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STATISTICAL ANALYSIS OF MULTIPLE ION
CHANNEL DATA!

By ANDRE ROBERT DABROWSKI AND DaviD McDoONALD

University of Ottawa

Biological cell membranes contain molecular structures known as ion
channels. The electrical activity of these channels regulates a number of
cellular functions, such as heartbeat and neural transmission. Often the
-experimenter can only observe the combined current conducted through a
cell patch containing an unknown number of ion channels, each channel of
equal conductance. The observed current record is a step function with unit
up or down steps occurring at random times. Based on such data, we obtain
a goodness-of-fit test for the hypothesis that the channels in a portion of
cellular membrane are operating independently, and that K types (K
small) of channels exist in the membrane. If the hypothesis is accepted,
estimates for the mean behaviour of each type of channel in the experiment
are obtained. These techniques are applied to simulated and biological data.

1. Introduction.

Background. The outer membranes of biological cells frequently contain
molecular structures known as ion channels. In response to specific stimuli,
these complex structures can permit certain ions to cross the cell membrane.
The current conducted by these ion channels governs a number of biological
functions, such as heartbeat and neural transmission. These currents can be
observed by the experimeter, and can be used to develop hypotheses about the
molecular structure of the ion channels. Because of their importance in many
fields of biology, these ion channels have been the object of considerable
research [cf. Hille (1984)].

An ion channel may assume one of several configurations in response to
external stimuli. In some configurations the channel will transport ions across
the cell membrane; in other configurations it will not. We will assume that
each ion channel has two observable groups of configurations: open and closed.
We say that a channel is open when it is conducting current, and closed when
it is not. This difference in current level is a fixed constant determined by the
structure of the channel and external conditions (such as voltage across the
membrane), and it is readily discernable in practice. For simplicity, we will
take the nonconducting level to be 0 current, and the conducting level as 1
unit of current. The precise manner by which the channel opens and closes is
called the gating mechanism. A suitable stimulus for opening a channel may be
a chemical agonist for drug-activated channels or a physical stress for stretch-
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activated channels. Unfortunately, ion channels are extremely small—small
mounds when viewed by an electron microscope—and their activity cannot be
studied directly. We may study the gating mechanism indirectly through the
character of the current produced by a channel over a long period of time. The
recorded current will alternate between 0 (a closed state) and 1 (an open state).
A large number of papers dealing with the analysis and interpretation of such
current records have appeared in scientific journals [e.g., Sakmann and Neher
(1983)].

A widely accepted mathematical model for the gating mechanism is that of
Colquhoun and Hawkes (1983) [see also Sansom, Ball, Kerry, McGee, Ramsey
and Usherwood (1989)], who represent the conformational state of a single ion
channel as a finite state-space continuous-time Markov chain. In this model
the channel (Markov chain) shifts among a finite number of states. Some of
these states are open (i.e., conduct 1 unit of current) and the rest are closed
(i.e., 0 current observed). While in an open state, the channel emits the unit of
current detectable by the experimenter, but it is impossible to distinguish one
open state from another open state on the basis of this current. The same is
true of the closed states. This reduced view of a Markov process is known as an
aggregate Markov process. If the complete record of a single channel is
recorded, an analysis of its gating mechanism may be possible, although some
models are not identifiable—see Fredkin, Rice and Montal (1985), Fredkin and
Rice (1986) and Kienker (1989). For identifiable models, the constants describ-
ing the Markov chain can be usefully estimated by decomposing the observed
sojourn distributions into their exponential components. Examples of this type
of analysis are the papers of Colquhoun and Hawkes (1982), Neher, Sakmann
and Steinbach (1978) and Auerbach and Sachs (1983). These authors discuss
the application of Markov chain techniques to the case where a single channel
is isolated, and its current record is obtained.

In many cases channels cannot be isolated and can only be observed in small
random groups found on cell patches. The researcher cannot obtain the
current record of each channel individually, but can record the total current
across the cell patch. That is, one can only observe the sum, X(¢), of the
individual current records from an unknown number of channels. The activity
of one channel will interfere (censor) the observations of a different channel.
For example, if the current record is initially at 4, rises to 5, and returns to 4
one second later, we do not know whether a single channel opened for 1
second, or whether one channel opened, and a different channel closed 1
second later. Moreover, the behaviour of an ion channel in isolation may be
different from its behaviour as a member of a group. For instance, if one is
interested in whether ion channels cooperate, it is the joint behaviour of ion
channels which is of interest.

The analysis of the general multiple channel current record is difficult since
one is no longer certain of observing the full lifetime of a single open period of
a single channel. One route to the analysis of the combined current record
from such cell patches is to assume the channels are statistically independent
and identically distributed, and that the stimulation applied to the membrane
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is so slight that only one channel will be stimulated into activity. Modified
versions of the Markov chain techniques will then yield useful information—
see Colquhoun and Hawkes (1990) and the experimental studies quoted by
Jackson (1985). Even if only one channel is open at a given time, but there are
several active channels in the patch, the analysis is not as straightforward as if
there were only one active channel in the patch. Moreover, under even
moderate stimulation several channels can be opened simultaneously. Further,
this excludes the study of strongly stimulated ion channels or the dependence
between channels. To study the dependence of one channel on another or, on
the contrary, to establish that the channels are in fact acting independently,
and to obtain results at higher levels of stimulation, we must study the current
record produced by several channels operating simultaneously. This paper
addresses data containing simultaneous openings of several ion channels and
provides new techniques for their analyses.

Methods. A principle technique in multiple channel data has been to
construct the dwell-time histogram, a histogram of the durations of occupation
times of the current record at the different current levels [see Kirber, Singer,
Walsh, Fuller and Peura (1985)]. Here we will use a simpler version of this
idea described in Glasbey and Martin (1988), the histogram of proportions of
time spent at each current level. To distinguish this object from the dwell-time
histogram, we shall call it the occupation-time histogram of the current record.
For example, after observing the current record for a long time, we may have
that the proportions of time spent at current levels 0, 1, 2, 3 and 4 by X(¢) are
0.01, 0.05, 0.19, 0.40 and 0.35. If the channels are identical and independ-
ent, this histogram should resemble a binomial probability density function,
f(x: ¢, p) = (;)p"(l — p)*~*. Here c is the number of channels in the cell
patch, and p is the stationary probability that a single channel is open. The
current level is x, an integer between 0 and c. We may also interpret p as the
ratio of the mean open time to the mean cycle time for a single channel. The
mean open time is the expected length of an open period and the mean closed
time is the expected length of a closed period for a single channel. The mean
cycle time is the sum of these two values. By fitting a binomial density to the
observed occupation-time histogram, one can estimate the number of channels
in the patch and the probability that a single channel is open. For the example
at the start of this paragraph, we might choose ¢ = 4 and p = 0.75.

A number of authors have examined multiple channel data by essentially
Markovian methods and variations on the above ideas [e.g., Dionne and
Leibowitz (1982), Glasbey and Martin (1988), Horn and Lange (1983), Jackson
(1985), Sine and Steinbach (1986), Yeo, Milne, Edeson and Madsen (1989) and
Yeramian, Trautmann and Claverie (1986)]. We refer the reader to these
papers for further references and examples. These analyses and others make
qualitative judgements as to the significance of the discrepancy between the
observed histogram and the ideal hypothesized form. For example, we may
believe that a fit of the proportions stated previously by a binomial density
with ¢ =4 and p = 0.75 is quite good. Is the discrepancy large or small? By



STATISTICAL ANALYSIS OF MULTIPLE ION CHANNEL DATA 1183

concentrating on the renewal structure of the data, Dabrowski, McDonald and
Rosler (1990) addressed the question whether or not this discrepancy was
statistically significant.

Dabrowski, McDonald and Résler (1990) developed a goodness-of-fit hypoth-
esis test based upon the observed multichannel current record for the model of
an unknown number of independent and identically distributed ion channels
in a cell membrane. This test compares the binomial histogram for indepen-
dent and identical channels to the observed occupation-time histogram. In a
manner similar to that used in the well-known Hotelling T'? statistic, a
distance between histograms is computed from the data. If the distance is
small compared to an upper percentile of a y? distribution, the model is
accepted, and the number of channels in the patch, the average open and
closed periods for a single channel and the corresponding variances are esti-
mated from the multiple channel data. The distribution functions of an open
period and a closed period of a single channel can also be estimated. If the
distance is large, the model of independent and identical channels is rejected.

The model of independent and identical ion channels is too restrictive.
Although the independence hypothesis may be true, it has become clear that
the ion channels in a cell patch may operate at different rates. The inner
structure of an ion channel determines which ions may pass through the
channel, and also the conductance of that channel. On the other hand, the
gating mechanism seems to be part of the surface structure of the ion channel
[see Hille (1984), Chapter 14]. It is quite possible that channels with the same
conductance may have different gating mechanisms. For instance, stretch-
activated channels may be activated by ‘“anchors’ attaching the channel to the
outer cell membrane, and the sensitivity of the channel to pressure may
depend on how many such anchors are attached to it—see Sachs (1990). Thus
different channels will be independent, but will not be identical. Rather, the
channels will form distinct independent groups corresponding to how many
anchors are attached to the channel. In such cases, the test of Dabrowski,
McDonald and Résler (1990) will reject the hypothesis of independent and
identically distributed channels, and no information on the behaviour of
individual channels would be obtained.

In this paper we expand the hypothesis test of Dabrowski, McDonald and
Roésler (1990) by including transitions between current levels as well as the
durations of visits to those levels. The basic structure of the test is the same,
and is easily modified to produce statistical tests for a variety of null hypothe-
ses. For example, we can test the null hypothesis that the patch contains at
most two independent but different groups of independent ion channels against
the alternatives that these channels are dependent or more than two distinct
groups of channels exist on the cell patch. If we conclude that all the channels
are in fact independent and each channel belongs to one of K types of
channels, point estimates are obtained for the number of channels, c*, of type
k, k=1,..., K, in the cell patch, the ratio of mean open period to mean cycle
length, p*. Under an additional, but biologically reasonable, assumption on the
parameter space, we also have consistent estimates of the mean open and
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closed periods, u% and w%, for each type of channel. In addition to these
hypothesis tests, we develop techniques to examine the stationarity assump-
tions critical to all of the above results.

Guide to the paper. Section 2 starts with a simple illustration of the
problem using simulated data. Section 2.2 states the model we will use, our
estimates of c*, p*, u% and u% and our tests of hypotheses. We present tests
on the independence of the channels, the first-order stationarity of the current
record and the second-order stationarity of the record. We also have confidence
intervals for the lag covariances of the current process, X(¢). It is also
important to know the limits of these statistical procedures. Section 2.3 looks
at an extreme case in the alternative where the independent ion channels have
the same ratio p, have different mean open and closed times, but where the
mean open and closed times for one channel are the same constant multiple of
the mean open and closed times of another channel. Our test has no power
against such (in practice, unlikely) alternatives.

Our techniques are applied to the simulated data in Section 3. Section 3
introduces data obtained on the stretch-activated potassium channels of Lym-
naea stagnalis (pond snails). One such record is analyzed in detail. Our
estimates of the mean open time obtained from a cell patch ignore the effect of
time interval omission—the loss of data because events occurring within a
short bandwidth cannot be resolved. Several authors have attacked this prob-
lem from the Markovian approach—see Roux and Sauvé (1985), Ball and
Sansom (1988), Ball, Milne and Yeo (1991) and Hawkes, Jalali and Colquhoun
(1990). Another analysis of this problem is presented in Dabrowski and
McDonald (1990). The method used there was to artificially increase the
bandwidth and to recalculate our estimates at these elevated bandwidths. The
different estimates are then extrapolated back to 0 bandwidth. We have not
attempted that additional analysis for this paper. In Section 4 we present the
theorems and proofs of our procedures. We extend the methods of Dabrowski,
McDonald and Résler (1990) by considering jumps between states in addition
to sojourns in a state.

2. Structure of the model and fundamental results.

2.1. Illustrations. Figure 1 illustrates simulations of short sections of
typical observations (after filtering out background noise) of the type that
interest us. Figure 1(a) arises from six channels operating independently and
identically. Figure 1(b) arises from six channels of the same type, but where
channel 2 is simply channel 1 delayed by 0.002 seconds. Figure 1(c) is
generated by six independent channels of the same mean open time, but where
the mean closed time of two channels is one-half of the mean closed time of the
remaining four channels. Figure 1(d) concerns data from a patch clamp
experiment on pond snails, Lymnaea stagnalis.

Our hypothesis test is applied to these four sets of data in Section 3. Here
we just note that the hypothesis of independent identical channels is rejected
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Fie. 1. (a) A 0.2-second section of a simulated current record, X(t), generated by six independent
and identical channels is depicted. Each channel is an alternating renewal process with mean on
time 0.01 seconds, and mean off time 0.02 seconds. (b) A 0.2-second section of a simulated current
record, X(t), generated by six channels is depicted. Each channel is an alternating renewal
process with mean on time 0.01 seconds, and mean off time 0.02 seconds. Five of the channels
operate independently. The remaining channel is exactly the first channel delayed by 0.002
seconds. (¢) A 0.2 second-section of a simulated current record, X(t), generated by six independent
channels is depicted. Four channels are alternating renewal processes with mean on time 0.01
seconds, and mean off time 0.02 seconds. Two channels are alternating renewal processes with
mean on time 0.2 seconds, and mean off time 0.1 seconds. (d) A 50-millisecond segment is
presented of the current record, X(t), taken from a cell patch of Lymnaea stagnalis heart tissue.

for the data of Figures 1(b) and 1(c), but not for the data of Figure 1(a). The
hypothesis test for two distinct groups of independent and identical ion
channels is rejected for the second set, of data, and accepted for the third set.

2.2. Hypothesis tests. This section contains three further divisions. The
first describes our model and notation for ion channels in detail, the second
presents hypothesis tests for the independence of channels and associated
estimators, and the last subsection discusses hypothesis tests for stationarity
of the data record.

Notation. Our model consists of a cell patch which contains ¢ independent
channels. Each channel is modelled as a finite state-space semi-Markov pro-
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cess. We will follow a notation similar to that found in Colquhoun and Hawkes
(1983) and Dabrowski, McDonald and Résler (1990). See also Ball, Milne and
Yeo (1991) for an analysis of the embedded process in a semi-Markov model.
The ith channel has state-space ./* and transition function 93‘ (ie., the
probablllty the embedded chain makes a transition from x to y for x ,y € / ).
Let 7' denote the stationary probability measure of this embedded chain. The
subset of open (closed) states is denoted by &% (#?). We now define a second
embedded process (which we will call the &%’ process) which models the
time of entry into & or #'. Given that this &/'#’ process is in &' (&),
the probability it is in a € &% (£?) is
Lycgm (b) Py, éi(a) _ Locarm(a)F,

Locwlpeam (b)P,, Licwlpeam (a)F,

Let 6 denote the density of the time elapsed from an arrival (from %) of the
cham at @ € &' until the chain hits %’ again. The mean of 0 is ul.
Similarly, let 6! denote the density of the time elapsed from an arrlval (from
/") of the chain at b € #* until the chain hits &/ again. The mean of 6} is
uh. Thus the &7'%’ process jumps back and forth between 7! and &’ with
the transition probabilities of the embedded chain and sojourn times with
densities 0., a € &7%, and 6., b € #', respectively. The distribution, Fi (re-
spectively, G*), of a sojourn in &% (#°) has density and mean (respectively)

L s T a'(se)

acey be#

p'(a) =

and
Y pi(a)ug (M‘a =X 5‘(0)%)-
ac be B
We will require that for some state &° € &/, the return time to that state &’
has a distribution R’ satisfying Condition 9 in Section 4.1. This smoothness
condition is satisfied by finite state-space Markov processes and is reasonable
for the biological models we are considering.

The probabilistic analysis of the cell patch current data is based on the
following unobservable random processes:
1, if channel i is open
0, if channel i is closed

N*(t) = the number of transitions by channel i from /% to #' in]0, ¢]
= the number of times X’(¢) stepped down in ]0, ¢].

Xi(t) = at time ¢,

We assume that we can observe the following processes for a long period,
10, T']. Since we are dealing with asymptotic results, T must be large compared
to the u'r. Define

X(t) = Z X'(t) (total current produced by the ¢ channels at time ¢),
i=1

N(t) = Y N'(¢) (number of times the X(¢) process steps down in]0, ¢]).
i=1
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The statistical tests of this paper are based on the following functions of X(¢)
and N(¢). The time interval, ]0, T'], is broken into equal pieces of length u,
{I(j = Du, jul, j=1,2,...,T/u}). For each subinterval define the following
variables:

Msj=fj” I[X(t) =s]dt forse{0,1,...,c),
(-Du
which is the occupation time of s by X(¢); ¢ €](j — 1)u, ju],
M, =(M,;:s{0,1,...,c}),

which is the vector of occupation times for X(¢);¢ €](j — 1u, ju],

N, = é 1 where &= {t €](j - Du, jul, X(t) =s, N(t) - N(¢t —) = 1},
which is the number of downsteps from s;¢ €](j — 1), ju], and
]\,j = <NSJ s € {1,--~7c}>7

which is the vector of downsteps; ¢t €](j — 1)u, ju].

For notational simplicity we assume that the units of time are such that
u = 1. The authors have found that choosing u so that on average two
downsteps are observed in each subinterval avoids computational difficulties in
practice. Note that X(¢) is a step-function which takes its values among the
integers, {0,1,...,c}, and N(¢) is an increasing nonnegative integer-valued
process, where N(¢) = 0. The random vectors M  and N, take values in R°*!
and R, respectively.

Tests for independence of channels. The goodness-of-fit test of Dabrowski,
McDonald and Rosler (1990) examines the temporal behaviour of X(#) by
looking at the proportions of time that X(¢) spends at each current level in
{0,1,..., c}. If the channels are independent and identical, the observed occu-
pation-time density will be close to a binomial density. The squared distance of
the observed histogram from the best-fitting binomial histogram is compared
to an upper 100(1 — a) percentile of a x? density. This test is easily extended
to independent, but possibly different, channels by fitting a density which is
the convolution of independent Bernoulli densities to the observed density
histogram. We will further expand the scope of this test by also looking at the
number of times X(¢) steps down (ekperiences a downward transition) from
each current level —for example, from current 6 to current 5. For any stated
mixture of independent ion channels, we can compute the mean number of
downward steps during ]j — 1, j]. Thus we can compare both the observed
occupation-time density, and the observed downstep counts, to the best-fitting
constants consistent with our model. If the discrepancy exceeds the upper
100(1 — ) percentile of a y? density, we reject the model.

The goodness-of-fit test of Dabrowski, McDonald and Résler (1990) is based
on fitting a binomial density (with parameters ¢ and p) to the occupation-time
density alone. The mean open time of a single channel was estimated by
comparing an estimate of cp = cup/(up + ug) to a separate estimate of
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¢/(up + pg). This test can be extended to test for at most K distinct types of
ion channels. However, no analogue to the separate estimate of ¢/(ur + pg) is
available. Consequently, we cannot estimate the mean open time of a single
channel from the occupation-time density and the total number of downsteps.
The addition of the downward transitions to the goodness-of-fit test introduces
elements which also depend on the values of the mean open times, u’, rather
than only on the ratios, p’. Thus we are also able to give estimates of these
mean open times for each type of channel in the patch.

Let .#c{0,1,...,c} and #c{1,2,...,c} be such that the covariance ma-
trix T of the random vector y; = {{M,;, N,;): k €.#, |l € 4’} is invertible.
Define B to be the set of all mean values of y; consistent with a model of K
distinct groups of channels on the cell patch, where the channels within each
group are identical. All the channels operate independently. The set By is
described precisely by Theorem 13 and simple calculations. We require that
l.#| + |.#] > 3K + 1. If not, there are enough free parameters in By to fit the
observed occupation-time histograms and downstep frequencies exactly. A test
of asymptotic level at most « for

H,: The cell patch consists of K distinct groups
of independent channels of
unit current (thus Ey, € Byg)

H,: Ey, ¢ By
rejects the null hypothesis when

(1) ntinf | Y (v, -e) TP (v, —e)| > x2

eSBrij<n Jj<n
The matrix T, is the estimated covariance matrix as specified in Theorem 12,
and x?2 is the 100(1 — a) percentile of a x?2 distribution with v = [.#] + |.#] —
2K.

REMARK 2. One would hope that if we assumed that the channels were
indeed independent and that there were at most K distinct types of ion
channels, the minimization process inherent in (1) would yield consistent
estimates for the number of channels of type %, c*, in the cell patch, the ratio
of the mean open to the mean cycle time, p*, and the mean sojourn times, u*
and u%, for each channel of type k&, £ =1,2,..., K, in the cell patch. The
example of Section 2.3 shows that this is not so. However, if we make the
additional assumption that the channel patch does not contain any pairs (i, j)
of channels for which p% = Cu4 and p'; = Cuf, C € R”, then this minimiza-
tion process also yields consistent estimates of all our parameters.

REMARK 3. We suggest that the test for at most K distinct and indepen-
dent groups of iid channels be performed by fitting on 3K + 1 occupation-time
and downstep coordinates. If X(¢) varies between 0 and d, then 2d + 1
coordinates are available. Thus we require K < 2d /3. As a practical concern,
we also want to avoid nearly degenerate T by avoiding rarely visited levels and
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this will further restrict K. Considerable difficulties will arise from the
estimation of the variance of occupations of rare current levels, and the inverse
of the estimated covariance matrix containing such a rare level will be quite
large for that component. The latter feature will result in our procedure
tightly fitting that component at the expense of the other (better-estimated)
components. Concern about the invertibility of T also influences our choice of
time units. We need that n is large enough for the asymptotic theory to take
hold, but if ]j — 1, j] is too long, then the covariance matrix T, will be quite
close to 0 and will be harder to invert. We take n to be measured in small time
units such that with respect to these time units there is a high probability that
any unit interval ]j — 1, j] contains a downstep. This is not necessary for our
theory, but in a practical application it avoids near-singular covariance matri-
ces.

REMARK 4. We can rephrase the test (1) as follows. Let I'; be the complete
vector of occupation times and downstep frequencies for interval j, that is,
I ={(M,;,,N,;>: me{0,1,...,ctand n €{1,2,...,c}}. Let P be a diagonal
(2¢ + 1) X (2¢ + 1) matrix whose diagonal entries are all either 0 or 1, and
such that the first ¢ + 1 are not all 1. Then (1) tests whether or not E(PT})
belongs to a certain set by using the central limit theorem for dependent
random vectors applied to the I'. By requiring that PI'; have an invertible
covariance matrix, we avoid the use of generalized inverses, and we are able to
state a test even though we do not know the number of channels in the patch,
c. For example, although the patch may contain six channels, the probability
that more than three channels open simultaneously may be so low that we do
not observe such events in our finite record. In such a case P would be a
diagonal matrix with a 1 for the first, second and fifth components, and 0
elsewhere. The y, = PT; are well-defined random vectors in R3, even though
we do not know the size of the I’;. Clearly, similar tests can be constructed for
more general matrices P, but their utility is not evident.

ReEMARK 5. If B is chosen so that it contains all mean vectors consistent
with at most ¢ independent, but possibly distinct, ion channels, then (1) yields
a test of H,: the channels are independent versus H;: Ey, € B and an
estimate of the parameters in B. However, B is so rich that we can fit the
observed occupation-time histogram and downstep frequencies exactly for
most cases. The test then has power against only gross deviations from our
model. For example, X(¢) may skip level 4 entirely.

Tests for first- and second-order stationarity. In addition to the estimation
of the parameters in our model and hypothesis tests on the independence of
channels, the structure we develop also allows us to verify some of the
assumptions critical to our model. One consequence of our model is strict
stationarity of the current record, X(¢), and the downstep counts, N(¢). We
can test for the presence of first- and second-order stationarity. These tests are
useful from a practical point of view as well. Some authors have suggested that
an ion channel may become ‘‘tired” or desensitized after a period of high



1190 A. R. DABROWSKI AND D. MCDONALD

activity, and become inactive for a protracted interval. Such a change would be
perceived as a failure of stationarity by our tests. We also develop a heuristic
check on another technical consequence of our methods, fast ¢-mixing of the
current record.

Recall that X(#) is the total current being produced at ¢, and N(¢) repre-
sents the total number of times that X(#) has made a downward transition in
10, ¢]. Either choose Y; = [/, X(#) dt or choose Y; = N(j) — N(j — 1) for j =
1,2,...,». For {Y} as chosen, define

A={(i,j):li—jl <k(n),i,je€{1,2,...,n}},

n
=n ' LY,
i=1

EY=(n-x)" LYY,
i=1

-~

i+k?

U=n"' ¥ (v-%)Y-7)
(i,j)eA
and
Vi =(n=0)" L (WY - BY)(YY,, - BY).
(i,j)eA

Here k(n) = o(log(n)) is a nondecreasing sequence of integers tending to .
Further, let Z = sup{|B,(¢)|: ¢t € [0, 1]} for a standard Brownian bridge B,,
and P[Z > z,] = a. Let ®, denote the 100(1 — @) percentile of a standard
normal distribution. Under the assumptions of Theorem 12, we have the
following hypothesis tests of (approximate) level « and (approximate)
100(1 — @)% confidence intervals:

First-order stationarity:
Hy: EY, = EY;, j = 2,3,....
(6) H,: Expected values are not constant.
Reject the null hypothesis if sup{/(nU,) VAL !_|Y, — rY)I:
r=12,...,n} >z,
Second-order stationarity:
Hy: EY,\Y,,, = EY)Y,,, j=2,3,....
(7 H,: Expected values are not constant.

Reject the null hypothesis if sup{|(nV )~ V/2(L7_|Y)Y,
—rRO): r=1,2,...,n} > z,.

+K

Confidence intervals for EY; and EY;Y7, :

(8) Y, +®,/nU,, R¥+d/nV®.
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We chose Y, above as either the average current or as the number of steps
down in Ji — 1,i]. These procedures may also be applied to any real functions
of the vectors of Theorem 11 with finite fourth moment.

The confidence intervals of (8) do not directly provide confidence intervals
for Cov(Y7, Y., ). The natural estimators are

1

0 = o (G- T - )

where Y, and Y, are the sample averages over the first and last n — «
observations. Similar confidence intervals to those above are developed in
Section 4.2. If our model is correct, the graph of C{® versus « should decrease
like a* for some 0 < a < 1. This graph provides a heuristic check on a critical
theoretical property of our model, ¢-mixing.

2.3. An extreme case. It is not surprising that the test of Dabrowski,
McDonald and Roésler (1990) has no power against certain alternatives. Here
we present an example of an alternative for which it is somewhat surprising
that (1) fails to work. Consider the case where the channels are independent
and different, but where the ratio of the mean emitting time to mean nonemit-
ting time, p, for the channels are all equal. The test of Dabrowski, McDonald
and Résler (1990) will fail to pick up the fact that the channels are not
identical. Here the occupation-time histogram is identical to that obtained for
independent and identically distributed channels with the same p. No test
based on this histogram will be able to distinguish between ¢ identical and ¢
different channels with common p. What is surprising is that (mean number
of downsteps from s)/(mean occupancy of s) = EN, /EM;, (see Section 4.1) is
also equal to that obtained for identical channels, albeit for an intermediate
value of pg. Since it is this ratio which permits the estimation of g, the
hypothesis test, (1), of this paper also cannot be used to distinguish between
the case of two channels where one channel is simply running at C times the
rate of the other, and the case of independent and identical channels.

As an example, we present here the calculation of the mean number of
downsteps for two cases. Case 1 consists of four independent channels with
up =5 and ug = 10. Case 2 replaces one of these four channels by a channel
running at C, C > 1, times the speed- of the other three channels. This fast
channel has a mean open time of 5 /C seconds and a mean closed time of 10/C
seconds. Let s € {1, 2, 3, 4}.

Case 1:

IEN—S(4) 1)32
s 5\s/l3) 3

by Theorem 13. Thus EN;,/EM; = s/5.
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Case 2:

EN, =
8 4 X5

by Theorem 13. Thus EN,,/EM; = (8 + C)/5s.

This calculation shows that the expected values of the number of downsteps in
Case 2 can be matched by a collection of four independent and identical
channels, with the same p, and common mean open time 5/(3 + C) which is
between the mean open times for the two types of channels. At a practical
level, this extreme example may have little influence. For example, it is widely
believed that the mean open time of a stretch-activated ion channel does not
change under stress, but that the mean closed time does change. Conse-
quently, the ratio p would be different under different levels of stress. The
calculations of this example would not apply.

R G G)
s/\8)\3

3. Applications to data.

Simulated independent channels: Figure 1(a). Each channel in this simu-
lation was generated by a two-state Markov process. The open state had a
mean sojourn length of 0.01 seconds (up = 0.01). The mean closed state
sojourn length was 0.02 seconds (ug = 0.02). The common ratio, p, of these
channels is 0.3. Each of six channels was simulated and the individual 0-1
current processes were combined into a single observable current record. This
generated a total of 9853 downsteps over 50 seconds.

Simulated dependent channels: Figure 1(b). A 50-second record for each
of five independent channels in this simulation was generated by a two-state
Markov process exactly as given above. A sixth channel record was obtained by
delaying the current record of the first channel by 0.002 milliseconds. The
six-individual 0-1 current processes were then combined into a single observ-
able current record. This generated 10,108 downsteps.

Simulated independent nonidentical channels: Figure 1(c). Each channel
in this simulation was generated by a two-state Markov process. For four of
the six independent channels, we generated 50-second records as for the first
example above. For the remaining two channels, we took uy = 0.2 and ug =
0.1. The ratio p for these channels is 0.6. The six individual 0-1 current
processes were combined into a single observable current record. This was
observed over a 50-second time period. The record contained 6900 downsteps.
The longest period of constant current was 0.05 seconds, and the shortest
period of constant current was 0.00000065 seconds. '

Analysis of simulated data. Here we present the results of our tests and
estimation procedures. By construction, each process is stationary. The test for
first-order stationarity, (6), was applied to the average current process, X(¢),
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TABLE 1

Mixed Lymnaea stagnalis
Test  Figure1(a) Figurel(h) Figurel(c) x 10" Fulldata 800 ms

First-order test on

X 0.47 0.38 0.42 0.2 0.00005 0.13504
N 0.82 0.47 0.21 0.1 0.00008 0.63570
Second-order test on

X at lag

0 0.40 0.30 0.40 0.4 0.00064 0.14214
1 0.40 0.31 0.37 0.3 0.00059 0.13359
2 0.57 0.28 0.44 0.3 0.00055 0.12570
3 0.59 0.50 0.43 0.6 0.00052 0.11681
4 0.57 0.32 0.43 1.5 0.00051 0.11846
5 0.54 0.55 0.42 0.6 0.00044 0.12062
N at lag

0 0.54 0.81 0.14 0.2 0.01439 0.81232
1 0.73 0.31 0.18 0.1 0.00578 0.82984
2 0.82 0.43 0.30 0.2 0.00472 0.75408
3 0.97 0.32 0.23 0.2 0.00301 0.84354
4 0.79 0.30 0.46 0.3 0.00253 0.61196
5 091 0.41 0.21 0.2 0.00293 0.52528

The p-values obtained for the tests of stationarity, (6) and (7), are tabulated for various data sets.
The first three columns of numbers refer to the data of Figures 1(a), 1(b) and 1(c). These cases are
strictly stationary by design. The fourth case, “mixed,” corresponds to the 25 seconds of the
Figure 1(a) record, followed by a further 25 seconds on the same data, but where the sixth channel
has been dropped from the combined current record. That channels can arbitrarily start or stop
functioning is an important problem in experiments. The last two columns refer to the data on
Lymnaea stagnalis illustrated in Figure 1(d). The full record clearly fails the test of stationarity.
The last column reports the p-values when our tests of stationarity are applied to an 800-millisec-
ond initial segment of the complete record.

and the total number of downsteps process, N(¢). The test for second-order
stationarity, (7), was also applied to these two processes for lags x = 0, 1,..., 5.
A fourth case (‘““mixed”’) was created by taking 25 seconds of the data from
Figure 1(a), followed by 25 seconds of the data from Figure 1(c). The test for
independence of channels, (1), requires that for each K (number of types
present) of interest, we choose which occupation-time densities, and which
downstep counts, will be used to construct Bx. For B,, we chose to fit on the
occupation-time density at current levels 0, 1 and 2, and on the downstep
counts from current levels 3, 4 and 5. For B,, we chose to fit on the
occupation-time density at current levels 0, 1, 2 and 3, and on the downstep
counts from current levels 2, 3, 4 and 5. The relevant numbers are presented
in Tables 1, 2 and 3. A remark on how we chose the levels used in our tests is
in order here. The overall occupation-time density in each case had a mode at 2
or 3. We chose the occupation-time levels and downstep levels so that, as far as
possible, our algorithm tried to fit the observed occupation-time levels on one
side of the mode, and the downstep levels on the other side. We avoided the
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TABLE 2

Current Figure 1(a) Figure 1(c) Figure 1(d) (800 ms)
level Obs. B; Exact Obs. B, B, Exact Obs. B, By

Occupation time

0 0.090 0.091 0.088 0.020 0.030 0.021 0.022 0.006 (0.008) (0.003)
1 0.270 0.268 0.263 0.135 0.144 0.131 0.132 0.036 0.049 0.038
2 0.326 0.329 0.329 0.298 0.284 0.303 0.296 0.159 0.142 0.164
3 0.219 (0.216) 0.219 0.325 (0.300) 0.322 0.318 0.306 0.238 0.316
4 0.076 (0.079) 0.082 0.171 (0.178) (0.173) 0.177 0.297 (0.257) 0.276
5 0.016 (0.016) 0.016 0.045 (0.056) (0.046) 0.049 0.143 (0.185) (0.141)
6 0.002 (0.001) 0.001 0.005 (0.007) (0.005) 0.005 0.044 (0.089) (0.048)
7 0.008 (0.027) (0.012)
8 < 0.001 (0.005) (0.002)
Downsteps
1 1.8363 (1.33) 1.317 0.227 (0.371) 0.228 0.241 0.048 (0.028) (0.106)
2 3256 3.263 3.292 1.307 1467 1291 1295 0.162 (0.158) (0.150)
3 3.252 3.206 3.292 2.539 2320 2538 2480 0.464 (0.400) 0.473
4 1540 1575 1.646 2.097 1.834 2.097 2.080 0.648 0.577 0.637
5 0.386 (0.387) 0.411 0.712 (0.725) (0.769) 0.791 0.433 0.519 0.451
6 0.056 (0.038) 0.041 1.108 (0.115) (0.104) 0.112 0.203 0.299 0.199
7 0.036 (0.108) (0.060)
8 0.005 (0.022) (0.013)

For the data sets of Figures 1(a) and 1(c), this table states the observed occupation-time densities
and the observed downstep counts per unit of time. The fitted values are given when the null
hypothesis is that there is only one kind of channel (noted B;) and when the null hypothesis is
that there are at most two types of channel (noted B,). The test for B; was carried out by fitting
the model to the occupation-time densities at levels 0, 1 and 2, and to the downstep counts from
levels 2, 3 and 4. If the hypothesis of only one type of channel was rejected, the test for B, was
carried out by fitting the model to the occupation-time densities at levels 0, 1, 2 and 3, and to the
downstep counts from levels 1, 2, 3 and 4. For such columns, the fitted values found for
components not involved in the test are enclosed by brackets. The theoretical values (to three
decimal places) are given for.the data of Figures 1(a) and 1(c). The results for the apparently
stationary 800-millisecond section of data on Lymnaea stagnalis are also presented.

visits of the process to level 6 (or downsteps from level 6) since the rarity of
these visits would lead to an estimated variance of nearly 0 for these compo-
nents. In other simulations the authors have found that the estimate of ¢ (or
more generally c’) may not be stable for short simulations on the order of
2000 downsteps. Nevertheless, the estimators of p and u, have performed
well.

An application to potassium ion channels of Lymnaea stagnalis. Cathy
Morris (Ottawa) and Wade Sigurdson (Buffalo) kindly provided us with data on
stretch-activated potassium ion channels in the heart tissue of pond snails,
Lymnaea stagnalis [see Sigurdson, Morris, Brezden and Gardner (1987)]. We
applied the tests of stationarity and independence to these data following the
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TABLE 3
Figure 1(a) Figure 1(b) Figure 1(c) Figure 1(d)
B, B, Exact B, B, B, B, Exact B, B,
1) 43 5.0 — 441 21.6 107.9 2.98 — 13.96 2.37
&6 3 6 16 16 6 4 4 9 17
é? — 3 — — 4 — 2 2 — 3
pt 0329 0339 0.3 0.127  0.071 0.441 0318 0.3 0.419  0.069
p2  — 0319 — — 0.223 — 0.692 0.6 — 0.779
4% 0.010 0.005 0.01 0.010 3 x10° 0.019 0.010 0.01 2.43 1.43
i% — 458 — — 0.004 - — 0.148  0.20 — 3.64
4L 0021 0010 0.02 0.068 4 x107 0.025 0.021 0.02 3.38 19.14
E  — 976 — — 0.015 — 0.066  0.10 — 1.03

For each of the data sets of Figures 1(a), 1(b), 1(c) and 1(d) (800 ms), this table states the observed
value of the test statistic in the test of independence, (1), and the related estimates of several
parameters: the number of channels of each type, the ratio p and the mean sojourn times for each
type of channel. Exact values are given when appropriate. These values are given for two
hypothesis tests: when the null hypothesis is that there is only one kind of channel (noted B,), and
when two kinds of channel are allowed (noted B,). The tests were chosen so that approximate x?2
distributions of our statistics have 4 degrees of freedom in each case. The 99th percentile of a x?2
distribution with 4 degrees of freedom is 13.3.

style set out above. The mean open time for a single channel is known to be
approximately 2.3 milliseconds. We do not attempt to make any biological
statement here about ion channels; we only illustrate our theory.

Figure 1(d) and Tables 1, 2 and 3 summarize the results. Figure 1(d) gives a
50-millisecond section of the data. Note that jumps of absolute size larger than
1 are due to the problems of resolving the data, rather than difficulties with
the semi-Markov model for ion channel behaviour. From Table 1 we see that
the original data (2047 milliseconds long) are clearly not stationary. Based
upon a graph of the current record, we chose the initial 800 milliseconds for
further analysis. This short segment seems reasonably stationary by our test
of stationarity. The subsequent tables indicate that these data lead to rejection
of the hypothesis of a single type of channel, and that the hypothesis of two
types of channels is not contradicted. Under the (apparently false) hypothesis
of one type of channel, we found a mean open time per channel of 2.43
milliseconds—a value consistent with existing estimates. Under the hypothesis
of two types of channels, we obtained mean open times of 1.42 and 3.63
milliseconds for the two groups. This suggests that ion channels are not in fact
identical in a cell patch, or at least they are not all stressed equally by
stretching the cell membrane. We must stress here that these data were not
originally collected with our techniques in mind, and the 800-millisecond
portion we selected for study is relatively short. It contains only 1172 down-
steps, whereas the data of Figures 1(a), 1(b) and 1(c) contain up to 10,000
downsteps. Nevertheless, stationarity of real data will clearly be a problem.
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4. Proofs.

4.1. Model of independent channels. Our theorems require that for each
channel in the cell patch, the chain has a recurrent open state, a, whose return
times have a distribution function, R, which satisfies the following condition.

CoNDITION 9. There exists a distribution function K with
1— Ri(t+s)

1 - RY(t)
uniformly for all i €{1,2,...,c}, s>0 and all t =0 with 1 - K() > 0.
Further, for some a > 0, [fe*K(dt) < +«. Finally, R* is spread out—that

is, some convolution power of R' has a nontrivial absolutely continuous
component.

<1-K(s)

DeriNiTION 10. Let {Y,: n > 1} be a sequence of random variables taking
values in a separable Banach space. Let .#° denote the o-field generated by
the variables Y, Y, ,,...,Y,. The sequence {Y,: n > 1} is said to be ¢-mixing

with rate ¢(-) if for some ¢(n)|0,
|[P[ANB] - P[A]P[B]| < ¢(n)P[A]
forall A e.#} Be.#;,, and k,n > 1.

The following three theorems summarize the work of Dabrowski, McDonald
and Rosler (1990), and form the foundation for our statistical procedures.
Theorem 11 places the problem in the context of ¢-mixing processes. The
literature on mixing processes is quite well developed [cf. Philipp (1986)], and
good sufficient conditions for invariance principles are available [e.g., Dehling
(1983) and Kuelbs and Philipp (1980)]. Dabrowski, McDonald and Rosler
(1990) apply these results to obtain weak convergence of the desired statistics.
The continuous mapping theorem completes the proofs of our theorems.
Theorem 12(a) provides the necessary weak convergence for our tests on the
independence of channels, and Theorem 12(b) sets the stage for our tests of
stationarity. Theorem 13 is the critical innovation which allows us to calculate
the mean number of downsteps necessary for the application of Theorem
12(a).

THEOREM 11. The sequence of random functions (taking values in the
space of right-continuous functions on 10, 1] into {0, 1})

{{x'(j+7)=1):0=<r=<1):jez"}
is ¢-mixing with rate ¢(n) = O(p™) for p <1, p not depending on i.

Since measurable functions of a sequence of ¢-mixing sequence are again
¢-mixing, we may apply the known results on weakly dependent random
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variables to various statistics based on the variables of Theorem 11, for
example, X(¢), and N(¢).

THEOREM 12. Let {Y,,Y,,...} be a stationary ¢-mixing sequence of R™-
valued random variables such that ¢(n) < Kp", 3 0<p <1, K>1 and
EIY,I* < +c. Let k(n) be a nondecreasing sequence of positive integers such
that k(n) = o(log n). Define

T(s,t) = Cov(Yy(s),Yy(2)) + 2£ Cov(Yy(s),Y;(t)),s,t €{1,2,...,m},

J

and
T,(s,t) =n 'Y (Yi(s) - V() (Y, (1) - Y,(1)), s,te{l,2,...,m}).
This last sum ranges over 1 < i, j < n for which i — j| < k(n).

(@ Then T, » T a.s., nV%Y, — KY}) -, #(0,T), a multivariate nor-
mal, and if T is invertible, n(Y, — LY NTT; XY, — KY)) -, x2, a x? dis-
tribution with m degrees of freedom.

(b) Take m = 1 above. Define random C[0, 1]-valued functions, f,, for
n>1by

0, ift=0,
f.(t) = (nTn)_l/Z( Y v - r)_’n), ift =r/nforsomer € {1,2,...,n},
i=1
linear, otherwise.

Then T, » T a.s., f, 24 B, a standard Brownian motion, and if g,(t) =
f.(¢) = tf,(1), g, =4 B,, a standard Brownian bridge.

THEOREM 13. For the model of independent channels given in Section 2.1
satisfying Condition 9, and in steady state:

(a) = |uﬂz|:=s[(m1;[/p7)(ngjf(l _pn))] oo
fors €{1,2,...,¢c};
and
T le:s[(mgjpm)(ngﬂ(l _p"))(mze)“rﬁ)l)] o
fors € {1,2,...,c}.
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Here ./ denotes a subset of {1,2, ..., c}, |#] denotes the cardinality of .#, and
p' = wp/(Wp + uo)

Proor. Channel i has probability p’ of emitting current at an instant ¢,
independently of the other channels. Consequently, the chance that s channels
are emitting current at ¢ can be easily computed to be e,. Part (a) now follows
from stationarity of the process.

Fix a channel, i. Denote the successive states of the embedded chain by
{Si: k = 0} and the successive sojourn times by (T}: k > 0}. For any t > 0
define

k—-1"
Si(t)=S] if ¥ Ti<t< ZTL
Jj=1 Jj=1

and
Zi(t)y =t - Y, T;.
j=1

Thus S’(¢) denotes the state of channel i at time ¢, and Zi(¢) is the age at ¢
li.e., the length of time since S(¢) was entered]. By stationarity, P[Si(¢)
& ] p'. Also (recall the notation of Section 2.2)

a(lt)

a

P[Si(t) = a, Z!(t) € dulS'(¢) € &'] = pi(a)

and
05 (u)

b

P[Si(t) = b, Zi(t) € dulSi(t) € #'| = 5'(b)

du,

where ©%(u) = [76i(s)ds and ©}(u) = [70i(s)ds. Recall that Ni(¢) is the
point process which counts the number of transitions from .27* to #‘. By

Theorem 7 of Chapter 2 in Brémaud (1981), we see that a compensator for
Ni(t) is

0 (Z (u
A = [f ZMIS( ) =a) ((Z((u)))) du

Consequently, N(¢) — A(¢) is a martingale. Fix s € {1,2,...,c} and define
f@) = {X(t — ) = s}. Hence

[ d[N(e) - 4i(n)]
0

is also a martingale, and has expectation 0. If .#/(t) = the number of down-
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ward transitions in ]0, T'] from s, then

) = ¢ [T a £ o

T s 8a(Z(1))
=f0 [E[I{X(t -) = s}aEZ,MI{S (¥) = a}®;(zi(t))}dt

- Hﬂ (1{s'(t) € B [T{I{S(2) € ')}

0 7= & S ef
NN ACA)
" EJEM’{S = ozim) ” “
i 1 8a(ZN(D) | ;
Xigfaezyt[E[I{S () = “}@;(zi(t)) Si(t) e & }dt
=T (say).
But
el 1(87(1) = a}g‘l’i(zz(t)) Si(t) e
1 ez,
= FP[S (1) —a][E m S (t) —a}

Lt 1 0(2) 042)
pra SRR - et

1 Zbeg’w(b)gzba:u'ia
w,p’ W + wly '

Therefore, since p’ = uh/(uyp + us),

T=T Y
| S |=s

-7y [n(l—p)np T (W) 1] as desired. O

| |=s

TL0 ) T T ) [ Y X w(b)%;,H

ac¥' be B’
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Since the vectors {y;: j > 1} are functions of the ¢-mixing variables of (11),
they are also ¢-mixing. Clearly E|| M, j||4 < 1, and from renewal theory

4

E|N,;|* <E| ¥ [N'(j) - N*(j - 1)]

i=1

C
<c* Y E[Ni(j) - Ni(j - D]" < +o.

i=1
Under Condition 9, we may apply Theorem 12 to obtain the asymptotic
normality of
(14) n=V2 3 ({M;, N;)’ = E{(M;, N;).

Jj<n
The values for E(M,, N;) are given by Theorem 13. This establishes the
hypothesis tests on independence of Section 2.2 when the mean is known. In
such a case the degrees of freedom of the y? statistic would be |.#| + |.#]. If
the 3K parameters (c*, p* and %) were all continuous, then standard
techniques would yield |.#| + |.#'| — 3K as the number of degrees of freedom
for the limiting 2 statistic. Here, however, the c* are discrete, and in (1) we
are minimizing over a space which is the union of an infinite number of
distinct smooth manifolds. As T' becomes large, only one of these yields the

minimum, and we are in fact minimizing over 2K continuous parameters.
This yields |.#] + |.#| — 2K degrees of freedom for (1).

4.2. Confidence intervals for the lag covariances of Section 2.2. If {Y;} is
first-order stationary,

1

n — kK

C — Cov(Y,,Y,,,) = ( Y Y)Y, - EVY,,,
J=1

+ EYy(EY,,, - Y,) + Y, (EY, - Y,).
We may define the ¢-mixing sequence of vector-valued random variables
Z, =YY, .., Y., YY) with mean vector e, = (EY;Y,,, , —EY,  , —EY)).
Theorem 1 of Dehling (1983) or Proposition 2.1 of Kuelbs and Philipp (1980)
yields that
1/2 e e e . .
0, =(n—xk)""|——2% Z,—e,| > N(0,T) indistribution.
n—k
Jj=1
Here T is the appropriate covariance matrix. We note that with probability 1,
Yo = (1,EY,,Y,) = (1,EY,,EY,)" = v, and that consequently

(15) ‘YZ‘—KOH—K _)_@N(O’ YTT)’)

But (n — k)" V2yT_ 6 . =C¥ — Cov(Y,,Y,.,). Now approximate hypothe-
sis tests and confidence intervals may be constructed from (15) and Theo-
rem 12.
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REMARK 16. A fundamental lemma [cf. Ibragimov (1962)] for ¢-mixing
sequences states that if p~ '+ ¢ ' =1, |[Eén — EEEn| < 26" P(n)I€,lInll,,
where ¢ is o(Yy,...,Y,)-measurable, n is o(Y,,,,Y,..,.1,--.)-measurable,
l€ll, < o, and [Inll; < ©. We can apply this to Cov(Y,, Y, ,,) when [[Y;]l4 < o
and when we have independent channels to obtain that

Cov(Y,,Y,,.)| <p*/* forsome0 <p < 1.
1+k

If the Y; are almost surely bounded [e.g., Y; = [/, X(¢) dt], |Cov(Y}, Y, )l <
p* for some 0 < p < 1. This permits a rough judgement of the validity of our
model from a plot of the lag covariance at lag « versus the lag x. The graph
should decrease exponentially. :
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