniformly in ¢. For n
large enough,

d
—H (s,t,u)

ds
_ d(0+ty;'—u St (1)(0+tyn_1—u)
‘{ds b(s) )> R TS

fale ool 5
as | o) /" o(s)

0+ ty, ! 0+ty, ' —u d [(0—u
=|K® — - = S, u
‘K b(s) ) b(5) ) (b(s)) flo )
i(ﬂ—u) 1)0+t7n1—u)_K(1)(0—u)1( )
ds | b(s) b(s) b(s) ||

— O(nf(k—l)/(2k+3))
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uniformly in s, ¢, owing to the Lipschitz continuity of K and to

d [6—u
im0

Therefore,
(6.22) |11;j(31, 32,;:)‘ <|sy — §;|0(n =+ D/
As before, we find for the rth-order cumulants M, of ¢, (s, 1) — ¢, (sg,8):
M, =0

and
~ n—1 r
M, = Y A Lbjl(sl, sz,t)cum(I()\jl), e I()‘jr))

Greoosgppedni=l

— |s2 — 5, lro(nf(r—z)(k+1)/(2k+3))
for r > 2 by (6.13) and (6.21). Thus
(6.23)  E($,(s2,t) — du(s1,8))" <|M,| +3MF =|s, - s,[*0(1). =

Proor or THEOREM 2.1. According to the corollary of Bickel and Wichura
(1971), page 1664, we need to show convergence of the finite-dimensional
distributions of processes ¢, to the corresponding distributions of the limit
process ¢ and tightness of processes ¢,. The former is implied by Lemmas
6.1-6.3, and for the latter we employ the moment tightness condition (3) of
Bickel and Wichura (1971). For this, let B =[s;,s,] X [¢,¢,] and D =
1$1, 85l X [#}, £,]. The increment of processes ¢, around a block B is ¢, (B) =
b,(59,t5) — b,(51,85) — ¢,(s5,¢1) + &,(sq,¢;). The tightness condition amounts
to El(¢,(B)%$,(D)?] < cA(B)A(D) for some constant ¢ > 0, A being the
Lebesgue measure. According to the Cauchy-Schwarz inequality, it suffices to
show E({(B))* < cls, — s,|%It, — ¢,1?, which follows from Lemmas 6.4 and
6.5. O

Proor or LEMMA 4.1. For the bias part, observe that analogous to the
result on the expectation of the process for any A € (0,27), E(f®(1) —
FO(N) = b*+ 1B, f*+*D(A)(1 + 0(1)), which together with the assumption
on b implies the special form of the asymptotic bias for 0 < » < k. The o-term
is uniform on compact sets. For v = & + 1, the Taylor expansion is carried out
up to the (£ + 1)st derivative.

In analogy to the proof of the covariance structure of processes {, we find,
defining

1

- d, A—u
W](Aﬁb) = bu+1];ij_lKu(

)du,

r _27f3(N) )
var( (4, 8)) = — g /_IKV(U) dv(1 + o(1)),
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us1ng Brillinger (1981), Theorem 5.2.4, and integral approximations (6.7). Let
={jef{l,....n -1} |t - d;_ 1l <bor It—d | < b} and consider the rth-
order cumulant of Z, = (nb®*HLl2(fm()) — f‘”)(/\)) for r > 2:

cum,(Z,) = (nb®*1)

X nz_)l cum(W, (A, 8)I(A,.),..., W, (A, b)I(4, )

UtyeeerJ)E,

r/2

s(nb2"+1)’/( max | (/\,b)|)r

1<j,<n-1

X Y cum(I(/\jl),...,I()\jr)).

(.jl vvvv jr)e‘fr
Since max, _, _,_, 'sz(’\’ b)l = 0(1/nb**1), (6.13) implies
(6.24) cum,(Z,) = O((nb)' %) > 0

for r > 3, whence the result follows. O

ProOF oF LEMMA 4.2. Let p, ~ nb~“*2), Partition the interval [§, 27 — §]
into p, intervals I, with center z, and width 2(w —8)/p,, [ =1,...,p,.
Observe

P sw [F90) - o> ‘)

rel8,2m—8]

<P

A A €
sup sup| f*(1) — f*(z,)] > Z)
I el

+ P(sup| fe0) - Bz > 5
! 4
. €
+ P(SUP'Ef(V)(Zl) - f(y)(zz)‘ > Z)
l

€
+P(sup sup | f®(z,) = FO(N)] > ——).
I rel, 4

Now, using the Lipschitz continuity of K ,, J as defined in the proof of Lemma
4.1, (6.24) and Lemma 4.1, one shows that each of the terms on the r.h.s. is
indeed o,(1). O

Proor oF LEmMMaA 4.3. For large enough n,

R R 1 L
sup| (6 + ty~1) — (g :o——) — (%1 g dx
tp|f ( vt = F(0)] b I b /D | & b‘/;ij_l 10 -2)/b1<2)

0,(1). o
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