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AFFINELY INVARIANT MATCHING METHODS WITH
ELLIPSOIDAL DISTRIBUTIONS!

By DoNaLD B. RUBIN AND NEAL THOMAS?

Harvard University and Educational Testing Service

Matched sampling is a common technique used for controlling bias in
observational studies. We present a general theoretical framework for
studying the performance of such matching methods. Specifically, results
are obtained concerning the performance of affinely invariant matching
methods with ellipsoidal distributions, which extend previous results on
equal percent bias reducing methods. Additional extensions cover condi-
tionally affinely invariant matching methods for covariates with condi-
tionally ellipsoidal distributions. These results decompose the effects of
matching into one subspace containing the best linear discriminant, and
the subspace of variables uncorrelated with the discriminant. This charac-
terization of the effects of matching provides a theoretical foundation for
understanding the performance of specific methods such as matched sam-
pling using estimated propensity scores. Calculations for such methods are
given in subsequent articles.

1. Background. Matched sampling is a popular and important technique
for controlling bias in observational studies. It has received increasing atten-
tion in the statistical literature in recent years [Cochran (1968); Cochran and
Rubin (1973); Rubin (1973a, b), (1976a, b), (1979); Carpenter (1977); and
Rosenbaum and Rubin (1983, 1985)]. The basic situation has two populations
of units, treated (e.g., smokers) and control (e.g., nonsmokers), and a set of
observed matching variables X = (X, ..., X)) (e.g., age, gender, weight). The
objective is to compare the distributions of the outcome variables having
adjusted for differences in the distributions of X in the two populations.
Matched sampling is a way of adjusting for X through data collection.

Suppose there exist random samples from the treated and control popula-
tions of sizes N, and N,, respectively, where X is recorded on all N, + N,
units; typically, due to cost considerations, outcomes and additional covariates
can only be recorded on subsamples of the initial samples. Instead of randomly
choosing subsamples, often matched subsamples of sizes n, < N, and n, < N,
are chosen in such a way that the distributions of X among the n, and n,
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matched units are more similar than they would be in random subsamples.
Commonly, N, > N, and n, = n, = N,, so that only the controls are subsam-
pled, as when the treated group has been exposed to an unusual occurrence
(e.g., radiation) and the controls are all those who were not exposed.

The standard matched-sample estimator of the treatment’s effect on an
outcome Y is the difference in the means of Y between the n, and n,
matched treated and control units, Y,,, — Y,,,. If the distributions of Y dlﬂ'er
in the treated and control populatlons prlma.mly because of the treatment
effect and differences in X, then Y,,, — Y, should be closer to the treatment
effect than the difference of Y means in random subsamples of size n, and n,
Y., — Y, thereby reflecting bias reduction arising from the matched samphng

Here we present theoretical results on the performance of affinely invariant
matching methods, defined in Section 2, with ellipsoidal distributions for X,
also defined in Section 2. The multivariate normal and the multivariate ¢ are
special cases of commonly referenced ellipsoidal distributions, and many prac-
tical matching methods are affinely invariant, such as discriminant matching,
Mahalanobis metric matching, matching based on propensity scores estimated
by logistic regression, and combinations of these considered in the statistics
literature.

Results in Section 3 extend and generalize those in Rubin (1976a) on bias
reduction in theoretically and practically important ways. In particular, we
provide general theoretical results not only on bias reduction for any linear
combination of X, Y = a’X, as in Rubin (1976a), but also on the variance of
Y,.. - Y, relative to that of ¥, — ¥, and on the expectation of the second
moments of Y in the matched samples These results are of importance to
practice because they include cases in which the matching methods are based
on estimated discriminant or estimated propensity scores, as well as on
estimated metrics such as the Mahalanobis metric, and therefore lay the
foundation for obtaining valid standard errors in samples matched using
estimated propensity scores.

In Section 4, extensions are presented for matching methods that are only
conditionally affinely invariant because they use a subset of the matching
variables in a special way. These extensions only require conditionally ellip-
soidal distributions, a generalization of the normal general location model [e.g.,
Olkin and Tate (1961)], and are relevant to the important practice of forcing
better matching with respect to key covariates [e.g., Mahalanobis metric
matching on a subset of variables within calipers of the estimated propensity
scores, Rosenbaum and Rubin (1985)].

Explicit analytic expressions based on the results of Sections 3 and 4 under
multivariate normality using discriminant matching are given in Rubin and
Thomas (1991). Qualitative descriptions are also given indicating how these
results for matching with estimated scores change for different types of
nonnormal distributions; the implications of these results for practice are
studied using simulation techniques and real data in Rubin and Thomas

(1992).
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2. Definitions and notation.

2.1. Ellipsoidal distributions. Ellipsoidal distributions are characterized
by the fact that there exists a linear transformation of the variables that
results in a spherically symmetric-distribution for the transformed variables.
An ellipsoidal distribution is fully specified by (i) its center of symmetry, (ii) its
inner product defined by the linear transformation to sphericity and (iii) the
distribution on the radii of concentric hyperspheres on which there is uniform
probability density [Dempster (1969)]. Such multivariate distributions play an
important role in the theory of matching methods because the symmetry
allows general results to be obtained.

In the general matching situation with ellipsoidal distributions, let p, and
. be the centers of X and 3, and 3., be the inner products of X in the treated
and control populations, respectively. Although some of our results hold with
weaker restrictions, we assume that 3, o 3, so that one common linear
transformation can reduce X to sphericity in both treated and control popula-
tions; however, the two ellipsoidal distributions may differ (e.g., normal in the
control group and ¢; in the treated group).

When 3, a 3, the ellipsoidal distributions will be called proportional. For
simplicity of description, we assume finite second moments of X so that p, and
. are the expectations (means) of X and 3, and 3, are its covariances. Little
generality of practical relevance is lost by making these latter restrictions.

2.2. Canonical form for proportional ellipsoidal distributions. As noted by
Cochran and Rubin (1973), Rubin (1976a), Efron (1975) and other authors,
with proportional ellipsoidal distributions, there exists an affine transforma-
tion of X to the following canonical form,

(1) p, =91,

where 8 is a positive scalar constant and 1 is the unit vector,
(2) p.=0,

where 0 is the zero vector,

(3) 3, =0,

where o2 is a positive scalar and I is the identity matrix and
(4) 5, =L

This canonical form for the distributions of X is very useful because the
resulting distributions are fully exchangeable (symmetric) in the coordinates of
X so that many results can be obtained by simple symmetry arguments. For
these symmetry arguments to apply with matched samples, the matching
method must also possess the corresponding symmetry and so we define
affinely invariant matching methods to have this property.
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2.3. Affinely invariant matching methods. Let (Z;, Z_) be a pair of (units
by variables) data matrices, where Z; is the N, by p matrix with elements
(X,;;) and Z; isthe N, by p matrix with elements (X, ;). A general matching
method is a mapping from (27, ;) to a pair of sets of indices, (T, C), of those
units chosen in the matched samples, where T has n, elements from (1, ..., N,)
and C has n, elements from (1,..., N,). (A more restrictive definition of
general matching would require n, = n_, with a 1:1 correspondence between
the elements of T' and C). An affinely invariant matching method is one such
that the matching output is the same following any affine transformation, A,
of X:

(2, Z;) = (T,0C),
implies
(A(Z), A(Z)) = (T,C).

Matching methods based on population or sample inner products, such as
discriminant matching or Mahalanobis metric matching, are affinely invariant,
as are common methods using propensity scores based on linear logistic
regression estimators, which are affinely invariant as noted in Efron (1975).
Methods that are not affinely invariant include those where one coordinate of
X is treated differently from the other components (e.g., weighted in the
Mahalanobis metric to reflect greater importance) or where nonlinear estima-
tors (e.g., of the discriminant) are used, such as trimmed moment estimators.

When an affinely invariant matching method is used with proportional
ellipsoidal distributions, the canonical form for the distributions of X given in
(1)-(4) can be assumed. This canonical form will be used throughout the
remainder of Section 2 and in Section 3.

2.4. The best linear discriminant. A particularly important linear combi-
nation of X is the best linear discriminant, (u, — p,)3;'X, which is propor-
tional to X in the canonical form of the distributions defined by (1)-(4). The
standardized discriminant, Z, is defined as the discriminant with unit variance
in the control population,

(5) Z=1X/yp.

The standardized discriminant is a log-likelihood ratio statistic when X, and
X, are multivariate normal with proportional covariance matrices, and it has
the maximum difference in population means among all standardized linear
combinations in the more general setting.

An arbitrary linear combination Y = o’X can be expressed as a sum of
components along and orthogonal to the standardized discriminant; for nota-
tional simplicity, let Y be standardized, o’a = 1. Let W be the standardized
linear combination of X orthogonal to Z,

(6) W= Y,X’ 'Yll =0, 'Y,'Y = ]-a
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with y chosen so that
@) Y=pZ+1-p2W,

where p is the correlation of Y with the standardized discriminant Z. By their
construction, Z and W have several properties useful in the derivations. In the
control population,

E(Z.) = E(W,.) = E(T,.) = 0,
(8)

var(Z,,) = var(W,) = var(T,0) = -,

where the subscript rc refers to a randomly chosen sample of n, control units.
Likewise, in the treated population,

E(Z") =byp, E(Wrt) =0, E( rt) =pdVp,
®) .

var(Z,,) = var(W,,) = var(Y,,) —
t

where the subscript r¢ refers to a randomly chosen sample of 7, treated units.

Corollaries in Section 3 decompose the effects of matching into two pieces:
the effect on the best linear discriminant Z and the effect on any covariate W
orthogonal to Z.

3. Decomposing the matching effects.
3.1. Results based on symmetry.
THEOREM 3.1. Suppose an affinely invariant matching method is applied

with fixed sample sizes (N,, N,,n,,n.) and proportional ellipsoidal distribu-
tions, which are represented in canonical form. Then,

(10) E(X,,) a1,

(11) EX,,) a1l

and

(12) var(X,,, - X,,.) a I +cll, ¢> -1/p,

where X, and X,,, are the mean vectors in the matched treated and control
samples and E(+) and var(-) are the expectation and variance over repeated
random draws from the initial populations of treated and control units.
Furthermore,

(13) E(v,(X)) aI+¢cl1Y, ¢ =-1/p,
(14) E(v,(X)) «a I +¢1Y, ¢, > -1/p,

where v,,(X) and v,,(X) are the sample covariance matrices of X in the
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matched treated and control samples with divisors (n, — 1) and (n, — 1). If
8 =0, then

EX,,)=EX,.) =0,
va.r()_(mt - )_(m) al,
E(v,,/(X)) « I,
E(v,.(X)) « L.

Proor oF THEOREM 3.1. The proof of Theorem 3.1 follows from symmetry
with little derivation. The expectations of the sample means of each coordinate
of X must be the same and thus proportional to 1 in both treated and matched
control samples. The covariance matrices must be exchangeable in the treated
and matched control samples. The general form for the covariance matrix of
exchangeable variables is proportional to

I+clY, c=> —-1/p.
When 8 = 0, the complete rotational symmetry implies the final set of claims.
O

The symmetry results of Theorem 3.1 imply that any W orthogonal to the
discriminant Z has the same distribution, as summarized in the following

corollary.

CoroLLaRY 3.1. The quantities var(W,, — W_ ), E(, (W)) and
E(v,,(W)) take the same three values for all standardized W orthogonal to Z.
The analogous three results apply for statistics in random subsamples indexed
by rt and rc. Since Z is the discriminant, defined without regard to the choice
of Y, the analogous quantities for Z are also the same for all Y.

3.2. Corollaries that decompose the effect of matching. Although Theorem
3.1 and Corollary 3.1 follow almost immediately from the symmetry of ellip-
soidal distributions and restrictions placed on the matching algorithms, their
consequences are not as apparent. The corollaries that follow from it, stated
here and proved in Section 3.3, show that under the conditions of Theorem
3.1, the moments of any Y in the matched samples are determined by the
moments in the matched samples of the discriminant and any single covariate
uncorrelated with the discriminant, and furthermore, that those moments of
Y involve Y only through p.

Suppose proportional ellipsoidal distributions with p, # p,, and affinely
invariant matching methods, and let Y have correlation p with the best linear
discriminant Z and correlation /1 — p? with W uncorrelated with Z. Then,
the following four corollaries hold.

CoROLLARY 3.2. Matching is equal percent bias reducing, EPBR (Rubin,
1976a),

E(Yp, — ¥pe)

(15) BT,

t~ tre
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where the subscript rt refers to a raidomly chosen sample of n, treated units,
and the subscript rc refers to a randomly chosen sample of n, control units.
Equation (15) implies that the percent reduction in bias is the same for any
linear combination of X, because E(Zm, Z,)/E(Z,, - Z,,) takes the same
value for all Y.

COROLLARY 3.3. The matching is p®-proportionate modifying of the vari-
ance of the difference in matched sample means,
var(Y,, - Y,..)
Var(Yrt - K‘c)

(16) . _
B yvar(Z,, - Z,,.) o var(W,, — W..)
- = = + (1 4 ) = — )
Var(Zrt - Zrc Var( Wrt — Wre

where the ratios
var(Z,, = Z,.) var(W,,, — W,
va.r(Z,, - Zrc) ’

take the same two values for all Y.

COROLLARY 3.4. The matching is p%-proportionate modifying of the expecta-
tions of the sample variances

E(vn(Y))  ,E(vn(Z)) E(v.(W))

D B @) Ewa2) T M)
and

BouiV)) _ ECnl2) | (o Ene(W))
) Fanm) L Eea) TP B

where v,(+) is the sample variance of n, randomly chosen treated units
(computed using n, — 1 in the denominator) and likewise for v, () and n,
randomly chosen control units (using n, — 1). The ratios

E(vmt(Z)) E(vmt(W)) E(vmc(Z)) E(vmc(W))
E(vrt(z)) ’ E(vrt(W)) ’ E(vrc(z)) ’ E(vrc(W)) ’
take the same four values for all Y.

COROLLARY 3.5. When p, = p,
E(?mt - ?mc) = E(K‘t -
and the ratios
V&I‘(?mt - 7mc) E(vmt(Y)) E(vmc(Y))
var(l_f,, - 7,.0) ’ E(vrt(Y)) ’ E(vrc(Y)) ’

take the same three values for all Y.
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3.3. Proofs of the corollaries.

ProoF OF COROLLARY 3.2. After matching, from (7),
E(?mt - ?mc) = pE(Z’mt.é_ ch) + (V 1- P2 )E(Wmt - Wmc)’
where by (6),
E(Wmt - Wmc) = ‘Y’E(th - )_(mc)‘
But by Theorem 3.1, EX,,, — X,,.) a 1, and from (6), y'1 = 0. Hence,
(19) E(?mt - ?mc) = pE(th - ch)’
and Corollary 3.2 follows by noting from (7) that E(Y,, - Y..) = pE(Z,, — Z,,).
O

Proor oF COROLLARY 3.3. After matching, from (7),

var(l_fmt - Y,.) =p?var(Z,, - ch) + (1 - p?)var(W,,, — Wmc),
because from (5) and (6),

cov(th -Z

Wmt - Wmc = il’ Var(xmt - ch)‘Y,
)= %

mce?

which from (12), is proportional to
I+ cll)y=Ty+cply=0.

Equation (16) follows because in random subsamples, the treated and control
subsamples are independent with

o? 1

Var(?rt - ?rc) = Var(Zrt - Zrc) = Var(Wrt - W’,-c) = n_t + n—c

The final claim of Corollary 3.3 follows from Corollary 3.1. O

Proor oF COROLLARY 3.4. After matching, in the treated sample,
E(vmt(Y)) = p2E(vmt(Z)) + (1 - pZ)E(vmt( W))
because the expected matched treated sample covariance of Z and W is
1
Vb

Noting that E(v,(Y)) = E(v,(Z)) = E(v,(W)) = 1, implies equation (17), and
an analogous derivation for the control sample establishes (18). Corollary 3.1
completes the proof of Corollary 3.4. O

E(Yv,,(X)y) « ¥(I + ¢,p1l)y = 0.

Corollary 3.5 follows immediately from symmetry considerations.
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4. Extensions involving a special set of covariates.

4.1. Conditionally affinely invariant matching methods. An important
class of extended results covers methods that treat a subset of the covariates,
denoted by X = (X,,..., X,), differently from the remaining covariates,
X" =(X,,,,..., X,). For example, in a study of the effects of smoking on
health in human populations, a match for each smoker might be selected
according to the criteria (a) the closest nonsmoker with respect to the discrimi-
nant (computed using numerous personal characteristics) who exactly matches
the smoker’s gender and is within +5 years of the smoker’s age or (b) the
closest nonsmoker with respect to the Mahalanobis metric on age and an index
measuring environmental exposure to carcinogens who is also within +1/4
standard deviations of the smoker on the discriminant, as in Rosenbaum and
Rubin (1985). In these examples, the special matching variables, X®) denote (a)
gender and age and (b) age and environmental exposure.

Using a construction similar to the definition of affinely invariant matching
in Section 2.3, these matching methods are called conditionally affinely invari-
ant because they satisfy the condition that their matching output is the same
following an affine transformation A of X:

((%(s), %(r))’ (Q’;(S), Q”c(r))) — (T, C)
implies
((g/;(s), A%(’)), (g/;(s)’ AQ;('))) — (T,C).

Conditionally affinely invariant matching methods include affinely invariant
matching methods as a subclass. When using conditionally affinely invariant
matching methods, similar, but weaker results are obtained under correspond-
ingly weaker distributional assumptions that remove the requirement of rota-
tional invariance for the special variables X®.

4.2. Conditionally ellipsoidal distributions. Distributions satisfying this
weaker set of restrictions are called conditionally ellipsoidal distributions:
The conditional distribution of X" given X’ is ellipsoidal with the condi-
tional mean a linear function of X and constant conditional covariance
matrix. A special case of conditionally ellipsoidal distributions is the normal
general location model widely discussed in the statistics literature, starting
with Olkin and Tate (1961).

Denote the covariance matrices and means for the two subsets of covariates
by 3, 3, u® and p{” in the treated population, and 3(, 3(, u and p("
in the control population, and the conditional covariance matrices and means
of XM given X® by Z("9), 319 w19 and p{1®). The distributions are called
proportional conditionally ellipsoidal distributions if the conditional distribu-
tions X"|X are ellipsoidal in both the treated and control populations with
proportional conditional covariance matrices, 3¢ o 3{1*) and common linear
regressions of the (p — s) covariates in X on the s variables in X,
B=(B,,1,...,B,). The elements in the kth column of the s by (p —s)
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matrix, B, are the multiple regression coefficients of X, on (Xj,..., X,) for
k=(s+1,...,p.

The special case of proportional conditionally ellipsoidal distributions with
X® binomial or multinomial and X multivariate normal has been studied
extensively in the discrimination literature [e.g., Krzanowski (1975), (1980);
Daudin (1986)]. This model gives rise to a linear logistic regression model for
predicting population membership based on the covariates, X, and thus is
relevant to the applied practice that estimates linear propensity scores using
logistic regression [Rosenbaum and Rubin (1985)].

4.3. Canonical form for conditionally ellipsoidal distributions. Using con-
ditionally affinely invariant matching methods with proportional conditionally
ellipsoidal distributions, a canonical form for the distributions can be assumed
corresponding to the canonical form used in Section 2.2,

(20) py al,
(21) “(cr)=0’
300
22 5. ="
() -
and
30
23 3.=|"¢ .
) [

This form is obtained by leaving the X®> unchanged and letting the canonical
X ™ be defined as the components of X" uncorrelated with X®: X — BX),
When the covariates are transformed to this canonical form, the conditional
distributions of X™|X® satisfy

(24) p{ = pd o 1,
(25) py'® = pd =0
and

(26) 319 = 300 o 1,
(27) 3019 =30 o1,

so that the distributions of (X©*), X(™) are exchangeable under permutations of
components of X conditional on X in both populations, and thus the
unconditional distributions of (X®), X(") are also exchangeable under permu-
tations of components of X.

4.4. Representation for a linear combination Y. An arbitrary standardized
linear combination Y can be represented in a simple form analogous to (7),

(28) Y =p2+ (V1-9%)7,
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where the vectors 9 and # are the standardized projections of Y along and
orthogonal to the subspace {X®, Z}, where Z requires definition. It is the
standardized discriminant of the covariates uncorrelated with X,

(29) [(E(CrIS))_l(u(tr) — P - B (u - “s>))] X0,
or in canonical form,
(30) -1X"//p—s,

except when p{” = p{, in whlch case Z is defined to be 0. Writing 2 and #
as

’ s r X(s)
(31) P=wX = (¥, ¥ Y)(xm)’

’ S r X( )
(32) ¥=yX = (v, w)( m)

a characterization of ¥ and vy, in canonical form, paralleling (6), is summa-
rized in the following lemma.

LEMMA 4.1. The coefficients y and & must satisfy

(33) ¥&=0

and

(34) YO = 0.
When u # u?,

(35) P al,

(36) Iy™ =0.
When p” = p

(37) ¥ =0

ProoF oF LEMMA 4.1. First, (83) is true because # is a linear combination
of the X, uncorrelated with {X®, Z} and thus with {X®)}; (34) follows from
(33) and the fact that 2 is uncorrelated with #; (35) and (37) follow from the
definition of Z in (30), and (34) and (35) imply (36). O

4.5. Extensions of results in Section 3.3.

THEOREM 4.1. Suppose a conditionally affinely invariant matching method
is applied with fixed sample sizes (N,, N,,n,,n.) and proportional condition-
ally ellipsoidal distributions, which are represented in canonical form. Then,

- (E(XS)]
(38). ERX,.) = |
< \_ |[EER)]
(39) EX,.) = o1
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where u), is the common mean of each component of X, and likewise for
l“(;»)c and X().. The variance of the difference in matched samples means is
given by

_ _ X6 — X© ,
(40) var(X,,, — X ,.) = ar(Xin: — X022 o
1C’ k(I + ¢o1Y)
wherek > 0,cy > —1/(p —s), and C' = (cy,...,c,). Furthermore,
E X® C.1
(41) . E(vmt(x)) = (UMt( ’ )) ' ' 4
1C, k(I + c,o17)
E(v,,.(X®) .CY
(42) E(vmc(x)) = ( ’ ) ’ 4
1C, k.(I+c,ll)

where k, >0, ¢, > —1/(p — s), C, = (cy,..., ), and analogously for the

matched control sample covariance matrix. When p{” = p{?,

(43) E(xm,)=[ (x%)]

(44) E(X,.) - [ X)) ]

(45) var(Xg), - X)) = [var(ng);— X)) :I]’
(s)

(46) E(vmt(x(r)))=[E(vmt(()X ) k(:l],

(47) E(0,,, (X)) = [E(vm(()x“))) kol].

The proof of Theorem 4.1 is nearly identical to the proof of Theorem 3.1.
The only difference is that covariances between components in X®> and X
appear in Theorem 4.1, which have no analog in Theorem 3.1; these covari-
ances are exchangeable in the coordinates of X(. Under the additional
condition p{” = p{", the rotational invariance of X implies the further
simplifications in (43)-(47). The symmetry results of Theorem 4.1 imply that
any ¥ orthogonal to 2 has the same distribution, as is summarized in the
following corollary.

. COROLLARY 4.1. The quantities var(¥,, — #,.), E(,(¥)) and
E(v,,(#)) take the same three values for all standardized Y. The analogous
results apply for statistics of random subsamples indexed by rt and rc. How-
ever, the corresponding expressions involving @ do depend on the choice of Y.
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Under the conditions of Theorem 4.1, using the linear combination, Y,
defined in (28), the following three corollaries hold.

COROLLARY 4.2. The percent bias reduction of Y equals the percent bias
reduction of Y in the subspace {X‘®, Z},

E(?mt - ?mc) - E(?mt - 9mc)
E(K‘t_ Y;'c) E(?rt_grc)
COROLLARY 4.3. The matching is p?-proportionate modifying of the vari-
ance of the difference in matched sample means,
var(Y,, - Y,,.)
Var(?rt - ?rc)
var §m - 9mc v
=p2 (_t 7! )+(1—p2) fid
Var(?rt - 9rc) (
where the ratio var(¥,,, — ¥,,.)/var(¥,, — ¥..) takes the same value for all Y.

(48)

(49)

COROLLARY 4.4. The matching is p%-proportionate modifying of the expecta-
tions of the sample variances,

E(vmt(Y)) _ zE(vmt(Q)) E(vmt(%/))

(50) Eo(D) " Ewa(2) TP (7))
and

E(0pe(Y)) ,E(0ne(2)) L E(0po(#))
GD B P Eew2) T 7))

where the ratios E(v,,(#))/E(v,(¥#)) and E(v,,(¥#))/E(v,(¥)) take the
same two values for all Y.

A result corresponding to Corollary 3.5 with p, = p. can be obtained, but
the simplification that occurs in the case when there are no special covariates
is not present for the extended results.

Proor oF COROLLARY 4.2. The proof is similar to that of Corollary 3.2 after
noting from (32) and (33) that #= "X and from (36), (38) and (33) that
yYEX®, - X)) =0. O

Proor oF COROLLARY 4.3. The proof is analogous to that of Corollary 3.3;
from Theorem 4.1 and (33),

X)) — X 4
COV(th - ch’ Wmt - Wmc) = “" Var(XMt X"sw) c1 :I[.Y(("‘)]

1C’ E(I + c,11)
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Using V, to represent a vector with s components, the covariance can be
written as
cov(th -Z,.,. W, - W )

/ 4 0
= [VL,$7CY + k) + kg1 ] [,,m]

= PICIYD + kPTVy™ 4 kY115
from (34) and (35) when p{” # p’. When p{” = p{”, the result follows from
(87) and (45), which implies C = 0 and ¢, = 0. O

The proof of Corollary 4.4 is analogous to the proof of Corollary 3.4 with a
modification like that in Corollary 4.3, and is not presented in detail.

5. Conclusions. Our theoretical framework has established three general
results (Corollaries 3.2-3.4) concerning the performance of affinely invariant
matching methods, and three general results (Corollaries 4.2-4.4) concerning
the performance of conditionally affinely invariant matching methods. The
first collection of results can be regarded as a special case of the latter results.
They exhibit four ratios involving Z and three ratios involving W, all of which
are free of dependence on the particular outcome variable Y, but do depend on
the matching setting (i.e., distributional forms, sample sizes and the particular
matching method employed). The latter collection of results exhibit four ratios
involving @, which depend on Y as well as the matching setting, and three
ratios involving %, which are free of Y. Thus, the corollaries show that only a
small number of quantities are needed to evaluate the sampling properties of
complex matching procedures for a large class of theoretically important
distributions.

Under normality, simple approximations for all ratios involving W and #
can be obtained analytically for matching methods that use population or
estimated discriminants. Furthermore, under these conditions, bounds can be
obtained for the ratios involving Z and 2. These results are presented in
Rubin and Thomas (1991), and of particular importance, they describe the
difference between using estimated and population discriminants. Subsequent
work [Rubin and Thomas (1992)] using simulations and real data supports the
relevance of these results to practice when distributions do not satisfy underly-
ing assumptions.
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